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ABSTRACT 

GRAPH THEORY BASED TRAFFIC LIGHT MANAGEMENT  

 

Adam Rizvi Thahir 

MSc. in Electrical and Computer Engineering 

Advisor: Prof. Dr. Vehbi Çağrı Güngör 

Co-advisor: Asst. Prof. Dr. Mustafa Coşkun 

 

June 2022 

 

Traffic congestion and delays caused in traffic light intersections can adversely affect 

countries in terms of money, time, and air pollution. With the advancement of 

computational power as well as artificial intelligent algorithms, researchers seek novel 

and optimized solutions to the traffic congestion problem. Most modern traffic light 

systems use manually designed traffic phase plans at intersections, and although this has 

proven to be relatively sufficient for today’s traffic management systems, implementing 

a smarter traffic phase selection system is deemed to be more effective. Traditional 

approaches rely heavily on traffic history (static information), whereas Reinforcement 

Learning (RL) algorithms, which offer an “adoptable"/dynamic traffic management 

system, are gaining increased research interest. Despite the usefulness of these RL based 

deep learning techniques, they inherently suffer from training time to apply them in real-

world traffic management systems. This study aims to alleviate the training time problem 

of deep learning-based techniques, The research brings forth a novel graph-based 

approach that is able to use known occupancies of roads to predict which other roads in a 

given network would become congested in the future. Based on the predictions obtained, 

we are able to dynamically set traffic light times in all intersections within a connected 

network, starting from roads with known occupancies, and moving along connected roads 

that are anticipated to be congested. Predications are done using edge-based semi-

supervised graph algorithms. Conducted simulations show that our approach can yield 

comparable average wait time to that of deep-learning based approach in minutes, 

compared to the much longer training time required by the deep-learning models. 

Keywords: Deep Learning, Reinforcement Learning, Traffic Flow, Congestion 
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ÖZET 

GEAFİK TEORİSİ TABANLI TRAFİK IÇIĞI YÖNTEMİ 

 

Adam Rizvi Thahir 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans 

Tez Yöneticisi:  Prof. Dr. Vehbi Çağrı Güngör 

Eş-Danışman: Dr. Mustafa Coşkun 

 

Haziran 2022 

 

Trafik ışıklı kavşaklarda meydana gelen trafik sıkışıklığı ve gecikmeler ülkeleri para, 

zaman ve hava kirliliği açısından olumsuz etkileyebilmektedir. Yapay zeka 

algoritmalarının yanı sıra hesaplama gücünün ilerlemesiyle birlikte, araştırmacılar trafik 

sıkışıklığı sorununa yeni ve optimize edilmiş bir çözümler aramaktadırlar. Çoğu modern 

kavşaklarda, manuel olarak tasarlanmış trafik faz planı kullanılmaktadır. Bunun günümüz 

trafik yönetim sistemleri için nispeten yeterli olduğu kanıtlanmış olsa da, akıllı bir trafik 

faz planı uygulanmasının daha etkili olduğu düşünülmektedir. Geleneksel yaklaşımlar 

büyük ölçüde geçmiş trafik verisine (statik bilgi) dayanırken, dinamik/adaptif bir trafik 

yönetim sistemi sunan Pekiştirmeli Öğrenme (RL) algoritmaları giderek daha fazla 

araştırmacıların ilgisini kazanmaktadır. Bu RL tabanlı derin öğrenme teknikleri kullanışlı 

olmasına rağmen eğitim sürelerinden dolayı gerçek hayattaki trafik yönetim sistemlerine  

uygulanması zordur. Bu çalışma, derin öğrenme tabanlı yöntemlerin eğitim süresi 

problemini çözmeyi amaçlamaktadır. Araştırma, belirli bir ağdaki diğer yolların 

gelecekte hangi durumda tıkanacağını tahmin etmek için bilinen yol doluluk 

durumlarından yararlanmayı sağlayan, yeni bir grafik tabanlı yaklaşım getirmektedir. 

Elde edilen tahminlere dayanarak, trafik sıkışıklığı bilinen bir yoldan başlayarak bir 

sonraki tıkanması beklenen bağlantılı yolları içeren ağdaki tüm kavşakların trafik ışık 

sürelerini dinamik olarak ayarlanabilmekteyiz. Tahminlemeler, kenar tabanlı yarı 

denetimli grafik algoritmaları kullanılarak yapılmaktadır. Yürütülen simülasyonlar, 

yaklaşımımızın derin öğrenme modellerinin gerektirdiği çok daha uzun eğitim süresiyle 

karşılaştırıldığında, birkaç dakika içinde derin öğrenme tabanlı yaklaşımla 

karşılaştırılabilir ortalama bekleme süresi sağlayabileceğini göstermektedir. 

Anahtar kelimeler: Derin Öğrenme, Pekiştirmeli Öğrenme, Trafik Akışı, Tıkanıklık 

 



iii 

 

Acknowledgements 
 

 

First and foremost, I would like to express my most sincere thanks to my academic 

advisor Prof. Dr. Vehbi Çağrı Güngör for guiding and supporting me throughout my time 

as a master’s student at Abdullah Gul University. It has been a privilege to collaborate 

with him and learn from his many years of experience. 

I would also like to thank my academic co-advisor, Dr. Mustafa Çoşkun for all his 

profound knowledge and insight regarding Graph Theory, Semi-Supervised learning, and 

other topics vital to the research conducted. 

Furthermore, I would also like to thank other members of the Computer 

Engineering department who have all paved my way leading up to this point. Dr. Zafer 

Aydın for initially getting me involved and interested in Machine Learning, Data Science, 

and other relevant topics. Dr. Gülay Yalçın for piquing my interest in theoretical 

computing topics, Dr. Burcu Bakır-Güngör for being a supporting pillar in other courses 

and academic writing, and finally, Dr. M. Şükrü Kuran who first recognized the potential 

within me and was a driving force behind my motivation to begin and continue along this 

path of my academic life. 

My mentor, Süheyl Töken who has enlightened me with his many years of industrial 

and technical knowledge and provided me the opportunity to collaborate with him to 

develop real world applications relating to traffic lights, an opportunity from which I was 

able to gain firsthand experience on a topic relating to my research. 

I would also like to thank a fellow master’s student and colleague, Sultan Kübra 

Kılıç, whom I have worked with closely with over the past few years. They have been a 

great support to my research, having real life knowledge on traffic light management, and 

great practical knowledge on a variety of related topics.  

