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Abstract 

The estimation of residual stresses is essential to prevent the catastrophic failures of 

the components used in the aerospace industry. The objective of this work is to 

predict the machining induced residual stresses with bagging, boosting, and single-

based machine learning models based on the design and cutting parameters used in 

the turning of Inconel 718 and Ti6Al4V alloys. Experimentally measured residual 

stress data of these two materials was compiled from the literature, including the 

surface material of the cutting tools, cooling conditions, rake angles, as well as the 

cutting speed, feed, and width of cut to show the robustness of the models. These 

variables were also grouped into different combinations to clearly show the 

contribution and necessity of each element. Various predictive models in machine 

learning (AdaBoost, Random Forest, Artificial Neural Network, K-Neighbors 

Regressor, Linear Regressor) were then applied to estimate the residual stresses on 

the machined surfaces for the classified groups using the generated data. It was found 

that the AdaBoost algorithm was able to predict the machining induced residual 

stresses with a mean absolute error of 18.1 MPa for the IN718 alloy and 31.3 MPa 

for Ti6Al4V by taking into account all the variables, while the artificial neural 

network provides the lowest mean absolute errors for the Ti6Al4V alloy. On the other 

hand, the linear regression model gives poor agreement with the experimental data. 

All the analyses showed that AdaBoost (boosting) ensemble learning and artificial 

neural network models can be used for the prediction of the machining induced 

residual stresses with the small datasets of the IN718 and Ti6Al4V materials. 
 

 
1. Introduction 

 

Titanium and nickel-based super alloys are widely 

used in aerospace applications due to their high 

specific strength, wear, corrosion, and oxidation 

resistance. Residual stresses are generated in 

machining due to the inhomogeneous plastic 

deformation and chip formation processes, and the 

interactions between the tool and freshly machined 

surface. The low thermal conductivity of these 

workpiece materials increases the temperature at the 

cutting edge of the tool and changes the shape and 

strength of the parts due to the thermally induced 
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tensile residual stresses. Moreover, the high strength 

of these super alloys reduces the machinability and 

increases the cutting and thrust forces during 

machining, which results in an increase in the level of 

the comprehensive residual stresses. Since aerospace 

components are exposed to excessive loads and 

temperatures due to their critical roles and operations, 

the thermomechanical residual stresses on the 

machined surface significantly influence the fatigue 

life and lead to catastrophic failures of airframes and 

engine parts. Residual stress is thus one of the most 

important parameters in evaluating the quality of the 

machined parts, and eliminating or minimizing the 
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detrimental effects of it with the optimum cutting 

condition and tool setup is critical to ensure the 

surface integrity of the aeronautical components [1]. 

Due to the high usage of these alloys, 

extensive research and techniques have been 

conducted to improve the machining characteristics 

and part quality. The effect of cutting parameters 

(cutting speed, feed, and width/depth of cut) on the 

residual stresses was investigated in the machining of 

Inconel 718 and Ti6Al4V alloys. Holmberg et al. [2] 

performed cutting experiments and particle finite 

element simulations to investigate the effect of cutting 

parameters on the machining induced residual 

stresses in the orthogonal turning of Ti6Al4V. It was 

found that the surface residual stresses were tensile in 

the cutting direction and directly proportional to the 

feed while high compressive residual stresses were 

observed at the lowest cutting speed for the cutting 

conditions tested in the study. The tendency regarding 

the feed was also similar when cutting Inconel 718 

[3], but the mode of residual stress did not change 

with the cutting speed. The residual stresses induced 

in the turning of Inconel 718 were also experimentally 

measured to optimize the cutting parameters for 

minimum residual stresses through a general 

algorithm function [4]. Another optimization process 

was carried out in the turning of Inconel 718 with a 

coated cutting tool [5]. The cutting tests were 

designed with the Grey Taguchi method and an 

ANOVA analysis was performed to investigate the 

contribution of cutting parameters to the surface 

residual stresses. It was found that the feed had a 

significant effect on the residual stress while 

maximizing the material removal rate, and it was 

followed by the depth of cut and cutting speed. The 

contribution of the feed was also similar to the 

machining of Ti6Al4V [6]. However, increasing the 

depth of cut result in  deeper residual stresses [7].  

The influence of the cooling condition, 

cutting tool material, and rake angle on the magnitude 

of the surface residual stresses has also been reported 

in many research papers. It was found that these 

parameters significantly affect the magnitude and 

modes (tensile and compressive) of the surface 

residual stresses induced during the machining 

operations. Ayed et al. [8] employed cryogenic 

cooling at various flow rates and pressures in the 

machining of Ti6Al4V and compared its 

effectiveness in reducing the surface residual stresses 

under conventional cooling and dry cutting. Cutting 

tests showed that cryogenic cooling at the highest 

flow rate and pressure produced the greatest 

compressive residual stresses although it reduces the 

thermal loads in the machining of Ti6Al4V.  The 

impact of flood cooling on the residual stresses 

induced during the machining of Inconel 718 was also 

investigated with a coated carbide tool [9]. It was 

found that the magnitude of tensile residual stresses 

with the highest cutting speed was similar for dry and 

flood cooling. The effect of rake angle on the surface 

residual stresses was studied on the Ti6Al4V thin 

walls manufactured by selective laser melting. 

Turning experiments were conducted with zero and 

positive rake angles besides the various tool nose 

radius and cutting parameters [10]. It was found that 

the rake angle and tool nose radiuses influenced the 

magnitude of the compressive surface residual 

stresses in both cutting and feed directions. Three-

dimensional finite element simulations were also 

performed to investigate the effect of tool coating on 

the residual stresses induced during the turning of 

Ti6Al4V and the results were validated by the 

experiments [11]. It was concluded that TiAlN coated 

tools increased the tensile residual stresses on the 

machined surfaces when compared to the uncoated 

tungsten carbide tools, although the cutting edge 

radius of the coated tool was larger than the uncoated 

tools. However, the residual stresses were more 

compressive with multilayered cutting tools in a 

different study [12]. The surface residual stresses also 

became more tensile with the coated cutting tools in 

the machining of Inconel 718 [13]. This could be due 

to the greater heat input into the workpiece materials 

since the coating provides a thermal barrier to the 

cutting tool. Simeone et al. [14] studied the influence 

of cooling on the surface residual stresses in the 

turning of Inconel 718. The experiments showed that 

the surface residual stresses were slightly lower under 

dry conditions with severe cutting conditions.  

X-Ray diffraction is used to experimentally 

measure the surface residual stresses induced during 

the machining operations [15]. However, this method 

is expensive and time-consuming, and cannot be used 

for all combinations of the cutting parameters and tool 

setup. Therefore, it has been mostly used in the 

validation of analytical and numerical models. 

