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ABSTRACT 

DEVELOPING DEEP LEARNING MODELS FOR PROTEIN 

STRUCTURE PREDICTION  

 

Yasin GÖRMEZ 

Ph.D. in Electrical and Computer Engineering Department 

Advisor: Assoc. Prof. Zafer AYDIN 

 

October 2022 

 

 

The three-dimensional structure of a protein provides important clues about the function 

of that protein. Although there have been many studies on protein structure prediction, 

the problem has still not been solved completely. As it is very difficult to predict the three-

dimensional structure of a protein directly, predictions of structural properties of proteins 

such as secondary structure, solvent accessibility, and torsion angles are carried out first, 

which are later used as inputs to more elaborate structure estimation tasks. In this thesis, 

novel deep learning models have been developed by using convolutional neural networks 

(CNN), graph convolutional networks (GCN) and long-short-term memory (LSTM) 

recurrent neural networks to predict secondary structure, solvent accessibility and torsion 

angles of proteins. A rich feature set formed by using PSI-BLAST, HHBlits, 

physicochemical properties, structural profile matrices, AA index values, and graphs 

representing the relationship between amino acids were used as inputs to the models. In 

the first study, a deep learning model was developed by using CNN and GCN layers for 

secondary structure prediction. In the second study, LSTM layers were added to the first 

model, which was extended to make solvent accessibility and torsion angle predictions as 

well using the multi-task learning approach. In both studies, graphs were generated using 

neighborhood relations between amino acids. In the last study, a novel U-net-based model 

was designed for secondary structure prediction using CNN, GCN, and LSTM layers. 

The graph matrices used as input to GCN layers were obtained by using protein contact 

map prediction. All models were trained, optimized and tested on benchmark data sets. 

Improvements were obtained in accuracy as compared to the state-of-the-art.  

 

Keywords: Protein Structure Prediction, Deep Learning, Protein Secondary Structure 

Prediction, Solvent Accessibility Prediction, Torsion Angle Prediction 



 

ÖZET 

PROTEİN YAPI TAHMİNİ İÇİN DERİN ÖĞRENME 

MODELLERİNİN GELİŞTİRİLMESİ 

 

Yasin GÖRMEZ 

 Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Tez Yöneticisi: Doç. Dr. Zafer AYDIN 

Ekim-2022 

 

Bir proteinin üç boyutlu yapısı, o proteinin fonksiyonu hakkında önemli ipuçları 

sunmaktadır. Literatürde protein yapı tahmini yapan birçok çalışma bulunmasına rağmen 

bu problem henüz tam olarak çözümlenememiştir. Üç boyutlu protein yapı tahmininin 

direkt olarak yapılması çok zor olduğundan ilk etapta ikincil yapı, çözücü erişilirlik ve 

burulma açıları gibi yapısal özellikler tahmin edilir ve daha karmaşık yapı tahmin 

algoritmalarına girdi olarak gönderilir. Bu tezde, ikincil yapı, çözücü erişilirlik ve 

burulma açıları tahminleri için evrişimsel sinir ağları (ESA), çizge evrişimsel ağlar (ÇEA) 

ve uzun kısa vadeli hafıza (UKVH) temelli tekrarlayan yapay sinir ağları kullanılarak 

özgün derin öğrenme modelleri geliştirilmiştir. PSI-BLAST, HHBlits, fiziko kimyasal 

özellikler, yapısal profil matrisleri ve AAindex parametreleri kullanılarak oluşturulan 

zengin bir öznitelik seti ve amino asitler arasındaki ilişkinin temsil edildiği çizgeler 

modellerde girdi olarak kullanılmıştır. İlk çalışmada, ikincil yapı tahmini için ESA ve 

ÇEA kullanılarak özgün bir model oluşturulmuştur. İkinci çalışmada, ilk modele UKVH 

katmanları da eklenmiş ve model çok görevli öğrenme yaklaşımı sayesinde çözücü 

erişilirlik ve burulma açı tahminleri de yapacak şekilde güncellenmiştir. Her iki çalışmada 

da ÇEA modellerinin girdileri olan çizgeler amino asitler arası komşuluk ilişkisi 

kullanılarak oluşturulmuştur. Son çalışmada ESA, ÇEA ve UKVH kullanılarak U-net 

tabanlı özgün bir model ikincil yapı tahmini için tasarlanmıştır. Bu çalışmada girdi olarak 

kullanılan çizge matrisi protein temas haritası tahmini kullanılarak elde edilmiştir. Tüm 

modeller güncel veri kümelerinde eğitilmiş, optimize edilmiş ve test edilmiştir. 