My friends, I have made over the years in Turkey; Muhammad Fuad Farooqi, for 

helping me always keep my academic goals in focus. Süleyman Çiçek and Hussam 

Amoody, for all their support throughout the many years we have known each other.  

 

 

 

 

 

 

 

 

  



iv 

 

TABLE OF CONTENTS 

1. INTRODUCTION .................................................................................................... 1 

1.1 TRAFFIC LIGHT INTERSECTIONS ............................................................................. 2 

1.2 VEHICLE OCCUPANCIES AND QUEUES ................................................................... 3 

1.3 TRAFFIC FLOW ....................................................................................................... 3 

2. SIMULATION TOOL .............................................................................................. 4 

2.1 NETEDIT .................................................................................................................. 4 

2.2 VEHICLE ROUTING ................................................................................................... 5 

2.3 SUMO ..................................................................................................................... 6 

2.4 TRACI ...................................................................................................................... 6 

3. TRAFFIC MANAGEMENT SYSTEMS ................................................................ 7 

3.1 DATA COLLECTION .................................................................................................. 7 

3.2 DATA PROCESSING/CLEANING .................................................................................. 7 

3.3 TRAFFIC PHASE CALCULATION/OPTIMIZATION ........................................................ 8 

3.3.1 Conventional Traffic Control Systems. ............................................................ 8 

3.3.2 Reinforcement Learning for traffic control systems. ....................................... 8 

3.3.3 Traffic Flow Prediction Based Traffic Control Systems ................................ 10 

4. METHODOLOGY ................................................................................................. 12 

4.1 PROBLEM DEFINITION ............................................................................................ 12 

4.2 STATE-OF-THE-ART APPROACHES .......................................................................... 12 

4.2.1 Occupancy based algorithm .......................................................................... 12 

4.2.2 Scoring Algorithm .......................................................................................... 13 

4.2.3 Reinforcement Learning Algorithms .............................................................. 14 

4.2.3.1 Proximal Policy Optimization (PPO) ......................................... 14 

4.2.3.2 Advantage Actor Critic (A2C) .................................................... 14 

4.3 PROPOSED: GRAPH-SEMI SUPERVISED LEARNING BASED APPROACH ................... 15 

4.3.1 Graph based Semi-Supervised Learning for vertices .................................... 16 

4.3.2 Graph based Semi-Supervised Learning for edge flows ................................ 17 

5. RESULTS ................................................................................................................ 19 



v 

 

5.1 PREDICTION PERFORMANCE RESULTS .................................................................... 21 

5.2 SIMULATION PARAMETERS .................................................................................... 22 

5.2.1 Number of steps ............................................................................................. 22 

5.2.2 Number of simulations ................................................................................... 22 

5.2.3 Traffic Phases ................................................................................................ 22 

5.3 PERFORMANCE EVALUATION ................................................................................. 22 

6. CONCLUSIONS AND FUTURE PROSPECTS ................................................. 29 

6.1 SOCIETAL IMPACTS AND CONTRIBUTION TO GLOBAL SUSTAINABILITY ................. 29 

6.2 CONCLUSIONS ........................................................................................................ 30 

6.3 FUTURE PROSPECTS ............................................................................................... 31 

7. APPENDIX .............................................................................................................. 36 

Appendix A: Python Code used to run a SUMO simulation using TraCI .............. 36 

 

  



vi 

 

LIST OF FIGURES 

Figure 1.1 Four-way traffic light intersection ................................................................... 2 

Figure 2.1 Network design for a simulation environment with 20 traffic light 

intersections. ............................................................................................................. 5 
Figure 3.1 Visualization on how a generic Reinforcement Learning algorithm would 

work on a traffic light environment .......................................................................... 9 
Figure 4.1 Network design for simulation environment with 17 traffic light intersections

 ................................................................................................................................ 16 
Figure 5.1 Flowchart representation breaking down the steps on how the proposed ..... 20 

Figure 5.2 Graph based SSL for synthetic flows from the simulation on 5, 17 and 20 

intersection models. ................................................................................................ 21 

Figure 5.3 Average waiting time for a single vehicle in the network ............................. 23 

Figure 5.4 Average total waiting time for all vehicles in the network ........................... 24 

Figure 5.5 Average waiting time for all vehicles in an intersection ............................... 25 

Figure 5.6 Average maximum maximum waiting time for a single vehicle .................. 26 

Figure 5.7 Average wait time per vehicle per simulation step – 17 Intersections .......... 27 

Figure 5.8 Average wait time per simulation step - 20 intersections ............................. 27 

Figure 5.9 Average running times for each simulation .................................................. 28 

 

 

 

 

 

 

 

  



vii 

 

LIST OF TABLES 

Table 3.1 Comparison table between the proposed approach against other state-of-the-

art approaches ......................................................................................................... 11 

 

  



viii 

 

LIST OF ABBREVIATIONS 

A2C Advantage Actor Critic 

AI Artificial Intelligence 

NP Non-deterministic Polynomial-time 

PPO Proximal Policy Optimization 

RL Reinforcement Learning 

RRQR Rank-revealing QR 

SUMO Simulation of Urban MObility 

TL Traffic Light 

TMS Traffic Management Systems 

TraCI Traffic Control Interface 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

To my parents, 

 

M. Rizvi Thahir and Zeenathul Fathima



1 

 

Chapter 1 

Introduction 

With the advancement of modern cities, growing population, and the increase in the 

number of vehicles owned by people within a city, traffic congestion has become a 

growing problem over the years. Along with traffic congestion comes time consumption, 

air pollution, and economic burdens. As per a study conducted by Inrix in 2019, an 

average driver in the United States has lost 99 hours in traffic congestion, with an 

estimated cost of $1,337  [1]. Naturally, in larger cities, the associated time consumption 

and cost are much more severe, such as in Boston, MA, where the number of hours lost 

was recorded to be up to 149, and the estimated cost per person was $2,205 [1]. Thus, 

utilizing an “adaptable” traffic management system has been one of the central research 

interests. 