Analytical approaches are also used to calculate the 

machining induced residual stresses in a variety of 

materials. An analytical model was developed to 

predict the residual stresses in the orthogonal turning 

of AISI 4340 steel [16]. Two different algorithms 

were used because the hybrid algorithm provided a 

closer agreement with the experimental 

measurements than the S-J algorithm at low feed 

rates. A thermo-mechanical model incorporating the 

properties of workpiece material and cutting 

conditions was proposed to estimate the surface 

residual stresses in orthogonal machining [17]. The 

predicted and experimental results showed that this 

model can closely capture the trends of the residual 
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stress for AISI 316L and 4340 steel alloys. An 

analytical elasto-plastic model was also employed to 

obtain the residual stress profiles in the surface and 

subsurface layers of machined parts [18]. The 

magnitude and trend of residual stresses were able to 

be predicted within a short time. However, despite 

these strengths of analytical models, simplifying 

assumptions make them difficult to apply for all types 

of alloys due to the different strain hardening 

tendencies and toughness during the deformation of 

the workpiece materials (i.e., turning).  

Advances in computer technology have 

increased the use of numerical models in simulating 

the machining process. Finite element models were 

combined with constitutive material models to predict 

the temperature and stress distribution on the 

workpiece and cutting tool during and/or after the 

machining process when all the thermal and 

mechanical loads are removed. A commercially 

available three-dimensional finite element model was 

used with a Lagrangian implicit code to predict the 

machining induced residual stresses in the turning of 

Inconel 718 and AISI 316L steel [19]. Finite element 

simulations showed that regardless of the tool 

material, the mode of the machining residual stresses 

was tensile at surface, but it gradually became 

compressive beneath the machined the surface for 

Inconel 718. Sahu and Andhare [20] used a similar 

finite element approach to simulate the turning 

operation of Ti6Al4V at various cutting conditions. 

ANOVA analysis was performed to optimize the 

cutting parameters since the model was able to predict 

the residual stresses with a mean absolute error of 

11%. An implicit two-dimensional plane-strain finite 

element model [21] was developed to estimate the 

residual stresses in the turning of Inconel 718 turbine 

disks, and the proposed model was validated with the 

experimental measurements and analytical models 

published in the literature. The predicted values of the 

finite element model match better with the analytical 

model by assuming the rigid-plastic constitutive law. 

Although the numerical simulations provide close 

agreement with the experimental data in depth 

profiles when applying the appropriate material 

models, the magnitude of the residual stresses on the 

machined surfaces significantly deviates due to the 

relatively coarse mesh size, which is required to 

reduce the computation time.  

With the impact of artificial intelligence in 

engineering applications, machine learning-based 

approaches have become more narrowly applied to 

predict the surface residual stresses in the literature. 

In a study, the effect of the machining parameters on 

the machining induced residual stresses was 

investigated by employing Artificial Neural Network 

(ANN) and Genetic Algorithm (GA) [4]. ANN was 

also used in  different research to predict the value of 

surface residual stresses in the face turning operation 

[22]. Moreover, the ANN approach was used in the 

assessment of axial and hoop subsurface residual 

stresses in the hard turning of 52100 bearing steel 

[23], and the predicted results under various cutting 

speeds and feeds were validated with numerical and 

experimental data. Since only cutting speed, feed rate, 

and depth of cut were used as input parameters to 

predict the residual stress with these algorithms for 

the machining of Inconel 718, this research does not 

provide insights into the prediction accuracy when 

using different experimental setups (i.e., machining 

with coated inserts under flood cooling). The 

Gaussian Process Regression was also implemented 

to estimate the surface residual stresses in end milling 

[24]. A random forest was initially employed to 

determine the optimum feature set. Then, Gaussian 

Process Regression, Support Vector Regressor, ANN, 

and AdaBoost algorithms were employed to predict 

surface residual stress in end milling. The best 

prediction performance was obtained through the 

Gaussian Process Regression. Since all the residual 

stresses are measured using the same conditions for 

X-Ray diffraction, the performance of the models was 

not evaluated for the existence of the uncertainties in 

the X-Ray measurements. ANN and fuzzy neural 

network models were compared to highlight the 

prediction performance of the models for the residual 

stresses in the welding operation. The fuzzy neural 

network model provided slightly better performance 

in the prediction process with the root mean square 

error (RMSE) of 0.12, R-squared (R2) of 0.91, and 

mean absolute percentage error (MAPE) of 22.94 

compared to the ANN [25]. The ANN technique has 

also been adapted to predict and optimize the surface 

residual stresses induced by the laser shock peening 

process on a Ti6Al4V alloy [26]. The ANN 

predictions were in good agreement with the 

experimental results. 

Even if all the aforementioned studies were 

accomplished to obtain promising results, to the best 

of the authors’ knowledge, bagging and boosting 

ensemble machine learning models have never been 

used for the prediction of surface residual stresses in 

the turning operation. Thus, the objective of this work 

is to predict the residual stresses with the machine 

learning models in the turning of Inconel 718 and 

Ti6Al4V alloys. The machining induced residual 

stress data were extracted from the experimental 

studies in the literature since performing the cutting 

experiments on these aerospace materials, and 

measuring the residual stresses by X-Ray diffraction 

are expensive., This type of data collection process 
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also enables us to implement the machine learning 

models for all the combinations of cutting and design 

parameters, and a relatively small number of the 

datasets (i.e., machining induced residual stress). 

Since most of the researchers concluded that single-

based models may perform better than ensemble 

learning algorithms including bagging and boosting 

for the regression and classification cases [27], [28], 

popular single-based models (k- Nearest Neighbors, 

Naive Bayes, Support Vector Machine, Linear 

Regression, and Artificial Neural Network) were 

selected in addition to the ensemble learning 

algorithms based on the efficiency of the regression 

problems in different fields. Then, the effectiveness 

of these models was evaluated based on the R2 value. 

This statistical metric was also used to determine the 

optimal bagging and boosting algorithms, including 

Random Forest and AdaBoost.  This paper is also 

motivated by the comparisons of the bagging 

(Random Forest) and boosting (AdaBoost) algorithms 

in terms of prediction accuracy. Additionally, single-

based models (Linear Regression, K-Nearest 

Neighbor, and ANN) were employed to compare the 

single-based models with the bagging and boosting 

ensemble machine learning models. 

 

2. Methodology 

 

A brief description of the turning operation is given in 

this section. The machining terminology used in the 

datasets and data collection process is explained. The 

machine learning models to predict the machining 

induced surface residual stresses in turning of Inconel 

718 and Ti6Al4V alloys are also presented. In 

addition, the metrics are expressed to evaluate the 

accuracy of the models in estimating the 

experimentally measured residual stresses. 

