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EXISTENCE OF POSITIVE SOLUTIONS FOR p-LAPLACIAN AN
m-POINT BOUNDARY VALUE PROBLEM INVOLVING THE

DERIVATIVE ON TIME SCALES

ABDULKADIR DOGAN

Abstract. We are interested in the existence of positive solutions for the
p-Laplacian dynamic equation on time scales,

(φp(u∆(t)))∇ + a(t)f(t, u(t), u∆(t)) = 0, t ∈ (0, T )T,

subject to the multipoint boundary condition,

u(0) =

m−2X
i=1

αiu(ξi), u∆(T ) = 0,

where φp(s) = |s|p−2s, p > 1, ξi ∈ [0, T ]T, 0 < ξ1 < ξ2 < · · · < ξm−2 < ρ(T ).

By using fixed point theorems, we prove the existence of at least three non-
negatvie solutions, two of them positive, to the above boundary value problem.

The interesting point is the nonlinear term f is involved with the first order
derivative explicitly. An example is given to illustrate the main result.

1. Introduction

The theory of time scales, which has recently received a lot of attention, was
introduced and developed by Aulbach and Hilger [14] in 1988. It has been created
in order to unify continuous and discrete analysis, and it allows a simultaneous
treatment of differential and difference equations, extending those theories to so-
called dynamic equations. Further, the study of time scales has led to several
important applications, e.g., in the study of insect population models, heat transfer,
neural networks, phytoremediation of metals, wound healing, and epidemic models,
see [15, 20, 24].

Recently, much attention has been paid to the existence of multipoint positive
solutions of boundary value problems (BVPs) on time scales. When the nonlinear
term f does not depend on the first order derivative, many researchers have studied
multipoint boundary conditions on time scales; see [1, 6, 8, 9, 10, 13, 16, 18, 19,
22, 25]. However, little work has done on the existence of positive solutions for
multipoint BVP on time scales when the nonlinear term is involved in first order
derivative explicitly; see [11, 21, 23].
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There is recent work in fixed point applications using convex and concave func-
tionals in which there is nonlinear dependence on higher order derivatives; see
[2, 17].

Motivated by all the above works, we are interested in the existence of at least
three non-negative solutions, two of them positive, for p-Laplacian dynamic equa-
tion on time scales,

(φp(u∆(t)))∇ + a(t)f(t, u(t), u∆(t)) = 0, t ∈ (0, T )T, (1.1)

subject to boundary condition

u(0) =
m−2∑
i=1

αiu(ξi), u∆(T ) = 0, (1.2)

where φp(u) is p-Laplacian operator; i.e., φp(s) = |s|p−2s, for p > 1, with (φp)−1 =
φq and 1

p + 1
q = 1. The usual notation and terminology for time scales as can be

found in [4, 5], will be used here. The interesting point is that the nonlinear term
f is involved with the first order derivative explicitly. Our main results will depend
on an application of a generalization of the Leggett-Williams fixed point theorem
due to Bai and Ge. An example is also given to illustrate the main results. The
results are even new for the special cases of difference equations and differential
equations, as well as in the general time scale setting. We shall prove that the BVP
(1.1) and (1.2) has at least three non-negative solutions.

Throughout the paper, we will suppose that the following conditions are satisfied:
(H1) 0, T ∈ T, 0 < ξ1 < ξ2 < · · · < ξm−2 < ρ(T ), ξi ∈ T, αi ∈ [0,∞) for

i = 1, . . . ,m− 2, and 1−
∑m−2
i=1 αi > 0;

(H2) η = min{t ∈ T : T2 ≤ t < T} exists;
(H3) a(t) ∈ Cld([0, T ]T, [0,∞)) with 0 <

∫ T
η
a(t)∇t <∞;

(H4) f : (0, T )T × [0,∞)× R→ [0,∞) is continuous;
(H5) a(t)f(t, 0, 0) 6≡ 0, f(t, 0, 0) ≥ 0 on [0, T ]T.
The rest of this article is arranged as follows. We state some definitions, notation,

lemmas and prove several preliminary results in Section 2. The main theorem on
the existence of at least three non-negative solutions and its proof are presented in
Section 3. In section 4, we give an example to demonstrate our results.

2. Preliminaries

In this section, we provide some background materials from theory of cones in
Banach spaces. The following definitions can be found in the book by Deimling [7]
as well as in the book by Guo and Lakshmikantham [12].

Definition 2.1. Let E be a real Banach space. A nonempty, closed, convex set
P ⊂ E is a cone if it satisfies the following two conditions:

(i) x ∈ P , λ ≥ 0 imply λx ∈ P ;
(ii) x ∈ P , −x ∈ P imply x = 0.