Many modern cities today operate their traffic systems using predefined fixed times 

which are often based on manually hand-crafted traffic rules by people observing traffic 

in real time [2]–[4]. However, predefined rule-based traffic management systems are 

vulnerable to changes that are inevitable due to expanding cities and increase in the 

number of vehicles on the road, as such, these predefined systems are often deemed to be 

limited [5]. Inspired by the fascinating developments on Artificial Intelligence (AI) 

algorithms, more recent research attempts based on AI approaches aim at solving traffic 

light configurations for intersections. Earlier studies, such as those conducted in [6]–[8] 

propose that reinforcement learning algorithms provide a more efficient traffic 

management model. This study proposes the use of graph based semi-supervised learning 

for edge label prediction, which aims to alleviate the shortcomings of RL based systems 

while also providing an efficient traffic management model. 

In order to assess the performance of our proposed approach against state-of-the-art 

deep approaches as well as heuristic-based approaches and fixed time approaches, we 

conduct experiments on a microscopic traffic simulation tool: Simulation of Urban 

MObility (SUMO) [9]. This tool is further discussed in Section 2. 
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Figure 1.1 Four-way traffic light intersection 

1.1 Traffic Light Intersections 

Traffic light intersections are interest points within a road network in which 

multiple roads (edges) intersect with each other and are controlled by a traffic light 

system. These systems allow vehicles to pass at specific lanes at a given time, causing 

vehicles at other intersections to stay at an idle stage until they are allowed their turn. 

A standard four-way intersection is depicted in Figure 1.1; As per the displayed 

network model, at the given timestamp. From this image, it is observed that the north and 

south roadways have been given the green signal, allowing vehicles originating from 

either one of these roads to pass through, whereas, vehicles originating from the East and 

West roadways are required to wait their turn. 

For the scope of this project, we model multiple four-way intersections as seen 

above, additionally, we also model several three-way intersections in an attempt to create 

a robust traffic network with minimal bias. Model types and network designs are further 

discussed in Chapters 2 and 5. 
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1.2 Vehicle Occupancies and Queues 

Vehicle occupancies are defined as the number of vehicles on each edge. A given 

edge may have a different number of lanes within the edge, the number of lanes within 

an edge would affect the total queue size of the edge, but not the vehicle occupancy.  

Queue sizes are defined as the length of vehicles waiting in a given edge. The 

number of lanes within an edge would greatly affect the queue sizes of that edge. 

The size of the queue within an edge would cause delays for the vehicles on that 

edge, due to latencies caused by the initial movement of a vehicle from a stopping state. 

As per the image shown in Figure 1.1, the maximum vehicle occupancy observed 

in the network is 7, whereas the maximum queue size observed in the network is 2. 

Despite both values obtained from the same edge, the values are expected to be different 

due to the edge having multiple lanes. In the case of an edge having exactly one lane, the 

vehicle occupancy and queue size would be the same. 

1.3 Traffic Flow 

Traffic flow is defined as the continuous flow movement of vehicles within a 

network layout. Traffic flow heavily depends on a given network layout as well as vehicle 

route demands.  

Traffic flow from one intersection to another intersection would vary, depending on 

the movement of each vehicle within the flow at a given time. A smooth traffic flow is 

described as the continuous movement of traffic between intersections. These flows may 

be disrupted by driver behavior, pedestrian movement, and other outside factors as well. 

Additionally, following the idle stopped state of vehicles at a red light, delays caused by 

vehicles ahead may also negatively affect traffic flow. 
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Chapter 2 

Simulation Tool  

Simulation environments were designed using a series of tools provided by the 

microscopic and continuous multi-modal traffic simulation package; SUMO [10]. 

SUMO is an open-source traffic simulation suite that allows us to design, model 

and simulate traffic networks [9]. During a simulation, SUMO provides necessary tools 

to interact with the running simulation, as well as extract required data from within the 

network, such as currently running traffic phase information and vehicle occupancies for 

a given road. 

For the scope of this study, a variety of tools provided by SUMO were used. The 

image shown in Figure 1.1 was taken from a close-up view of a running simulation on a 

modeled intersection. 

2.1 NetEdit 

NetEdit is a tool provided within the SUMO suite [11]. This tool is used to create 

and model various traffic networks. A traffic network containing 20 different 

intersections constructed using NetEdit is represented in Figure 2.1. 

Networks are designed by placing nodes (intersections) on a blank canvas, and then 

connecting links between two nodes (roads). Properties for a road can be defined using 

the ‘Inspect’ panel on the left side of the interface. 

We then generate a net file output which would be used with other tools provided 

by SUMO suite. 
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Figure 2.1 Network design for a simulation environment with 20 traffic light 

intersections. 

 

Having a network layout allows us to proceed with constructing vehicle routes for 

the simulation. 

2.2 Vehicle Routing 

In order to construct a reliable network, randomly generated vehicle routes are vital. 

Our study uses the scripts RandomTrips [12] and DuaRouter [13] to generate these routes. 

RandomTrips is used to generate random trips vehicles within the network can take, this 

defines valid vehicle movement between nodes within the network.  

Trips generated by the script are done at random by choosing random source and 

destination edges within the network layout file. A random seed can be provided as an 

input parameter upon running the script. Traffic volume and arrival rates can also be 

adjusted as per our needs, for the scope of this project we leave these settings to default, 

for all simulations in order to obtain unbiased results. The trips generated by are stored as 

a separate file which is then used as an input for DuaRouter. 

Using the file generated by RandomTrips, DuaRouter creates vehicle demand for 

the simulation. The vehicle demand is created for the total simulation time provided; trips 

obtained from the RandomTrips output are validated such that each vehicle route 

approved by DuaRouter is a valid path in which a vehicle can move from source to 

destination. 



6 

 

Having the output from DuaRouter, and DuaRouter, we are able to start our 

simulations using the SUMO tool, which has the option to run with and without a GUI.  

2.3 SUMO 

SUMO is the tool within the suite that is responsible for the simulation. This tool 

allows us to simulate a defined scenario provided by a variety of configuration files, 

including a network file, often generated by NetEdit, and a vehicle demand file often 

generated by DuaRouter. 

The tool comes in two forms, SUMO, and SUMO-GUI. As the name implies, 

SUMO-GUI also provides a Graphical User Interface allowing us to view our simulation 

as the simulation progresses. Using the GUI is a useful step to provide insight on created 

network models and simulation scenarios, however running a series of simulations 

continuously may seem slow with the GUI; For this reason, we use SUMO without a GUI 

to conduct our simulations once simulation scenarios are validated. 

In this study, we use the Python programming language to start and control our 

simulations. Sample code to start a given scenario is provided in the appendix section. 