 

2.1. Turning Operation 

 

Turning is a material removal process carried out on 

a CNC or engine lathe to obtain perfect inner and 

outer cylindrical and/or conical surfaces as well as 

external and internal threads. In this process, the 

workpiece rotates at high speeds, and stationary 

cutting tools, which are made of a much harder 

material than the workpiece, plastically deform the 

material to the desired dimensions and shapes. Figure 

1 illustrates the schematic representation of the 

turning operation. A coating is generally required to 

reduce the friction between the cutting tool and 

workpiece and increase the wear, oxidation, fatigue, 

and thermal shock resistance that extend the tool life 

significantly. High material removal rates are also 

desired in machining operations to increase process 

productivity. Cutting speed, feed, and depth/width of 

cut determine the volume of the material that is being 

cut. Cutting speed is defined as the rotational or 

surface speed of the workpiece and is usually 

expressed in revolution per minute or meter per 

minute, respectively. Feed is defined as the distance 

that the cutting tools travel for each revolution of the 

workpiece, while the depth/width of cut is the 

distance measured from the surface of the workpiece 

material to the tool tip, and expressed in millimeters. 

Since these variables are directly proportional to the 

material removal rate, increasing them produces 

higher efficiency in the machining process. However, 

excessive increases in the speed, feed, and depth of 

cut accelerate the tool wear due to high cutting forces 

and temperatures and result in poor surface finishes. 

Therefore, optimization of the cutting parameters is 

required with respect to the surface integrity of the 

workpiece and machining costs in order to efficiently 

achieve the turning operation of aerospace materials. 

 

 

Figure 1. Schematic illustration of turning process 

 

The rake angle is another tool setup parameter 

that describes the angle of the cutting tool face 

relative to the workpiece surface, as shown in Figure 

1, and it significantly influences the residual stresses 

in turning since it changes the formation of chip and 

shear flow. It should be noted that the rake angle is 

classified as positive, negative, and zero in the data 

sets of this paper because an adequate sample size 

could not be found in the literature to numerically 

show its contribution to the surface residual stresses. 

Although dry cutting can be the most sustainable 

option in the machining operation, active cooling is 

also implemented to reduce the temperature, 

oxidation, and tool wear in the turning of nickel and 

titanium alloys. A synthetic water-based metal 

working fluid (MWF) is commonly used to flood the 

machining zone for cooling and lubricating the 

cutting tool while the minimum quantity lubrication 

(MQL) technique and cryogenic machining (CRYO) 
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with liquid nitrogen can be considered as alternatives 

to satisfy the environmental concerns. 

 

2.2. Data Collection 

 

Due to the high cost of the experiments for all possible 

combinations, the effects of tool material, rake angle, 

cooling condition, cutting speed, feed, and width of 

cut on the machining induced surface residual stresses 

were obtained from the literature and tabulated in 

Appendix 1 and 2 for the Inconel 718 and Ti6Al4V 

alloys, respectively. Two different commonly used 

and commercial aerospace materials were selected to 

show the robustness of the machine models described 

in the subsequent section and that the methodology 

can be extended to other types of materials and 

machining setups. Only experimentally measured 

residual stresses by the X-Ray Diffraction technique 

were compiled from the literature to validate the 

machine learning models with high confidence. 

The datasets used in this study include six 

independent variables based on the machining setup 

and cutting parameters. Some of them may play a key 

role in the prediction of machining induced surface 

residual stress. Thus, five different groups were 

created from the entire datasets and then the 

performances of the machine learning models were 

compared to reveal the importance of the variables on 

the prediction of surface residual stress based on the 

existing data. Table 1 lists all the groups created to 

clearly show the contribution of the variables to the 

machining induced residual stresses for aerospace 

materials. 

Table 1. Created groups from the entire residual stress 

datasets 

Group 

# 

Group Name 

1 All variables 

2 Only cutting parameters (cutting speed, feed 

and width of cut) 

3 Cutting parameters and tool material 

4 Cutting parameters and coolant 

5 Cutting parameters, tool material and coolant 

(rake angle is excluded) 

 

2.3. Modelling 

Various machine learning models were applied to 

determine the correct model for the prediction of the 

surface residual stresses in the turning of aerospace 

materials. The Decision Tree, k- Nearest Neighbors, 

Random Forest, AdaBoost, Naive Bayes, Support 

Vector Machine, Linear Regression, and Artificial 

Neural Network were first tested and five of the 

machine learning models were selected based on the r-

squared values (R2). AdaBoost, Artificial Neural 

Network, Random Forest, k-Nearest Neighbors, and 

Linear Regression were found the best models for the 

datasets of the Inconel 718 and Ti6Al4V alloys given 

in Appendix 1 and 2. Each dataset was then separated 

into training (80%) and test (20%) sets, and 10-fold 

cross-validation was used in the training set. Finally, 

models were evaluated based on the test set. In other 

words, nested cross-validation was used in the training 

and evaluation process of the machine learning models 

[29]. Figure 2 shows the flow diagram of the residual 

stress prediction system used in this study.

 

 

Figure 2. Flow diagram of residual stresses prediction system 
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AdaBoost 
 

AdaBoost is a type of boosting ensemble algorithm, 

which was initially proposed by Freund and Schapire 

[30]. The core principle of it is to combine weak 

learners for the generation of a strong algorithm. In 

the working process of the AdaBoost algorithm, a 

simple learning algorithm is called at each iteration, 

and then a weight coefficient is assigned to this 

learning algorithm. The assigned weight coefficient is 

inversely proportional to the simple learning 

algorithm's error. In the end, this model provides a 

solution based on the weighted voting. Even though 

the AdaBoost algorithm was proposed to solve the 

classification problems, Drucker adapted it to solve 

regression problems [31].  The modified version of 

the algorithms is known as AdaBoost.R2 in the 

literature. In this study, 100 estimators (decision 

stumps) were used in the employed AdaBoost.R2 

algorithm. 

 

Linear Regression 

 

Simple and multiple linear regressions are mostly 

used for regression problems in the literature. Single 

linear regression mostly provides convincing results 

when the output is predicted using a single predictor. 

On the other hand, multiple linear regression 

generally allows for obtaining more effective results 

if the output is obtained using more than one predictor 

[32]. A random relationship among variables is 

created based on the present data to obtain statistical 

relations. In this study, machining induced residual 

stresses in the turning of aerospace materials were 

predicted with more than one predictor, and multiple 

linear regression can, thus, be employed. 

 

Artificial Neural Network 

 

Artificial neural networks (ANN) are widely used as 

predictive modeling in different disciplines. The 

structure of the ANN consists of three layers 

including the input, hidden, and output layers. Many 

researchers specified that ANN models are employed 

with a single hidden layer, giving convincing results 

and shortening the prediction process. The hidden 

layer neuron variations were used to determine the 

optimal number of neurons for a hidden layer [33]. 

Additionally, a hidden layer with 12 neurons was used 

in the creation of an ANN structure [34]. It can be 

inferred from these studies; researchers tend to obtain 

convincing statistical scores using a variety of 

neurons in a single hidden layer. Therefore, a single 

hidden layer was used in the proposed ANN model. 