Literatürdeki yöntemlerden daha başarılı sonuçlar elde edilmiştir.  

 

Anahtar kelimeler: Protein Yapı Tahmini, Derin Öğrenme, Protein İkincil Yapı Tahmini, 

Çözücü Erişilirlik Tahmini, Burulma Açısı Tahmini 
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Chapter 1 

Introduction 

Proteins have a very crucial importance for living organisms. Thus, having knowledge 

about the functions of proteins is very important for human life. Proteins are an important 

class of macromolecules found in every organism, formed as a result of the sequential 

linking of amino acids by peptide bonds [1]. There are 20 common amino acids in nature. 

Amino acids are organic compounds consisting of an amine group (-NH2), a carboxyl 

group (-COOH), and a side chain molecule (R) attached to an asymmetric alpha carbon 

atom (Cα) [2], [3]. Figure 1.1 shows an amino acid molecule. The alpha carbon atom, 

amine, and carboxyl groups in each amino acid form the backbone portion and they are 

the same in all amino acid types. In contrast, side chain molecules are unique to each 

amino acid. Amino acids interact with the condensation reaction and they are linked 

together by peptide bonds to form a polypeptide chain. This reaction takes place in 

intracellular organelles called ribosomes, through a process called translation. In this way, 

proteins needed by our metabolism are synthesized. After proteins are synthesized 

through the process of translation, they fold into a certain shape in 3-D space in order to 

perform their biological functions. The forces driving this folding are non-covalent 

interactions such as hydrogen bonding between protein atoms, ionic interactions, Van Der 

Waals forces, and hydrophobic stacking. Since there is a close relation between the three-

dimensional structure and function of a protein, knowing the structure of a protein gives 

important clues about its biological function and molecular mechanism.  

Large amounts of protein sequence data are generated from large-scale DNA sequencing 

studies called as the Human Genome Project [4]. However, the structure of many of these 

proteins has not been experimentally solved. At this point, the proteins whose three-

dimensional structure has been solved experimentally constitutes less than 0.6% of the 

known protein sequences. There are some experimental methods such as X-ray 

crystallography and Nuclear Magnetic Resonance (NMR) spectroscopy to solve the 

structure of a protein. These methods can be labor intensive, time consuming and costly. 

In addition, it is not possible to find the structure of some proteins (e.g. some membrane 



2 

 

proteins) experimentally. In cases where experimental methods are insufficient, 

prediction of protein structure by computational methods is an effective and efficient 

approach.  

 

Figure 1.1 Structure of an amino acid [5].  

Protein structure prediction refers to the three-dimensional structure prediction, which is 

a very challenging problem. Since direct prediction of the 3D structure is difficult, in the 

first step, various structural properties are predicted such as protein secondary structure 

prediction (PSSP), solvent accessibility prediction (SAP) and torsion angle prediction 

(TAP). To date, many machine learning techniques have been developed for PSSP [6]–

[14], SAP [15]–[19] and TAP [20]–[25]. Recently, deep learning approaches have been 

proposed, which have gained increasing popularity and a significant improvement was 

achieved [26]–[33]. Because of these reasons, in this thesis, several deep learning models 

were developed for PSSP, SAP and TAP. Fully Connected Layers (FCL), Convolutional 

Neural Networks (CNN), Graph Convolutional Networks (GCN) and bi-directional Long 

Short-Term Memory (biLSTM) recurrent neural networks were used in different 

combinations and numbers. Studies in the literature show that, features in dataset also 

affect the accuracy of prediction as much as the machine learning model [8], [10], [34]–

[37]. Because of this reason, position specific scoring matrices (PSSM) that are calculated 

using PSI-BLAST [38], profiles that are calculated using HHBlits [39], seven physico-

chemical properties of amino acids, physico-chemical features from AAindex [40] and 

structural profiles for secondary structure and solvent accessibility of proteins were used 

to generate the feature matrix of the models. Another significant factor that affects the 
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accuracy of a deep learning model is the set of hyper-parameters. In this thesis, hyper-

parameters of the proposed models were optimized using the Bayesian Optimization 

technique, which is faster and more efficient than the traditional optimization algorithms 

[41], [42]. The organizations of this thesis after the Introduction chapter is as follows. 