2.4 TraCI 

TraCI – short for “Traffic Control Interface,” is another tool provided by the 

SUMO suite. This tool gives us access to monitor, extract data, and manipulate 

simulations running on SUMO. TraCI is able to access SUMO via a client/server 

architecture, where SUMO acts as the server listening in for incoming connections, and 

TraCI is the client.  

TraCI allows us to observe changes within a network and interact with the 

simulation accordingly. Some features include monitoring vehicle occupancy within 

edges in the network and traffic light phase for any intersection at the current simulation 

time.  

Using TraCI, we are also able to extract information for each vehicle currently 

inside the simulation. This information is used to model traffic flow from one intersection 

onto another intersection. 
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Chapter 3 

Traffic Management Systems 

The work executed by a traffic management system can be broadly categorized into 

three distinct categories. 

i. Data collection and communication 

ii. Data processing/cleaning 

iii. Traffic Phase calculation/optimization 

3.1 Data Collection 

The very first step of the system involves obtaining information from the network. 

Most common data collection methods used in Traffic Light systems, involves traffic 

phase information, number of edges, number of lanes within each lane, vehicles within 

each lane and total number of vehicles within a network. However, the exact information 

obtained would vary depending on the system’s requirements.  

The data collection process itself may also vary based on a different set of needs. 

Common data collection techniques include inductive loops [14], [15] and image 

processing  [16], [17].  

In order to process the data, the collected data must be passed on to other sections 

of the system. Some common approaches are to utilize different levels of network-level 

protocols to achieve this need. These approaches have been further studied in [18]–[22]. 

3.2 Data processing/cleaning 

In order the ensure that the collected data can be used by the system in a streamlined 

manner, it is important for all the incoming data to be further processed and/or cleaned 

before the system stores the data. This step is often entwined with the communication 

process of the system in order to regulate incoming data. The definite process of data 

cleaning heavily relies on how the data is to be used by the TMS. Some studies discussing 

data communication also propose viable forms of data processing. 
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3.3 Traffic Phase Calculation/Optimization 

The final step of the TMS aims at solving traffic congestion problem by taking the 

number of vehicles and queue sized into account whilst calculating new phase times for 

each phase within the intersection. 

Modern approaches to calculating these phase times can be classified into the 

following types. 

i. Conventional Traffic Control Systems 

ii. Reinforcement Learning for Traffic Control Systems 

iii. Traffic Flow predication-based traffic control systems. 

 

3.3.1 Conventional Traffic Control Systems. 

Conventional traffic control systems are often used in earlier traffic system models. 

In such systems, traffic flows are observed manually, and traffic phase times are then set 

according to rules and patterns from these observations. These rules often include a 

change in priority based on time of day, construction interference, and other factors that 

would affect traffic flow. Such systems have been studied in [2], [3], [23]. 

Another approach is conducted by using real-time vehicle data for a given duration, 

and an optimal phase time is calculated for each of the phases. These systems have been 

further studied in [4], [24]. The calculated optimal times would then be set to last within 

the intersection until they would be updated again at some point in the future. Despite 

offering some merit, over time, the calculated optimal times may become redundant due 

to changes in vehicle behavior, and the system not having sufficient insight into any future 

data.  

3.3.2 Reinforcement Learning for traffic control systems. 

Traffic congestion is a dynamic, time-reliant problem. With the advancement of AI 

algorithms, modern reinforcement learning, and deep learning approaches have been 

employed to dynamically adjust traffic lights by learning traffic behaviors. 

The general flow for the usage of an RL model in the scope of traffic lights can be 

classified into three sections 
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i. Environment: Composed of traffic light phases and traffic conditions, 

including traffic congestion and traffic outward flow.  

ii. State: A feature representation of the environment, often a grid 

representation of the phase times within the intersection. 

iii. Agent: A model which is able to make informed changes onto the 

environment based on the information obtained from the State. 

Following the decision making of the agent, the environment would return a reward 

value back onto to the state which would be used as an additional input parameter to the 

agent before it makes its next decision. This reward value would inform the agent how 

the environment reacted to its previous decision, allowing a better-informed following 

decision to be taken. This flow is depicted in Figure 3.1 

 

 

Figure 3.1 Visualization on how a generic Reinforcement Learning algorithm 

would work on a traffic light environment 

Other approaches to model traffic networks into a RL model may use different 

definitions for their Environment, State and Agent sets of the model. The studies 

conducted in [6], [8], [25]–[27] model their network having the number of vehicles 

queued as their state space, similarly studies [28], [29] use traffic flow obtained by placing 

sensors at the edge of the traffic light. Certain studies also introduce different action 

spaces, such as having all possible signal phases as their action space [28], [30] or only 

the green signal phase within the action space [26], [29]. Reward functions for [28], [30] 

is set based on the change in delay for the vehicles in the network, whereas [26], [29] 

define their reward function based on the change in the number of queued vehicles.  
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Moreover, other studies such as [5] have used traffic flow and traffic delays as their 

reward function, implementing Deep Q-learning.   Finally, a series of other RL 

algorithms such as Asynchronous method for deep reinforcement learning and Proximal 

Policy Optimization algorithms were also conducted in [31], [32] by Stable Baselines. 

Comparing the conventional methods against the reinforcement learning and deep 

learning approaches, it is observed that reinforcement and deep learning approaches are 

a more effective solutions to traffic congestion as seen in [5], [33], [34]. 

However, despite the positive results, the time taken for the training for the neural 

network parameters is computationally expensive and often costs more as the number of 

intersections increases within the network. 

3.3.3 Traffic Flow Prediction Based Traffic Control Systems 

 Traffic Flow Prediction Based Traffic Control Systems is the proposed system in 

this study. It is an alternative and efficient algorithm by approaching the TMS as a flow 

prediction problem. This approach renders predicting the outward flow of vehicles from 

a given intersection, onto connected intersections, and enables the TMS system to identify 

vehicle congestion that is likely to occur at the following intersections. More specifically, 

in a multi-intersection setting, our approach is able to provide information on traffic flow 

behavior, by pin-pointing intersections that would become congested within a short 

period of time, based on semi-supervised active learning on edges [35].  

The main idea of our proposed approach is different from other deep learning and 

traditional methods as the flow of traffic can be predicted beforehand, allowing 

intersections with predicted congestions to set traffic light phase times according to the 

level of predicted congestion. 