In order to determine the optimum number of neurons 

in the hidden layer, various values were used in the 

creation process of the ANN model. It is also stated 

that the number of neurons used in the hidden layer 

should not be more than twice numbers of neurons in 

the input layer [35], [36]. Therefore, 3, 6, 9, and 12 

neurons were used in the hidden layer, and the ANN 

model was achieved to provide the best performance 

through the 6 neurons. Additionally, the maximum 

number of iterations was set to 300 as a result of 

trying different values such as 50, 150, 300, and 500. 

ReLu was used as an activation function while Adam 

optimization was used as the training algorithm in the 

employed ANN model. The proposed ANN is, thus, 

created with the following parameters: a single hidden 

layer with 6 neurons, number of iterations is 300, 

activation function was ReLu, and the solver is Adam 

optimization. Also, the ANN structure is determined 

for both datasets due to the similar sample sizes. 

Dataset 1(Datasets of Inconel 718) consists of 97 

samples. Dataset 2 (Datasets of Ti6Al4V) consists of 

91 samples. Figure 3 presents the structure of the 

proposed ANN model used in this study. 

 

 

Figure 3. Structure of the employed ANN model 

 

K-Nearest Neighbor (kNN) 

 

The kNN algorithm aims to keep similar things close 

to each other. Different metrics can be used in order 

to find close similar things in the creation of a kNN 

model (i.e. Euclidean, Manhattan, Chebyshev, etc). 

The K-Neighbors Regressor algorithm was also 

applied to predict surface residual stress in the turning 

of Inconel 718 and Ti6Al4V. In the regression 

problems, the mean of the numerical target of the k 

nearest neighbors is calculated, and the K-Neighbors 

Regressor uses the same distance measured as the 

kNN classification [37]. In this study, the Euclidean 

criterion was used while calculating the distance 

values between samples, and the number of neighbors 

was set to 5, as the default value for the number of 

neighbors in sklearn is 5. 
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Random Forest 

 

The Random Forest is a type of ensemble (bagging) 

algorithm which is an extension of the decision tree. 

If a model consists of more than one decision tree, it 

is considered a random forest. In the Random Forest 

model, the Bootstrap sampling method is used to 

extract multiple samples from the original samples. 

Then, decision trees are combined for the prediction. 

An average estimate is taken from the decision trees 

used in the random forest to obtain the prediction 

result [38]. In this study, the number of trees was set 

to 100, and subsets were not spilt when they were less 

than 5. 

 

Evaluation Metrics 

 

Mean Squared Error (MSE), Root Mean Square Error 

(RMSE), Mean Absolute Error (MAE) and R-

Squared (R2) are effective evaluation metrics in terms 

of interpretation of the prediction models [39]. These 

metrics are calculated as 

𝑀𝑆𝐸 =
1

𝑛
∑(𝑃𝑖 − 𝑃̂𝑖)

2
𝑛

𝑖=1

 (1) 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑃𝑖 − 𝑃̂𝑖)

2
𝑛

𝑖=1

 (2) 

𝑀𝐴𝐸 =
1

𝑛
∑|𝑃𝑖 − 𝑃̂𝑖|

𝑛

𝑖=1

 (3) 

𝑅2 = 1 −
𝑅𝑆𝑆

𝑇𝑆𝑆
 (4) 

where Pi is the actual value, P̂i is the predicted value 

from the model, n is the number of observations, RSS 

is sum of squares of residuals and TSS is total sum of 

squares.   

 

3. Results and Discussion 

 

This section presents the experimentally measured 

residual stresses by X-Ray Diffraction in the turning 

of Inconel 718 and Ti6Al4V alloys and predicted 

results by the machine learning models described in 

the previous section. It should be noted that the 

experimentally measured residual stresses were 

combined from a variety of research papers focusing 

on the experimental studies as highlighted in the 

previous section. However, the experimental 

measurements by X-Ray Diffraction still include 

uncertainties [40] and they could be considered an 

outlier due to the high margin of error in the 

measurement. Thus, the Mean Absolute Error (MAE) 

values of the models were mainly used in this paper 

to evaluate the employed models’ efficiency since the 

Mean Squared Error and Root Mean Squared Error 

are more sensitive to outliers than the MAE, and R2 

is less robust to outliers than the MAE [41]. 

Moreover, ensemble and some of the single-based 

algorithms are flexible algorithms (neural network, 

AdaBoost, Random Forest, etc.) compared to the 

statistical models (Linear Regression, etc.). In this 

sense, flexible algorithms usually provide convincing 

results even if the dataset contains outliers [42]. 

 

3.1. The Comparison of Experimental and 

Predicted Machining Induced Residual Stresses 

for Inconel 718 

 

The effect of machining variables on the performance 

of machine learning models for the prediction 

accuracy of residual stresses in the turning of Inconel 

718is presented in Table 2 based on the test scores. 

The employed AdaBoost algorithm provides the best 

performance in all data groups with respect to all the 

metrics used in this study when compared to the other 

machine learning algorithms. In contrast to the 

AdaBoost algorithm, Linear Regression has the worst 

MSE, RMSE and R2 values in the prediction of 

machining induced residual stresses for Inconel 718. 

The lowest MAE value (14.9) was obtained with the 

AdaBoost algorithm when the rake angle is excluded 

(Group 5). Moreover, the AdaBoost algorithm 

achieved to obtain an MAE value of 18.1 when all 

variables are used in the predicted models. In this 

sense, the efficiency of the Rake Angle can be 

considered the lowest among the other variables. On 

the other hand, the AdaBoost algorithm gives the 

worst MAE value (50.7) when only the cutting 

parameters (Group 2) are taken into the account in the 

predictions. When Groups 3 and 4 are used in the 

prediction process, the performance of the AdaBoost 

algorithm is higher than the ones with Group 2. 