Every cone P ⊂ E induces an ordering in E given by x ≤ y if and only if y−x ∈ P .

Definition 2.2. A map ψ is said to be a nonnegative continuous concave functional
on a cone P of a real Banach space E if ψ : P → [0,∞) is continuous and

ψ(tx+ (1− t)y) ≥ tψ(x) + (1− t)ψ(y)



EJDE-2014/37 EXISTENCE OF POSITIVE SOLUTIONS 3

for all x, y ∈ P and t ∈ [0, 1].
Similarly, we say the map α is a nonnegative continuous convex functional on a

cone P of a real Banach space E if α : P → [0,∞) is continuous and

α(tx+ (1− t)y) ≤ tα(x) + (1− t)α(y)

for all x, y ∈ P and t ∈ [0, 1].

Let ψ be a nonnegative continuous concave functional on P , and α and β be
nonnegative continuous convex functionals on P . For nonnegative real numbers
r, a and l, we define the following convex sets.

P (α, r;β, l) = {u ∈ P : α(u) < r, β(u) < l},
P̄ (α, r;β, l) = {u ∈ P : α(u) ≤ r, β(u) ≤ l},

P (α, r;β, l;ψ, a) = {u ∈ P : α(u) < r, β(u) < l, ψ(u) > a},
P̄ (α, r;β, l;ψ, a) = {u ∈ P : α(u) ≤ r, β(u) ≤ l, ψ(u) ≥ a}.

To prove our main results, we need the following fixed point theorem, which comes
from Bai and Ge in [3].

Lemma 2.3 ([3]). Let P be a cone in a real Banach space E. Assume that constants
r1, b, d, r2, l1 and l2 satisfy 0 < r1 < b < d ≤ r2 and 0 < l1 ≤ l2. If there exist
two nonnegative continuous convex functionals α and β on P and a nonnegative
continuous concave functional ψ on P such that

(A1) there exists M > 0 such that ‖u‖ ≤M max{α(u), β(u)} for all u ∈ P ;
(A2) P (α, r;β, l) 6= ∅ for any r > 0 and l > 0;
(A3) ψ(u) ≤ α(u) for all u ∈ P̄ (α, r2;β, l2);

and if F : P̄ (α, r2;β, l2) → (α, r2;β, l2) is completely continuous operator, which
satisfies

(B1) {u ∈ P̄ (α, d;β, l2;ψ, b) : ψ(u) > b} 6= ∅, ψ(Fu) > b for
u ∈ P̄ (α, d;β, l2;ψ, b);

(B2) α(Fu) < r1, β(Fu) < l1 for u ∈ P̄ (α, r1;β, l1);
(B3) ψ(Fu) > b for u ∈ P̄ (α, r2;β, l2;ψ, b) with α(Fu) > d.

Then F has at least three different fixed points u1, u2 and u3 in P̄ (α, r2;β, l2) with

u1 ∈ P (α, r1;β, l1), u2 ∈ {P̄ (α, r2;β, l2;ψ, b) : ψ(u) > b},
u3 ∈ P̄ (α, r2;β, l2) \

(
P̄ (α, r2;β, l2;ψ, b) ∪ P̄ (α, r1;β, l1)

)
.

Let the Banach space

E = {u : [0, T ]T → R : u is ∆-differentiable and u∆ is ld-continuous on [0, T ]T}

be endowed with norm

‖u‖ = max
{

sup
t∈[0,T ]T

|u(t)|, sup
t∈[0,T ]T

|u∆(t)|
}
.

Define

P = {u ∈ E : u(t) ≥ 0, u∆(t) ≥ 0, and u(t) is concave on [0, T ]T}.

Clearly, P is a cone.
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Lemma 2.4. If
∑m−2
i=1 αi 6= 1, then for h ∈ Cld[0, T ]T and h ≥ 0,

(φp(u∆(t)))∇ + h(t) = 0, t ∈ (0, T )T, (2.1)

u(0) =
m−2∑
i=1

αiu(ξi), u∆(T ) = 0 (2.2)

has the unique solution

u(t) =
∫ t

0

φq

(∫ T

s

h(τ)∇τ
)

∆s+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

h(τ)∇τ
)

∆s.

(2.3)
Moreover, if h(t) ≥ 0 on [0, T ]T and (H1) is satisfied, then u(t) ≥ 0 on [0, T ]T.