Furthermore, this approach treats intersections within a network as a node. This 

graph-based approach is able to efficiently process large amounts of intersections, 

allowing seamless implementation and adaptability to scale at higher levels for systems 

designed for larger cities. 

A comparison table of different state-of-the-art approaches is depicted in  the below 

table. 
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Table 3.1 Comparison table between the proposed approach against other state-of-

the-art approaches 

 Simulation Predict 

Flows 

Real-Time 

data 

Historical 

data 

Multi-

intersection 

INTELLILIGHT 

[34] 

YES NO YES YES NO 

Francois Dion et al 

[36] 

NO NO NO YES NO 

Alan J Miller [2] NO NO NO YES NO 

Brian L, Smith [37] NO YES NO YES NO 

FRAP[38] YES NO YES NO YES 

CoLight [33] YES NO YES NO YES 

OUR APPROACH YES YES YES YES YES 
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Chapter 4 

Methodology 

4.1 Problem Definition 

In a traffic management system (TMS), our aim is to find an optimum traffic light 

configuration in a multi-intersection network, such that traffic congestion can be 

prevented as much as possible. 

We define the TMS environment as 𝜀, which consists of multiple intersections. 

Each intersection within 𝜀 is set to have an “intelligent” traffic light agent TLi. Each 

intersection agent, TLi has three default phase settings. 

i. Red: Vehicles cannot pass through the intersection. 

ii. Green: Vehicles can pass through the intersection. 

iii. Yellow: Phase changes from one phase to another. 

Default Yellow time is set to be 7s. 

4.2 State-of-the-art approaches 

4.2.1 Occupancy based algorithm 

The occupancy-based algorithm is a heuristic algorithm that tries to solve the TMS 

problem by relying on the basic idea of using predefined historical traffic data in order to 

determine the occupancies of the roads. More specifically, in this algorithm the 

occupancies of all roads with incoming traffic onto the intersection are used to prioritize 

traffic phases, i.e., if a road obtains a higher occupancy, then the green phase time given 

for that road is incremented up to a calculated threshold. The prioritization formula is 

defined as follows: 

 

𝐷 =  𝑇𝑚𝑎𝑥  ∗  (𝑁 ∗  (
𝑊𝑖

𝑊𝑇
)) (4.1) 
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where D is the duration, which is also set to a certain upper limit to prevent blocking 

on other roads, Tmax is the total time, N is the number of incoming roads, Wi is the 

occupancy value for the incoming road i, which is heuristically set to a certain value by 

observing historical traffic data, and WT is the sum of all the road occupancies coming 

into the intersection. 

Despite the effectiveness and simpleness of the occupancy algorithm, this algorithm 

sets its parameters based on historical data which is prone to change, i.e., some roads may 

have had higher occupancy values in the past, however, their occupancy values may 

decrease in the future. As a result, this algorithm introduces a certain bias towards the 

roads with historically higher occupancy rates. 

 4.2.2 Scoring Algorithm 

The scoring algorithm is another heuristic algorithm that is proposed by Sébastien 

Faye et al [39]. The basic premise behind the scoring algorithm is to score each incoming 

road in an intersection and assign the priorities based on the assigned scores. Formally, 

the score of each incoming road is defined as: 

 

𝐿𝑆 =  (
𝑁(𝑠,𝑑)

∑ 𝑁(𝑎,𝑏)
{𝑎,𝑏} ∈ 𝐷

) +  𝛽 ∙  (
𝑇𝐹
(𝑠,𝑑)

𝜎{𝑎,𝑏} 𝜖 𝐷 𝑇𝐹
(𝑎,𝑏)

) 
(4.2) 

 

where 𝛼 and 𝛽 are user-defined weights that are used to optimize average vehicle 

time and starvation, we use default values as 1 for both, (s, d) is a possible movement 

from source direction s to destination direction d, both of which are within a set of all 

possible directions D. N(s,d)  is the weighted sum of the number of vehicles present on 

the coming lanes that compose movement, and TF
(s,d)

  is the time in seconds since the 

incoming road had a green phase. In the case that no vehicles are present on any of the 

roads, LS would be set to 0. 

Finally, once the scores for all edges are obtained, the system would calculate 

priority duration using a variant of the equation seen in Eq 4.1. Replacing occupancy with 

the calculated local score redefines the formula as: 

𝐷 =  𝑇𝑚𝑎𝑥  ∗  (𝑁 ∗  (
𝑆𝑖
𝑆𝑇
)) (4.3) 
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where D is the duration, Tmax is the total time, N is the number of incoming roads. 

Si and  ST represent the local score for the incoming road i and the sum of all scored, 

respectively. 

4.2.3 Reinforcement Learning Algorithms 

Using the A2C and PPO algorithms from the Stable Baselines [40] library RL 

environments were designed as per the environment definition provided in sub-section 

3.3.2 Reinforcement Learning for traffic control systems.  

4.2.3.1 Proximal Policy Optimization (PPO) [40] 

PPO is a policy gradient method that is able to simplify the Trust Region Policy 

Optimization (TRPO) algorithm by using a clipped surrogate objective. The formula used 

is defined as: 

𝐽𝑇𝑅𝑃𝑂(𝜃)  =  𝔼[𝑟(𝜃)Α̂𝜃𝑜𝑙𝑑 (𝑠, 𝑎)] (4.4) 

𝐽𝐶𝐿𝐼𝑃′(𝜃)  =  𝔼[𝐽𝐶𝐿𝐼𝑃 (𝜃)  − 𝑐1(𝑉𝜃(𝑠)  − 𝑉𝑡𝑎𝑟𝑔𝑒𝑡)
2  

+ 𝑐2𝐻 (𝑠, 𝜋𝜃(. ))] 

(4.5) 

As per the equation defined in Eq 4.4, maximizing TRPO has the possibility of 

causing instability due to frequent updates to its parameters. As such, PPO simplifies this 

approach by using a clipped surrogate objective, forcing r(𝜃) to fit into a smaller interval 

[1 − 𝜖, 1 + 𝜖] using the function clip (r(𝜃), 1 − 𝜖, 1 + 𝜖), as seen in the equation defined 

in Eq 4.5.  

4.2.3.2 Advantage Actor Critic (A2C) [40] 

The A2C approach deals with two distinguishable networks: The ‘actor’ and the 

‘critic’. The actor network is trained to update the policy according to the value function 

learned by the critic network. The critic network estimates the value function. 