However, this algorithm has provided slightly better 

performance when Group 4 is used in the prediction 

process as compared to the algorithm performance 

when Group 3 is used. It means that the cooling can 

be considered a more effective variable than the tool 

material type for the machining induced residual 

stresses of the Inconel 718. Moreover, the best MSE, 

RMSE, and MAE values in the AdaBoost and ANN 

models are obtained with Group 5 in which the rake 

angle data are excluded in the dataset of the prediction 

process[42]. 
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Table 2. .The effect of the variable existence on the 

prediction accuracy of residual stresses in the turning of 

Inconel 718 

Group 1 (All variables) 

Model MSE RMSE MAE R2 

AdaBoost 2778 52.7 18.1 0.980 

Linear Regression 44334 210.6 152.5 0.677 

Neural Network 2995 54.7 29.3 0.978 

K-Nearest Neighbor 42843 207.0 140.4 0.688 

Random Forest 28490 168.8 128.1 0.792 

Group 2 (Only Cutting Parameters) 

Model MSE RMSE MAE R2 

AdaBoost 14133 118.9 50.7 0.897 

Linear Regression 73374 270.9 201.3 0.465 

Neural Network 26099 161.6 113.3 0.810 

K-Nearest Neighbor 51370 226.7 158.5 0.626 

Random Forest 31011 176.1 136.1 0.774 

Group 3 (Cutting Parameters and Tool Material) 

Model MSE RMSE MAE R2 

AdaBoost 7892 88.8 32.3 0.940 

Linear Regression 70788 266.1 201.8 0.480 

Neural Network 11050 105.1 61.5 0.920 

K-Nearest Neighbor 41450 203.6 136.7 0.700 

Random Forest 29801 172.6 130.3 0.780 

Group 4 (Cutting Parameters and Coolant) 

Model MSE RMSE MAE R2 

AdaBoost 6754 82.2 32.1 0.950 

Linear Regression 73310 270.8 202.9 0.470 

Neural Network 12174 110.3 66.6 0.910 

K-Nearest Neighbor 54681 233.8 151.5 0.600 

Random Forest 30494 174.6 134.9 0.780 

Group 5 (Cutting Parameters, Tool Material and Coolant) 

Model MSE RMSE MAE R2 

AdaBoost 1668 40.8 14.9 0.960 

Linear Regression 65877 256.7 198.7 0.520 

Neural Network 2207 47.0 21.8 0.950 

K-Nearest Neighbor 41956 204.8 140.2 0.690 

Random Forest 28511 168.9 128.7 0.790 

 

As can be seen from Table 2 and Figure 4, the 

boosting ensemble learning model (AdaBoost) has a 

better performance when compared to the bagging 

ensemble learning model (Random Forest) and 

single-based models (Artificial Neural Network 

(ANN), Linear Regression, K-Nearest Neighbor) in 

the prediction of the surface residual stresses in 

turning of Inconel 718 alloy. The AdaBoost and ANN 

can almost exactly estimate 82% of the experimental 

results. The maximum errors of the AdaBoost and 

ANN models are 22% and 52% in the test data when 

all variables are used in the models. On the other 

hand, ANN has the second-best performance for these 

five data, and this model achieved the best MAE value 

(21.8) using Group 5 (Table 2). Generally, the ANN 

single-based model can be considered better than the 

bagging (random forest) ensemble learning model in 

the prediction of surface residual stresses for Inconel 

718. 

As explained in the section on the data 

collection process, the datasets were collected from 

various experimental studies. Thus, in Figures 4-7, 

the horizontal axis numbers refer to the numbers of 

each study, and each grid shows the residual stresses 

from one paper. For instance, the data number 

between 1 and 10 refers to data obtained from a study 

while the data number between 30 and 62 refers to 

data obtained from a different study in Figures 4 and 

5. The range of the data for each study is also 

available in Appendix 1 and 2. 

As shown in Figure 4 and 5, the highest 

difference between the experimental and predicted 

data points was observed with the Linear Regression. 

This could be because of the relationship between the 

mean of the variables (independent and dependent) 

since the mean is not a complete description of a 

variable and it is a limitation of this model [43]. On 

the other hand, although the k-Nearest Neighbor 

shows better performance than the Linear Regression, 

the deviations between the experimental and 

predicted residual stresses are not in an acceptable 

range for turning of Inconel 718 alloy since it is used 

in the aerospace industry to manufacture vital parts. 
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Figure 4. Experimental and predicted residual stresses in the turning of Inconel 718 with all variables 

 
As shown in Figure 5, although the machine 

learning models are trained precisely, the agreement 

between the experimental and predicted residual 

stresses is poor in all the models when only the cutting 

parameters are used. This means that the information 

about the machining setup is required to obtain a 

reasonable residual stress prediction in the turning of 

Inconel 718. It also confirms that the machine 

learning algorithms used with only the various cutting 

parameters [4], [22], [24] do not completely provide 

the magnitude of the machining induced residual 

stresses. However, the AdaBoost could still capture 

38% of the experimental results with a maximum 

error of 1% within the test data while the maximum 

error can be as large as approximately 200% in the 

AdaBoost and ANN machine learning models.

 

 

Figure 5. Experimental and predicted residual stresses in turning of Inconel 718 with only cutting parameters 
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3.2. The Comparison of Experimental and 

Predicted Machining Induced Residual Stresses 

for Ti6Al4V 

 

Table 3 shows the effect of the variable contribution 

on the prediction accuracy of residual stresses in the 

turning of Ti6Al4V based on the test scores. As it can 

be seen from Table 3, the Artificial Neural Network 

(ANN) algorithm has the best performance for all the 

groups created in this study with respect to the MAE 

value. This algorithm has achieved providing the 

same and best MAE values (22.4) using Groups 1 and 

5. On the other hand, although the AdaBoost 

algorithm seems to be the second-best model for the 

prediction of surface residual stress in the turning of 

Ti6aI4V, the difference between ANN and AdaBoost 

is only 0.2 when Group 2 is used in the analysis. In 

general, the ANN single-based model has better 

performance compared to the boosting and bagging 

learning algorithms for the prediction of surface 

residual stress in the turning of Ti6Al4V.  Neural 

Network has the best MSE, RMSE, and R2 values 

compared to the other models, as shown in Table 3. 

The best values of MSE, RMSE, and R2 were 

obtained using Groups 1 and 5. In contrast to the 

Neural Network, Linear Regression provided the 

worst MSE, RMSE, and R2 values among the models 

presented in Table 3 due to the limitations of the linear 

regression mentioned in the previous section. 

As can be seen from Figure 6 and 7, the 

AdaBoost and Neural Network algorithms show 

excellent prediction performance in the range from 86 

to 91. However, these two algorithms provide the 

worst performance in the data numbered between 21 

and 33 compared to the other experimental studies as 

shown in Figure 6. It can be seen in Appendix 2, that 

the effects of tool material and cooling conditions on 

the machining induced residual stresses were 

investigated in the work numbered between 21 and 33 

[12]. Since the tool material and cooling type do not 

significantly influence the prediction accuracy of the 

machine learning models for the Ti6Al4V alloy 

(Table 3), these variables can be considered neutral 

elements in the prediction of machining induced 

residual stresses. 