Proof. Let u be as in (2.3), taking the delta derivative of (2.3), we have

u∆(t) = φq

(∫ T

t

h(τ)∇τ
)
,

moreover, we obtain

φp(u∆(t)) =
∫ T

t

h(τ)∇τ,

taking the nabla derivative of this expression yields (φp(u∆(t)))∇ = −h(t). Routine
calculations verify that u satisfies the boundary value conditions in (2.2), so that u
given in (2.3) is a solution of (2.1) and (2.2). It is easy to see that BVP (φp(u∆))∇ =
0, u(0) =

∑m−2
i=1 αiu(ξi), u∆(T ) = 0 has only the trivial solution. Thus u in (2.3)

is the unique solution of (2.1) and (2.2). The proof is complete. �

Lemma 2.5. The solution of BVP (2.1) and (2.2) satisfies u(t) ≥ 0, for t ∈ [0, T ]T.

Proof. Let

ϕ(s) = φq

(∫ T

s

h(τ)∇τ
)
.

Since
∫ T
s
h(τ)∇τ ≥ 0, it follows that ϕ(s) ≥ 0. According to Lemma 2.4, we obtain

u(0) =
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

ϕ(s)∆s ≥ 0,

u(T ) =
∫ T

0

ϕ(s)∆s+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

ϕ(s)∆s ≥ 0.

If t ∈ (0, T ), we have

u(t) =
∫ t

0

ϕ(s)∆s+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

ϕ(s)∆s ≥ 0.

So u(t) ≥ 0 for t ∈ [0, T ]. �

Lemma 2.6. The solution of (1.1) and (1.2) satisfies

inf
t∈[0,T ]T

u(t) ≥ γ‖u‖

where

γ =
∑m−2
i=1 αiξi

T −
∑m−2
i=1 αi(T − ξi)

.
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Proof. Clearly u∆(t) = ϕ(t) ≥ 0. This implies that

min
t∈[0,T ]

u(t) = u(0), ‖u‖ = u(T ).

It is easy to see that u∆(t2) ≤ u∆(t1) for any t1, t2 ∈ [0, T ] with t1 ≤ t2. Hence
u∆(t) is a decreasing function on [0, T ]. This means that graph of u(t) is concave
down on (0, T ). For each i ∈ {1, 2, . . . ,m− 2}, we have

u(T )− u(0)
T − 0

≥ u(T )− u(ξi)
T − ξi

,

i.e.,
Tu(ξi)− ξiu(T ) ≥ (T − ξi)u(0),

so that

T

m−2∑
i=1

αiu(ξi)−
m−2∑
i=1

αiξiu(T ) ≥
m−2∑
i=1

αi(T − ξi)u(0).

With the boundary condition u(0) =
∑m−2
i=1 αiu(ξi), we have

u(0) ≥
∑m−2
i=1 αiξi

T −
∑m−2
i=1 αi(T − ξi)

u(T ).

This completes the proof. �

Define the operator F : P → E by

(Fu)(t) =
∫ t

0

φq

(∫ T

s

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

∆s

+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

∆s

for t ∈ [0, T ]T. By the definition of F , the monotonicity of φq(u) and assumption of
(H1)-(H5), it is easy to see that for each u ∈ P , Fu ∈ P and Fu(T ) is the maximum
value of Fu(t). Moreover, by direct calculation, we obtain that each fixed point of
the operator F in P is a positive solution of (1.1) and (1.2). It is easy to see that
F : P → P is completely continuous.

3. Existence of positive solutions

For u ∈ P we define

α(u) = max
t∈[0,T ]T

|u(t)| = u(T ), β(u) = sup
t∈[0,T ]T

|u∆(t)| = u∆(0),

ψ(u) = min
t∈[η,T ]T

u(t) = u(η).

It is easy to see that α, β : P → [0,∞) are nonnegative continuous convex function-
als with ‖u‖ = max{α(u), β(u)};ψ : P → [0,∞) is nonnegative concave functional.
We have ψ(u) ≤ α(u) for u ∈ P and assumptions (A1), (A2) and (A3) in Lemma
2.3 hold.

For notational convenience, we denote

M =
∫ η

0

φq

(∫ T

η

a(τ)∇τ
)

∆s,
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N =
∫ T

0

φq

(∫ T

s

a(τ)∇τ
)

∆s+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

a(τ)∇τ
)

∆s,

L = φq

(∫ T

0

a(τ)∇τ
)
.