The function A2C uses to calculate the advantage for taking a specific action can 

be defined as follows: 

𝐴𝜋 (𝑠, 𝑎)  =  𝑄𝜋 (𝑠, 𝑎)  −  𝑉𝜋 (𝑠) (4.6) 

 

The reward is then calculated based on the difference of waiting time for the 

vehicles in the network. This function is defined as follows: 
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𝑅 =  

{
 

 −1 ∗ (∑𝑇 +∑𝑉)       𝑁 ==  0

−1 ∗ (
(∑𝑇 + ∑𝑉)

𝑁
)         𝑁 >=  1 

 

(4.7) 

Where R is the calculated reward, T is an array of waiting times for the different 

vehicles, V is the number of new vehicles compared to the previous step iteration, N is 

the number of vehicles that moved onto a different road. 

4.3 Proposed: Graph-Semi Supervised Learning Based 

Approach 

The idea behind this approach is to solve the TMS problem by representing the 

TMS problem as a graph problem and predicting the edge flow on this graph. More 

specifically, in our graph-based modeling of the TMS problem, each intersection within 

the network is represented as a node in a graph, and the roads connecting two intersections 

are treated as edges connecting the nodes within the graph. If we consider the 17-

intersection network design shown in Figure 4.1, a total number of 29 nodes are observed 

in the network. The additional 12 nodes are endpoints of the traffic network from which 

vehicle demand enters and exits the network. Thus, our graph-based representation for 

this network consists of a graph with a total of 29 nodes, and edges connecting nodes 

would relate to the true road connections visible on the network; Any connection between 

two distinct nodes within the network is recorded as a valid road connection. 
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Figure 4.1 Network design for simulation environment with 17 traffic light 

intersections 

 

Based on this graph model, we use the methodology proposed in [35], edge-based 

semi-supervised learning. As a result, we are able to predict the outward flow from one 

intersection on to another. The predictions are then normalized and read from the 

perspective of the connecting intersections; this is now read as inward traffic flow into 

the intersection. This now allows us to optimize phases within the intersection based on 

the predicted total inward vehicle flow coming from other intersections. 

Mathematically, we have a set of vertices (traffic intersections and exit-points) V, 

a set of edges (roads) that connect the vertices 𝜀, and a labeled set of edge flows; known 

traffic flows obtained from the network, 𝜀L. The goal of the algorithm is to predict the 

unlabeled edge flows 𝜀U. Here it is important to note that our aim is to conduct edge-

based semi-supervised learning, rather than the well-known node-based semi-supervised 

learning method. 

4.3.1 Graph based Semi-Supervised Learning for vertices 

In this approach, a graph is constructed with nodes and edges, where nodes are 

specified by labeled VL and unlabeled samples VU. Edges are to be based on the 

similarities among the samples V. The goal of this algorithm would be to assign the labels 

for the unlabeled samples  VU based on the known existing data, such that the assigned 
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labels vary smoothly across neighboring nodes. The notion of smoothness is defined by 

the following log function: 

‖𝐵𝑇𝑦‖2  =  ∑ (𝑦𝑖  −  𝑦𝑗)
2

(𝑖,𝑗) ∈ 𝜀

 (4.8) 

 

where y represents the vector containing vertex labels, and B ∈  Rnxm represents 

the incidence matrix of the network. The loss function can be written as ‖𝐵𝑇𝑦‖2  =  y2Ly 

in terms of the graph Laplacian L =  BBT. 

Based on this, the labels for the unknown nodes can be found by minimizing the 

quadratic form yTLy with respect to y while keeping the set of labeled vertices fixed. 

 

4.3.2 Graph based Semi-Supervised Learning for edge flows 

Using this approach, we obtain a graph based on traffic intersections as a set of 

vertices V, and have the edges connecting two or more vertices as labeled or unlabeled 

sets  𝜀L and 𝜀U. 

Following the graph model, we represent the edge flows within the networks as the 

vector f. If we are to account only for the netflow along and edge, we obtain fr  >  0 when 

the flow orientation of the edge along with its reference orientation and fr  <  0 in all 

other cases. The true edge flow in the network is denoted f̂. The divergence of a vertex 

can be found by calculating the sum of outgoing flows minus the incoming flows at that 

vertex. This formula is defined as follows: 

(𝐵𝑓)𝑖  =  ∑ 𝑓𝑟
𝜀𝑟∈𝜀:𝜀𝑟≡(𝑖,𝑗),𝑖< 𝑗

 −  ∑ 𝑓𝑟
𝜀𝑟∈𝜀:𝜀𝑟≡(𝑗,𝑖),𝑗< 𝑖

 (4.9) 

 

A loss function for edge flows is also defined in order to enforce a notion of flow 

conservation. Having the edge Laplacian matrix defined as 𝐿e  =  B
TB, the loss function 

is defined as: 

‖𝐵𝑓‖2  =  𝑓2𝐵𝑇𝐵𝑓 =  𝑓𝑇𝐿𝑒𝑓 (4.10) 

 

Studies in [41], [42] implement Active supervised learning in order to obtain a set 

of labeled edges that were most helpful in determining overall edge flows within their 

graph model. A similar approach is used with regard to our traffic graph model, giving us 
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insight into more relevant intersections when it comes to decision making. Practically, 

this information could be used as an additional parameter, when planning the system, in 

order to reduce real-world deployment costs. 

The approach used in this study is called Rank-revealing QR (RRQR), a heuristic 

method for the optimal column subset selection, an NP hard problem sometimes known 

as maximum submatrix volume [43]. RRQR proposes the idea that in order to select the 

set of labeled edges, 𝜀L, we need to choose mL rows from V0 that would maximize the 

smallest singular value of the resulting submatrix. The RRQR heuristic is defined as: 

𝑉𝐶
𝑇∏ =  𝑄[𝑅1𝑅2]  (4.11) 

 

where ∏ is a permutation matrix which keeps R1 well-conditioned. Additionally, 

the first  mL columns of ∏is chosen by the resulting edge set 𝜀L and edge indicated by the 

column permutation within ∏. 
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Chapter 5 

Results 
Various simulations on different network sizes were conducted for each of the 

algorithms implemented. The results of these simulations where then evaluated against 

each other. 