Table 3. The effect of the variable existence on the 

prediction accuracy of residual stresses in the turning of 

Ti6Al4V 

Group 1 (All variables) 

Model MSE RMSE MAE R2 

AdaBoost 4364 66.1 31.3 0.960 

Linear Regression 68535 261.8 183.6 0.365 

Neural Network 1419 37.7 22.4 0.987 

K-Nearest Neighbor 53008 230.2 152.8 0.509 

Random Forest 40261 200.7 140.8 0.627 

Group 2 (Only Cutting Parameters) 

Model MSE RMSE MAE R2 

AdaBoost 15104 122.9 55.9 0.860 

Linear Regression 95676 309.3 243.6 0.114 

Neural Network 9368 96.8 55.7 0.913 

K-Nearest Neighbor 59377 243.7 171.6 0.450 

Random Forest 43529 208.6 147.0 0.597 

Group 3 (Cutting Parameters and Tool Material) 

Model MSE RMSE MAE R2 

AdaBoost 3967 63.0 33.0 0.963 

Linear Regression 74155 272.3 200.0 0.313 

Neural Network 2234 47.3 28.7 0.979 

K-Nearest Neighbor 52275 228.6 151.7 0.516 

Random Forest 41113 202.8 142.9 0.619 

Group 4 (Cutting Parameters and Coolant) 

Model MSE RMSE MAE R2 

AdaBoost 4364 66.1 34.7 0.960 

Linear Regression 81128 284.8 204.0 0.249 

Neural Network 1578 39.7 24.7 0.985 

K-Nearest Neighbor 54302 233.0 153.2 0.497 

Random Forest 41500 203.7 143.8 0.616 

Group 5 (Cutting Parameters, Tool Material and Coolant) 

Model MSE RMSE MAE R2 

AdaBoost 4364 66.1 31.3 0.960 

Linear Regression 68535 261.8 183.6 0.365 

Neural Network 1419 37.7 22.4 0.987 

K-Nearest Neighbor 53008 230.2 152.8 0.509 

Random Forest 40521 201.3 140.2 0.625 
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Figure 6. Experimental and predicted residual stresses in the turning of Ti6Al4V with all variables 

 

As shown in Figure 7, each algorithm 

provided the same results for the samples numbered 

from 21 – 33 and 57 - 61. When the values of the 

cutting parameters (cutting speed, feed, width of cut) 

of these studies are checked in Appendix 2, they have 

the same values for each sample. Thus, the samples 

numbered between 21 and 33, 57 and 61 can be 

considered outliers in the dataset of Group 2. On the 

other hand, Linear Regression and Random Forest 

algorithms give similar results for the samples 

numbered between 33 and 49 while the experimental 

results and predicted values with the other employed 

algorithms are different (Figure 7). In this case, they 

may not be appropriate algorithms for the samples 

numbered between 33 and 49 because all the variables 

were changed through the experiments and only the 

cutting parameters were used in the prediction of 

machine learning as shown in Figure 7. 

 

 

Figure 7. Experimental and predicted residual stresses in the turning of Ti6Al4V with only cutting 

parameters 
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Within the groups created from the datasets 

of Inconel 718 and Ti6Al4V materials, k-Nearest 

Neighbor and Random Forest algorithms gave similar 

errors. The maximum deviation between these two 

models was obtained in Group 2 with an MAE of 

approximately 25. However, the MAE of these 

models was still three to seven times greater than the 

one with the AdaBoost and Neural Network 

algorithms. 

The performance of the employed five 

machine learning algorithms (Linear Regression, 

AdaBoost, Neural Network, Random Forest, k-

Nearest Neighbor) was varied in the estimation of the 

residual stresses in the turning of Inconel 718 and 

Ti6Al4V. As highlighted before, while AdaBoost 

provided the best statistical scores for the Inconel 718 

workpiece, the prediction accuracy was higher with 

Neural Network for Ti6Al4V. However, both of these 

algorithms still achieved to provide convincing 

statistical scores for two different datasets which 

shows the robustness of these algorithms in this study. 

It is known that the use of datasets having a 

large sample size is a preferred situation when 

employing Machine Learning algorithms. However, 

data collection is not an easy task in the turning of 

difficult-to-cut materials (i.e., Nickel and Titanium 

alloys) due to the high cost of materials, experiments, 

and measurements. Although the residual stress 

predictions with the proposed machine learning 

models are remarkably in good agreement with the 

experimental data, the limitation of this research is 

that it has a relatively small sample size of the datasets 

for both workpiece materials. Several algorithms 

employed in this work (i.e., Linear Regression) were, 

thus, failed in the estimation of the surface residual 

stresses since the literature has a limited number of 

studies regarding the experimental investigation of 

machining induced residual stresses for these 

aerospace materials. Moreover, in most of the 

experimental studies used in this paper, all variable 

combinations were not tested, or an experimental 

design was not applied. Therefore, the machine 

learning models estimate the same residual stresses 

when the variables are grouped (Figure 5 and 7). 

As presented in the introduction, ANN was 

also applied for the prediction of the residual stresses 

in the welding operation [25].  A hybrid ANN 

approach was also created for the prediction of the 

value of surface residual stresses in the face turning 

operation [22]. Even if the studies presented above 

fulfilled the aim of their own studies, they have some 

drawbacks. The first drawback is that there is no case 

study that was carried out to determine the optimal 

architecture of the created ANN in the studies 

presented above. In this sense, a more effective ANN 

architecture could be created which may improve the 

its performance in the prediction of the value of 

surface residual stresses in machining operations. 

Different iteration numbers of the ANN approaches 

were not also tested to obtain more reliable results in 

the prediction of machining induced residual stresses. 

In the proposed models described in the previous 

sections, a case study was carried out to determine the 

optimal structure for each learning algorithm. The 

second drawback of the existing research papers is 

that only one dataset has been used to evaluate the 

performance of the machine learning models. Unlike 

the presented work, the robustness of these studies has 

not been tested in the prediction of residual stresses. 

 

4. Conclusions 

 

This paper provides the experimental residual stresses 

measured by X-Ray Diffraction for various cutting 

and machine setup parameters used in the turning of 

aerospace materials. AdaBoost, Linear regression, 

Neural Network (ANN), K-nearest Neighbor, and 

Radom Forest machine learning models were used to 

predict the machining induced surface residual 

stresses for Inconel 718 and Ti6Al4V alloys. The 

performances of the models were then tested by 

calculating the Means Squared Error (MSE), Rooth 

Mean Square Error (RMSE), and Mean Absolute 

Error (MAE) as well as the R-squared. The datasets 

of these two workpieces were also grouped to clearly 

show the contribution of variables to the machining 

induced residual stresses. It was found that the 

AdaBoost gives the best agreement within the models 

used in this study for all Groups, and including the 

cooling and tool material type data into the machine 

learning models significantly increases the prediction 

accuracy of the models for the Inconel 718. On the 

other hand, Artificial Neural Network was the best fit 

in the prediction of surface residual stresses for all the 

group combinations of Ti6Al4V alloy. However, the 

MAE of the ANN was almost the same as the 

AdaBoost model when only cutting parameters were 

used in the analysis, and including one variable 

regarding the experimental setup reduced the MAE by 

approximately 50%. Therefore, the machine setup 

parameters are needed to accurately predict the 

machining induced residual stresses with Machine 

Learning models for Inconel 718 and Ti6Al4V 

materials. All the analyses showed that the AdaBoost 

and ANN algorithms can be used to estimate the 

residual stresses with an acceptable error range 

despite the small size of the datasets, and prevent the 
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cost of machining trials, experimental measurements 

and finite element software. Since the machine 

learning models with the optimum parameters 

determined in this study worked properly for both 

aerospace materials, the presented models can be 

extended to other types of workpieces. As a future 

work, the sample size of the datasets can also be 

increased using linear programming or heuristic 

models to employ the stacked ensemble models and 

deep learning algorithms in the prediction of surface 

residual stresses. 
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Appendix 1. Datasets of Inconel 718 