Theorem 3.1. Assume that (H1)–(H5) hold, and there exists 0 < r1 < b < 2b ≤ r2,
0 < l1 ≤ l2 such that b

M ≤ min{r2/N, l2/L}. If f satisfies the following three
conditions:

(i) f(t, w, v) ≤ min{φp(r2/N), φp(l2/L)} for (t, w, v) ∈ [0, T ]T×[0, r2]×[−l2, l2];
(ii) f(t, w, v) > φp(b/M) for (t, w, v) ∈ [η, T ]T × [b, 2b]× [−l2, l2];
(iii) f(t, w, v) < min{φp(r1/N), φp(l1/L)} for (t, w, v) ∈ [0, T ]T×[0, r1]×[−l1, l1];

then BVP (1.1) and (1.2) has at least three three non-negative solutions, two of
them positive, u1, u2, u3, which satisfy

max
t∈[0,T ]T

{u1(t)} < r1, sup
t∈[0,T ]T

|u∆
1 (t)| < l1;

b < min
t∈[η,T ]T

{u2(t)} ≤ max
t∈[0,T ]T

{u2(t)} ≤ r2, sup
t∈[0,T ]T

|u∆
2 (t)| ≤ l2;

min
t∈[η,T ]T

{u3(t)} < b, r1 < max
t∈[0,T ]T

{u3(t)} < 2b, l1 < sup
t∈[0,T ]T

|u∆
3 (t)| ≤ l2.

Proof. To show Lemma 2.3 holds, it is sufficient to show that conditions in Lemma
2.3 are satisfied with respect to operator F . We first prove that if the assumption
(i) is satisfied, then F : P̄ (α, r2;β, l2)→ P̄ (α, r2;β, l2). If u ∈ P̄ (α, r2;β, l2), then

α(u) = max
t∈[0,T ]T

|u(t)| ≤ r2, β(u) = sup
t∈[0,T ]T

|u∆(t)| ≤ l2

and assumption (i) implies

f(t, u(t), u∆(t)) ≤ min
{
φp(r2/N), φp(l2/L)

}
, t ∈ [0, T ]T.

For u ∈ P , there is Fu ∈ P , therefore

α(Fu) = max
t∈[0,T ]T

|(Fu)(t)|

= max
t∈[0,T ]T

∣∣∣ ∫ t

0

φq

(∫ T

s

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

∆s

+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

∆s
∣∣∣

=
∫ T

0

φq

(∫ T

s

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

∆s

+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

∆s

<

∫ T

0

φq

(∫ T

s

a(τ)φp(r2/N)∇τ
)

∆s

+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

a(τ)φp(r2/N)∇τ
)

∆s
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=
r2

N

[ ∫ T

0

φq

(∫ T

s

a(τ)∇τ
)

∆s

+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

a(τ)∇τ
)

∆s
]

= r2

and

β(Fu) = sup
t∈[0,T ]T

|(Fu)∆(t)|

= sup
t∈[0,T ]T

∣∣∣φq(∫ T

t

a(τ)f(τ, u(τ), u∆(τ))∇τ
)∣∣∣

= φq

(∫ T

0

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

≤ φq
(∫ T

0

a(τ)φp(l2/L)∇τ
)

=
l2
L
φq

(∫ T

0

a(τ)∇τ
)

= l2.

Therefore F : P̄ (α, r2;β, l2) → P̄ (α, r2;β, l2). Similarly, if u ∈ P̄ (α, r1;β, l1), then
the assumption (iii) implies

f(t, u(t), u∆(t)) < min{φp(r1/N), φp(l1/L)} for t ∈ [0, T ]T.

We can get that F : P̄ (α, r1;β, l1) → P (α, r1;β, l1). So condition (B2) of Lemma
2.3 is satisfied.

To prove that condition (B1) of Lemma 2.3 holds. We choose u(t) = 2b for
t ∈ [0, T ]T. It is obvious that u(t) = 2b ∈ P̄ (α, 2b;β, l2;ψ, b) and ψ(u) = 2b > b,
and consequently

{u ∈ P̄ (α, 2b;β, l2;ψ, b) : ψ(u) > b} 6= ∅.
So, for u ∈ P̄ (α, 2b;β, l2;ψ, b), there are b ≤ u(t) ≤ 2b and |u∆(t)| ≤ l2 for t ∈
[η, T ]T. Thus from the assumption (ii) we have

f(t, u(t), u∆(t)) > φp(b/M) for t ∈ [η, T ]T.

From the definition of the functional ψ we see that

ψ(Fu) = min
t∈[η,T ]T

Fu(t) = Fu(η)

=
∫ η

0

φq

(∫ T

s

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

∆s

+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

∆s

≥
∫ η

0

φq

(∫ T

η

a(τ)f(τ, u(τ), u∆(τ))∇τ
)

∆s

>

∫ η

0

φq

(∫ T

η

a(τ)φp(b/M)∇τ
)

∆s

=
b

M

∫ η

0

φq

(∫ T

η

a(τ)∇τ
)

∆s = b.
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So, we obtain ψ(Fu) > b for u ∈ P̄ (α, 2b;β, l2;ψ, b), and condition (B1) of Lemma
2.3 holds.