We evaluated our proposed method on synthetically generated network models 

created using SUMO NetEdit tool. Vehicle trip data and routes were generated using 

RandomTrips and DuaRouter tools, respectively. Each simulation run required a few 

parameters as defined in subsection 5.2 Simulation Parameters 

A standard four-way intersection is shown in Figure 1.1. These intersections are 

joined with other similarly designed intersections along connecting roads, making up a 

traffic network with larger amounts of intersections. Figure 2.1 displays a sample of what 

the 20-intersection network looks like. Similarly, Figure 4.1 depicts a 17-intersection 

network model. Different network models were designed to minimize bias and provide 

us with more versatile results. Intersections within a network are different from other 

intersections, while many of them are four-way intersections as seen in Figure 1.1, the 

length of the edges connecting into and out of the intersection varies in length, this affects 

vehicle travel time and would affect overall congestion. Additionally, the networks were 

designed to include three-way intersection models as well. 

Figure 5.1 depicts a general workflow of how the program runs the proposed 

system. The workflow process is the same for other simulations conducted with other 

algorithms, however in those algorithms, we only extract information that is required by 

the specific algorithms, information such as the adjacency matrix is only required for the 

proposed system and does not get extracted when running simulations for other 

algorithms. 
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Figure 5.1 Flowchart representation breaking down the steps on how the 

proposed 
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5.1 Prediction Performance Results 

Results obtained from our RRQR models were compared against ZeroFill baseline, 

which assigns 0 edge flows to all unlabeled edges, labeled edges were randomly selected. 

Performance was evaluated based on the Pearson correlation between the estimated flow 

vector f* and ground truth 𝑓. Figure 5.2 displays the results for the 5, 17 and 20 

intersection models, respectively. 

 

Figure 5.2 Graph based SSL for synthetic flows from the simulation on 5, 17 and 

20 intersection models. 

 

From Figure 5.2 it can be observed that our RRQR based model works better when 

there is a lower number of labeled edges. Additionally, it is also observed that the 

performance improves as the number of intersections within a network is increased. 
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5.2 Simulation Parameters  

5.2.1 Number of steps 

The number of steps determines how long a specific simulation would run. Ideally, 

the simulation would run after all the vehicles generated using DuaRouter have entered 

the simulation. However, the time at which vehicles enter and leave the simulation would 

vary based on vehicle routes and traffic control algorithms. 

In the experiments conducted, we set the number of steps to 1600 for all simulations 

run. 

5.2.2 Number of simulations 

The number of simulations determines how many times we run each algorithm. We 

run the algorithm multiple times and then take the average results obtained to fairly 

evaluate the performance of the algorithms. As such, we repeat the simulations 10 times 

for each algorithm and report the mean and standard deviation of the algorithms’ 

performance. 

5.2.3 Traffic Phases 

Each intersection in the network has predefined traffic phases. These phases are 

generated by the SUMO suite. As a default setting, we use the generated phase times. 

Each algorithm manipulates the traffic phase times according to the results obtained from 

the algorithm. 

 

5.3 Performance Evaluation 

Using three distinct network layouts with 5, 17, and 20 intersections respectively, 

and their own vehicle demands randomly generated for each simulation, SUMO along 

with TraCI were used to run the simulation and collect relevant data. Data collection and 

storage were done by having TraCI run the simulation for X number of steps, then 

recording all relevant data, and vehicle movement, and proceeding with the simulation. 

This was done in an event-loop manner as seen in Figure 5.1. The value X is defined as 

the minimum number of steps until any intersection within the network undergoes a phase 



23 

 

change. This logic ensures that all vehicle movements are correctly recorded 

synchronously. 

Traffic Phase times were calculated as per each of the running algorithms. 

Performance evaluation was defined to be the vehicles’ average wait time inside the 

network during the simulation. Figure 5.3 - Figure 5.9 presents various average results 

taken over several simulations conducted for each network layout. Results labeled as 

‘Flow Prediction’ represent the results obtained from the proposed approach described in 

subsection 4.3 Proposed: Graph-Semi Supervised Learning Based Approach. The label 

‘Occupancy’ represents the results obtained from the simulations using the algorithm 

described in subsection 4.2.1 Occupancy based algorithm, and the label ‘Scoring’ 

represents results obtained from simulations using the algorithm described in subsection 

4.2.2 Scoring Algorithm. Certain plots also contain results with labels ‘A2C’ and ‘PPO’, 

these are results obtained from simulations using the algorithms described in subsections 

4.2.3.2 Advantage Actor Critic (A2C) [40] and 4.2.3.1 Proximal Policy Optimization 

(PPO) [40] respectively. 

 

 

Figure 5.3 Average waiting time for a single vehicle in the network 
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Figure 5.3 represents the average wait time a single vehicle spends idly waiting on 

the simulation. It can be observed that the Flow Prediction algorithm outperforms the 

occupancy-based algorithm significantly for all network models. Additionally, compared 

to the Scoring Algorithm, it is observed that the performance difference of the Flow 

Prediction algorithm, compared to the other algorithms, is improved upon increasing the 

number of intersections.  

 

Figure 5.4 Average total waiting time for all vehicles in the network 

 

Figure 5.4 represents the average waiting time for all the vehicles in the network. 

Observations here are similar to the observations from Figure 5.3. The performance of 

the flow prediction algorithm is significantly better than the other algorithms, and the 

performance also improves as the number of intersections increases. 
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Figure 5.5 Average waiting time for all vehicles in an intersection 

 

The number of simulations run for the A2C, and PPO algorithms were set to 3, due 

to their running times being significantly higher than the other algorithms. For this reason, 

standard bar plots were constructed for Figure 5.5 and Figure 5.6. 

 

Figure 5.5 presents the average wait time for all vehicles in the network using a 

smaller simulation step value. Here it is observed that the flow prediction algorithm 

always outperforms occupancy-based algorithm, scoring algorithms for larger networks, 

and RL algorithms in only the smaller network. 
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Figure 5.6 Average maximum maximum waiting time for a single vehicle 

 

Figure 5.6 presents the maximum wait time for a single vehicle in the network. 

Similar to the observations in Figure 5.5; We observe the results in Figure 5.6 show that 

RL algorithms provide better results in larger networks. 