Data # Tool Material Rake Angle Coolant Type 
Cutting Speed 

[m/min] 
Feed 

(mm/rev) 
Width of Cut 

[mm] 
Surface Residual 
Stresses [MPa] 

Reference 

1 Coated 0 MWF 35 0.200 0.4 903 

[5] 

2 Coated 0 MWF 44 0.100 0.3 609 

3 Coated 0 MWF 53 0.100 0.4 851 

4 Coated 0 MWF 35 0.150 0.3 775 

5 Coated 0 MWF 44 0.150 0.4 1020 

6 Coated 0 MWF 35 0.100 0.2 562 

7 Coated 0 MWF 53 0.200 0.3 1125 

8 Coated 0 MWF 44 0.200 0.2 983 

9 Coated 0 MWF 53 0.150 0.2 1150 

10 Coated Positive DRY 50 0.075 0.2 371 

[3] 

11 Coated Positive DRY 50 0.100 0.2 411 

12 Coated Positive DRY 50 0.125 0.2 444 

13 Coated Positive DRY 50 0.150 0.2 466 

14 Coated Positive DRY 60 0.075 0.2 354 

15 Coated Positive DRY 60 0.100 0.2 391 

16 Coated Positive DRY 60 0.125 0.2 385 

17 Coated Positive DRY 60 0.150 0.2 479 

18 Coated Positive DRY 70 0.075 0.2 321 

19 Coated Positive DRY 70 0.100 0.2 366 

20 Coated Positive DRY 70 0.125 0.2 383 

21 Coated Positive DRY 70 0.150 0.2 437 

22 Coated Positive DRY 80 0.075 0.2 340 

23 Coated Positive DRY 80 0.100 0.2 377 

24 Coated Positive DRY 80 0.125 0.2 395 

25 Coated Positive DRY 80 0.150 0.2 459 

26 NA 0 DRY 30 0.150 0.15 376 

[44] 
27 NA 0 DRY 30 0.250 0.15 575 

28 NA 0 DRY 70 0.150 0.15 589 

29 NA 0 DRY 70 0.250 0.15 370 

30 Uncoated Positive MWF 60 0.015 0.15 153 

[4] 

31 Uncoated Positive MWF 60 0.025 0.3 81 

32 Uncoated Positive MWF 60 0.035 0.45 196 

33 Uncoated Positive MWF 60 0.045 0.6 182 

34 Uncoated Positive MWF 80 0.015 0.15 243 

35 Uncoated Positive MWF 80 0.025 0.3 523 

36 Uncoated Positive MWF 80 0.035 0.45 514 

37 Uncoated Positive MWF 80 0.045 0.6 568 

38 Uncoated Positive MWF 100 0.025 0.15 230 

39 Uncoated Positive MWF 100 0.015 0.3 550 

40 Uncoated Positive MWF 100 0.045 0.45 177 

41 Uncoated Positive MWF 100 0.035 0.6 193 

42 Uncoated Positive MWF 120 0.025 0.15 203 

43 Uncoated Positive MWF 120 0.015 0.3 216 

44 Uncoated Positive MWF 120 0.045 0.45 211 

45 Uncoated Positive MWF 120 0.035 0.6 197 

46 Uncoated Positive MWF 60 0.045 0.15 188 

47 Uncoated Positive MWF 60 0.035 0.3 175 

48 Uncoated Positive MWF 60 0.025 0.45 210 

49 Uncoated Positive MWF 60 0.015 0.6 221 

50 Uncoated Positive MWF 80 0.045 0.15 186 

51 Uncoated Positive MWF 80 0.035 0.3 206 

52 Uncoated Positive MWF 80 0.025 0.45 162 

53 Uncoated Positive MWF 80 0.015 0.6 196 

54 Uncoated Positive MWF 100 0.035 0.15 142 

55 Uncoated Positive MWF 100 0.045 0.3 167 

56 Uncoated Positive MWF 100 0.015 0.45 198 

57 Uncoated Positive MWF 100 0.025 0.6 231 

58 Uncoated Positive MWF 120 0.035 0.15 142 

59 Uncoated Positive MWF 120 0.045 0.3 179 

60 Uncoated Positive MWF 120 0.015 0.45 215 

61 Uncoated Positive MWF 120 0.025 0.6 217 
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62 Uncoated Positive MWF 45 0.100 0.3 379 

[14] 

63 Uncoated Positive MWF 45 0.125 0.3 182 

64 Uncoated Positive MWF 45 0.150 0.3 455 

65 Uncoated Positive MWF 50 0.100 0.3 309 

66 Uncoated Positive MWF 50 0.125 0.3 644 

67 Uncoated Positive MWF 50 0.150 0.3 767 

68 Uncoated Positive MWF 55 0.100 0.3 378 

69 Uncoated Positive MWF 55 0.125 0.3 662 

70 Uncoated Positive MWF 55 0.150 0.3 1009 

71 Uncoated Positive MWF 80 0.150 0.3 1228 

72 Uncoated Positive MWF 80 0.300 0.3 1515 

73 Uncoated Positive MWF 100 0.150 0.3 1376 

74 Uncoated Positive MWF 100 0.300 0.3 1521 

75 Uncoated Positive DRY 80 0.150 0.3 1387 

76 Uncoated Positive DRY 80 0.300 0.3 1473 

77 Uncoated Positive DRY 100 0.150 0.3 1277 

78 Uncoated Positive DRY 100 0.300 0.3 1412 

79 Ceramic Positive MWF 12 0.028 3.24 608 

[45] 80 Ceramic Positive MWF 21 0.028 3.24 757 

81 Ceramic Positive MWF 38 0.028 3.24 827 

82 Coated Positive MWF 40 0.150 0.25 611 

[13] 

83 Coated Positive MWF 40 0.250 0.25 761 

84 Coated Positive MWF 80 0.150 0.25 244 

85 Coated Positive MWF 80 0.250 0.25 298 

86 Coated Positive MWF 120 0.150 0.25 192 

87 Coated Positive MWF 120 0.250 0.25 326 

88 Uncoated Positive MWF 40 0.150 0.25 192 

89 Uncoated Positive MWF 40 0.250 0.25 259 

90 Ceramic Positive MWF 75 0.028 3.24 926 
[45] 

91 Ceramic Positive MWF 97 0.028 3.24 1039 

92 Coated 0 DRY 40 0.100 0.5 922 

[9] 