Finally, we prove that condition (B3) of Lemma 2.3 holds. If u ∈ P̄ (α, r2;β, l2;ψ, b)
and α(Fu) > 2b, we have

ψ(Fu) = min
t∈[η,T ]T

Fu(t) = Fu(η) ≥ η

T
max
t∈[0,T ]T

Fu(t) ≥ 1
2
α(Fu) > b.

Hence, condition (B3) of Lemma 2.3 is satisfied. Then using Lemma 2.3 and the
assumption that f(t, 0, 0) 6≡ 0 on [0, T ]T, we find that there exist at least three
non-negative solutions of (1.1) and (1.2) such that

u1 ∈ P (α, r1;β, l1), u2 ∈ {P (α, r2;β, l2;ψ, b)|ψ(u) > b},

u3 ∈ P̄ (α, r2;β, l2) \
(
P̄ (α, r2;β, l2;ψ, b) ∪ P̄ (α, r1;β, l1)

)
.

Otherwise, as u3 satisfies α(u3) ≤ 2ψ(u3), we have maxt∈[0,T ]T u3(t) < 2b. �

In the following section, we now give an example to illustrate our results.

4. An example

Let T = {1 − ( 1
2 )N0} ∪ [1, 2], and let N0 denote the set of nonnegative integers.

Take α1 = 1/2, α2 = 1/6, ξ1 = 1/4, ξ2 = 3/4, T = 2, p = q = 2, and a(t) ≡ 1 for
t ∈ [0, T ]T. Consider the BVP(

u∆(t)
)∇

+ f(t, u(t), u∆(t)) = 0, t ∈ [0, 2]T, (4.1)

u(0) =
1
2
u
(1

4

)
+

1
6
u
(3

4

)
, u∆(2) = 0, (4.2)

where

f(t, w, v) =

{
t

1000 + 2w3

3 + ( v
100 )3, w ≤ 3,

t
1000 + 18 + ( v

100 )3, w > 3.

Clearly, assumptions (H1)–(H5) hold and f(t, 0, 0) 6≡ 0 on [0, 2]T. We choose r1 =
1/2, r2 = 140, b = 2, and l1 = 1/4, l2 = 80. So 0 < r1 < b < 2b < r2 and
0 < l1 < l2. By doing some calculations, we obtain

M =
∫ η

0

φq

(∫ T

η

a(τ)∇τ
)

∆s = 1,

L = φq

(∫ T

0

a(τ)∇τ
)

= 2,

and

N =
∫ T

0

φq

(∫ T

s

a(τ)∇τ
)

∆s+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

s

a(τ)∇τ
)

∆s

< Ñ

=
∫ T

0

φq

(∫ T

0

a(τ)∇τ
)

∆s+
1

1−
∑m−2
i=1 αi

m−2∑
i=1

αi

∫ ξi

0

φq

(∫ T

0

a(τ)∇τ
)

∆s

=
19
4
.
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As a result, f(t, w, v) satisfies

f(t, w, v) ≤ min
{
φp

(r2

Ñ

)
, φp

( l2
L

)}
≈ 29.4736 < min

{
φp

(r2

N

)
, φp

( l2
L

)}
,

for 0 ≤ t ≤ 2, 0 ≤ w ≤ 140, |v| ≤ 80;

f(t, w, v) > φp
( b
M

)
= 2,

for 1 ≤ t ≤ 2, 2 ≤ w ≤ 4, |v| ≤ 80;

f(t, w, v) < min
{
φp

(r1

Ñ

)
, φp

( l1
L

)}
≈ 0.1053 < min

{
φp

(r1

N

)
, φp

( l1
L

)}
,

for 0 ≤ t ≤ 2, 0 ≤ w ≤ 1
2 , |v| ≤ 1/4. Hence, by Theorem 3.1, BVP (4.1) and (4.2)

has at least three non-negative solutions, two of them positive, u1, u2, u3 such that

max
t∈[0,2]T

{u1(t)} < 1
2
, sup

t∈[0,2]T

|u∆
1 (t)| < 1

4
;

2 < min
t∈[1,2]T

{u2(t)} ≤ max
t∈[0,2]T

{u2(t)} ≤ 140, sup
t∈[0,2]T

|u∆
2 (t)| ≤ 80;

min
t∈[1,2]T

{u3(t)} < 2,
1
2
< max
t∈[0,2]T

{u3(t)} < 4,
1
4
< sup
t∈[0,2]T

|u∆
3 (t)| ≤ 80.
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