Figure 5.7 and Figure 5.8 presents the average wait time per vehicle per simulation 

step for the Occupancy based algorithm, Flow Prediction based algorithm, and the 

Scoring algorithm for simulations run on the 17 intersection and 20 intersection network 

models respectively. These graphs visualize the decrease in wait time over time for each 

of the algorithms. It can also be observed how the Flow prediction algorithm outperforms 

the other algorithms at a much faster rate, and a relationship with the Figure 5.3 and Figure 

5.4 can be formed. 
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Figure 5.7 Average wait time per vehicle per simulation step – 17 Intersections 

 

Figure 5.8 Average wait time per simulation step - 20 intersections 
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Figure 5.9 Average running times for each simulation 

 

 

Finally, Figure 5.9 presents the average running time for each of the simulation. In 

all simulations conducted, the occupancy-based algorithm performs the fastest, followed 

by the flow prediction and scoring algorithms without too much of a time difference. 

However, when it comes to the RL based algorithms, the time taken for each of the 

simulation models is considerably high, additionally, this time also increases with the 

number of intersections being increased. 
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Chapter 6 

Conclusions and Future Prospects  
 

6.1 Societal Impacts and Contribution to Global 

Sustainability 

As per the studies shown and descriptions provided throughout section 1, it is 

observed that traffic congestion and delay often impact our society in terms of 

environmental damage, as well as the monetary cost to individuals and governments in 

the form of time. Additionally, due to the evergrowing size of cities, population, and the 

need for vehicles increasing, congestions are bound to occur more frequently. Therefore 

it is imperative that congestion and delays are minimized.   

The research conducted in this study aims to address these issues, by smoothening 

traffic flow between intersections. This is achieved by modeling multi-intersection 

network models into a graph-like model, and then predicting traffic flow between the 

nodes within the model, followed by making informed decisions on connecting 

intersection phase durations. Additionally, as proposed in Section 4.3.2, our model is also 

able to identify intersections that are more impactful in reducing congestion, allowing us 

to focus on them in greater detail. A significant advantage of focusing on the more 

impactful intersections is cost, as in a real-world scenario, we could dramatically reduce 

the cost of such a system by having the sensors placed in the more impactful junctions 

and have the semi-supervised learning features of the study work with unlabelled data on 

the less impactful junctions. The results displayed in Figure 5.2 demonstrate that this 

approach provides improving results based on an increasing number of intersections. 

Having connecting intersections make informed decisions based on predicted traffic 

flow reduces the vehicle delay within an intersection significantly, as seen from the results 

obtained on the various simulations done in different network models. In return, the 

economical and environmental costs caused by being at an idle state within intersections 



30 

 

are negated. Further research could also contribute to better decision-making systems, 

which may provide more optimal calculations for predicted traffic flow, and have optimal 

traffic movement. 

To summarize, the conducted study contributes mainly toward economic growth 

and sustainable cities. These goals are achieved by having improved traffic flow 

throughout the city. Costs incurred due to traffic-related delays would be significantly 

reduced, additionally, the proposition of focusing on the more important intersections 

allows equally effective and cost-efficient implementations of the proposed system. 

6.2 Conclusions 

This study proposes a novel adaptive traffic light management system that is able 

to predict traffic flow from one intersection onto another. The principal algorithm behind 

the proposed system is graph-based semi-supervised learning for edge flows, where each 

traffic light intersection and vehicle entry/exit points are treated as a vertex node, the 

roads connecting any two vertices are taken as connecting edges. Magnitudes of edge 

connections are then calculated using the proposed RRQR method. The obtained 

information is then used to select and optimize the predefined traffic phases. 

Comparative performance evaluations on various traffic intersection configurations 

show that our approach can produce comparable average vehicle waiting time and 

drastically reduce the training/learning time of learning an adequate traffic light 

configurations for all intersections within a short period of time, whereas training deep 

learning based approaches can consume over a few hours.  

Main conclusions are as follows: 

i. The proposed approach is able to predict traffic outflow from a given junction. 

This outflow can be used on connected junctions to predict congestion and 

optimize phase durations. 

ii. Using the proposed RRQR heuristic for the prediction allows us to optimize 

the average waiting times in a traffic environment as well as pay more 

attention to more impactful junctions. 

iii. Larger network models lead to higher accuracy in predictions, as well as better 

performance of the model. 
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iv. To the best of our knowledge, the proposed approach is a novel concept. No 

other study uses edge-based semi-supervised learning to predict vehicle flows 

between traffic networks. 

6.3 Future Prospects 

Future efforts in this direction would include further optimization of the traffic 

decision-making process, based on predicted traffic flows; This may include additional 

concepts such as fixed or dynamic cycle-times and phase orders. Additionally, it would 

also be beneficial to improve the running time of the flow prediction-based algorithm, 

faster algorithm runtime would lead to seamless integration with real-world applications. 
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APPENDIX 

Appendix A: Python Code used to run a SUMO simulation using 

TraCI 

 

# Import system packages to add SUMO files to python path 

import os, sys 

 

# Import traci package. Can be installed using `python -m pip install 

traci` 

import traci 

 

# Defines some of the variables used when running on IDLE or as a script 

file. 

LOCAL_SUMO_FOLDER = 'sumo_tools' 

SUMO_BINARY = None 

N_STEPS = 1600 

 

tools = None 

 

if 'SUMO_HOME' in os.environ: 

    tools = os.path.join(os.environ['SUMO_HOME'], 'tools') 

    sys.path.append(tools) 

elif os.path.isdir(LOCAL_SUMO_FOLDER): 

    tools = os.path.join(os.getcwd(), f'{LOCAL_SUMO_FOLDER}/tools') 

    sys.path.append(tools) 

else: 

    localPath = os.path.join(os.getcwd(), f'{LOCAL_SUMO_FOLDER}') 

    print (f'[ERR] SUMO_HOME environment variable not defined.') 

    print (f'If you are using local files, ensure the path is correct. 

[{localPath}]') 

    sys.exit(1) 

 

# Ensure that valid tools folder was found. Required to define 

SUMO_BINRAY and SUMO_COMMAND 

assert not type(tools) == type (None), 'No tools folder found.' 

 

SUMO_BINARY  = f'{tools}/sumo-gui' 

SUMO_COMMAND = [SUMO_BINARY, '-c', 

'sample_network_configuration.sumocfg'] 

 

if __name__ == "__main__": 

    # Start the simulation 

    traci.start (SUMO_COMMAND) 

 

    # Run the simulation for N_STEPS number of steps 

    localStep = 0 
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    while localStep < N_STEPS: 

        traci.simulationStep() 

     

    # Close the connection 

    traci.close(False) 

 

    print (f'Simulation Completed :)') 
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