93 Coated 0 DRY 60 0.100 0.5 720 

94 Coated 0 DRY 80 0.100 0.5 721 

95 Coated 0 MWF 40 0.100 0.5 239 

96 Coated 0 MWF 60 0.100 0.5 227 

97 Coated 0 MWF 80 0.100 0.5 736 
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Appendix 2. Datasets of Ti6Al4V 

Data # Tool Material Rake Angle Coolant Type 
Cutting Speed 

[m/min] 
Feed 

[mm/rev] 
Width of Cut 

[mm] 
Surface Residual 

Stress [MPa] 
Reference 

1 Uncoated 0 DRY 55 0.100 2 112 

[11] 
2 Uncoated 0 DRY 90 0.100 2 167 

3 Coated 0 DRY 55 0.100 2 134 

4 Coated 0 DRY 90 0.100 2 112 

5 Coated 0 DRY 50 0.100 1 387 

[46] 

6 Coated 0 DRY 50 0.200 2 380 

7 Coated 0 DRY 100 0.100 2 376 

8 Coated 0 DRY 100 0.200 1 379 

9 Coated 0 DRY 50 0.100 1 377 

10 Coated 0 DRY 50 0.200 2 381 

11 Coated 0 DRY 100 0.100 2 382 

12 Coated 0 DRY 100 0.200 1 378 

13 Ceramic 0 DRY 20 0.120 5 -265 

[47] 

14 Ceramic 0 DRY 40 0.120 5 -572 

15 Ceramic 0 DRY 60 0.120 5 -572 

16 Ceramic 0 DRY 140 0.120 5 198 

17 Ceramic 0 DRY 260 0.120 5 385 

18 Ceramic 0 DRY 420 0.120 5 618 

19 Ceramic 0 DRY 540 0.120 5 575 

20 Ceramic 0 DRY 660 0.120 5 440 

21 Uncoated Negative DRY 75 0.200 1.2 150 

[12] 

22 Uncoated Negative MQL 75 0.200 1.2 74 

23 Uncoated Negative MWF 75 0.200 1.2 11 

24 Uncoated Negative DRY 75 0.200 1.2 48 

25 Uncoated Negative MQL 75 0.200 1.2 -29 

26 Uncoated Negative MWF 75 0.200 1.2 -73 

27 Coated Negative DRY 75 0.200 1.2 -29 

28 Coated Negative MQL 75 0.200 1.2 47 

29 Coated Negative MWF 75 0.200 1.2 -14 

30 Coated Negative DRY 75 0.200 1.2 51 

31 Coated Negative MQL 75 0.200 1.2 161 

32 Coated Negative MWF 75 0.200 1.2 18 

33 Uncoated 0 DRY 100 0.012 0.06 -385 

[10] 

34 Uncoated Positive DRY 40 0.012 0.12 -275 

35 Uncoated Positive DRY 40 0.002 0.06 -180 

36 Uncoated 0 DRY 100 0.002 0.12 -110 

37 Uncoated Positive DRY 100 0.012 0.12 -75 

38 Uncoated 0 DRY 40 0.002 0.12 -230 

39 Uncoated Positive DRY 100 0.002 0.06 -110 

40 Uncoated 0 DRY 40 0.012 0.06 -110 

41 Uncoated 0 DRY 100 0.012 0.06 -380 

42 Uncoated Positive DRY 40 0.012 0.12 -175 

43 Uncoated Positive DRY 40 0.002 0.06 -190 

44 Uncoated Positive DRY 100 0.002 0.12 -120 

45 Uncoated Positive DRY 100 0.012 0.12 -15 

46 Uncoated 0 DRY 40 0.002 0.12 -200 

47 Uncoated Positive DRY 100 0.002 0.06 40 

48 Uncoated 0 DRY 40 0.012 0.06 -255 

49 Coated Positive DRY 90 0.100 0.50 -776 

[20] 

50 Coated Positive DRY 151 0.200 0.50 -1001 

51 Coated Positive DRY 70 0.150 0.75 -338 

52 Coated Positive DRY 171 0.150 0.75 -314 

53 Coated Positive DRY 121 0.230 0.75 -173 

54 Coated Positive DRY 121 0.150 0.75 -395 

55 Uncoated NA MWF 70 0.150 1.5 -566 
[48] 

56 Uncoated NA CRYO 70 0.150 1.5 -591 

57 Uncoated Positive DRY 80 0.200 1 -196 

[8] 
58 Uncoated Positive MWF 80 0.200 1 -245 

59 Uncoated Positive CRYO 80 0.200 1 -335 

60 Uncoated Positive CRYO 80 0.200 1 -432 

61 NA 0 NA 26 0.100 0.1 -325 
[49] 

62 NA 0 NA 26 0.500 0.1 -315 
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63 Coated Negative DRY 45 0.250 0.25 -318 

[6] 

64 Coated Negative DRY 45 0.300 0.5 -174 

65 Coated Negative DRY 45 0.350 0.75 -151 

66 Coated Negative DRY 60 0.250 0.5 -189 

67 Coated Negative DRY 60 0.300 0.75 -71 

68 Coated Negative DRY 60 0.350 0.25 -255 

69 Coated Negative DRY 75 0.250 0.75 -195 

70 Coated Negative DRY 75 0.300 0.25 -71 

71 Coated Negative DRY 75 0.350 0.5 -220 

72 Coated Positive DRY 23 0.110 1 -172 

[50] 
73 Coated Positive CRYO 23 0.110 1 -298 

74 Coated Positive DRY 92 0.110 1 -134 

75 Coated Positive CRYO 92 0.110 1 -184 

76 Uncoated Positive MWF 70 0.200 0.25 -293 

[7] 

77 Uncoated Positive MWF 100 0.200 0.25 -387 

78 Uncoated Positive MWF 125 0.200 0.25 -203 

79 Uncoated Positive MWF 150 0.200 0.25 22 

80 Uncoated Positive MWF 175 0.200 0.25 164 

81 Uncoated Positive MWF 50 0.200 1 -338 

82 Uncoated Positive MWF 70 0.200 1 -393 

83 Uncoated Positive MWF 100 0.200 1 -474 

84 Uncoated Positive MWF 150 0.200 1 -245 

85 Uncoated Positive MWF 175 0.200 1 -181 

86 Coated Negative DRY 30 0.050 4 -107 

[2] 

87 Coated Negative DRY 60 0.050 4 710 

88 Coated Negative DRY 120 0.050 4 272 

89 Coated Negative DRY 30 0.150 4 -696 

90 Coated Negative DRY 60 0.150 4 810 

91 Coated Negative DRY 120 0.150 4 447 

 

 