Chapter 2 explains the protein structure levels, protein secondary structure prediction with 

literature review, solvent accessibility prediction with literature review, torsion angle 

prediction with literature review and contact map prediction. Chapter 3 presents the 

benchmark datasets, feature generation, neural network layers, graph generation, 

proposed deep learning models and Bayesian optimization. In chapter 4, the experimental 

results of the proposed models are presented in detail. Finally, the thesis is concluded and 

future works are discussed in chapter 5.  
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Chapter 2 

Structure of a Protein 

The 20 amino acids, which are found in natural proteins and are produced by ribosomes, 

have different physical and chemical properties. They differ in their electrostatic charge, 

hydrophobicity, acid dissociation coefficient, size and functional groups. These properties 

play an important role in determining the structure of proteins [1]. For example, the 

amino acid Glycine, which has the smallest side chain molecule, has only one hydrogen 

atom as the side chain. The flexibility of the protein structure increases around this amino 

acid. The amino acid Cysteine interacts with another Cysteine to form a cross-link, 

thereby strengthening the protein structure. Since positive and negative charges are 

dissociated in an amino acid residue, amino acids show polarity. For example, the 

negatively charged free C=O group is the hydrogen bond acceptor, and the positively 

charged NH group is the hydrogen bond donor. These groups can interact within the 

protein structure and contribute to the formation of the protein structure [43]. The 

structure of proteins can be studied in levels, which are explained in the next section. 

2.1 Protein Structure Levels 

There are four basic levels of protein structure: primary, secondary, tertiary and 

quaternary structures. Figure 2.1 shows the structure levels of a protein.  
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Figure 2.1 Structure levels of a protein [44].  

2.1.1 Primary Structure 

The straight polymer (polypeptide) chain, in which amino acids are linked by peptide 

bonds, refers to the primary structure of the protein. In order for the polypeptide chain to 

transform into biologically active proteins, it must acquire its specific 3D structure. The 

primary structure of a protein determines its three-dimensional structure. Modifications 

of amino acids in the primary structure (e.g. substitutions, insertions and deletions) can 

affect the three-dimensional conformation and function of the protein [45]. 

2.1.2 Secondary Structure 

The secondary structure of a protein is defined by repetitive fold or folding that affects its 

overall conformation. These folds are formed by hydrogen bonds formed at regular 

intervals along the polypeptide backbone. The most commonly observed secondary 

structures are α-helix and β-sheet. Other than the two primary secondary structures, 

irregular folding units form random loop structures (loop).  

α-helix is the main component of tissues such as hair and skin, the hardness of which 

depends on the number of disulfide bonds between the polypeptide chains that form their 

structure. In an α-helix, the backbone of the polypeptide twists clockwise to form a spiral. 

One turn of the helix contains ~3.6 amino acids, which has a length of 5.4 Ao. The R 

groups are oriented outward from the helix. This structure is fixed by the H bond between 
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the N atom of the peptide bond and the carbonyl O atom of the 4th amino acid. The α-

helix structure is seen in globular proteins [45].  

In β-sheet, H bonds are formed between different segments of a polypeptide chain or 

between segments of two separate polypeptide chains. This structure is commonly seen 

in fibrous proteins such as silk thread. The β-sheet structure can be parallel or anti-parallel 

[45]. 

Loops are structures that do not have regular repetitions such as helix and sheet. They 

usually exist between the helical and sheet structures and connect these structures [46]. 

Figure 2.2 shows the three categories of the secondary structure elements.  

 

Figure 2.2 Three categories of the secondary structure elements [47] 

2.1.3 Tertiary Structure 

The tertiary structure refers to the three-dimensional coordinates of the atoms in a 

polypeptide chain. It is formed by the folding of the secondary structure elements at a 

higher level, arises especially from the interactions between the R groups. The main 

interactions that form the tertiary structure are hydrophobic and Van der Waals 

interactions. In addition to these, ionic bonds, salt bridges and hydrogen bonds also play 

a role in the formation of tertiary structure. The three-dimensional conformation of the 

protein is also supported by disulfide covalent bonds formed between cysteine amino 

acids [45]. 

2.1.4 Quaternary Structure 

Some proteins contain more than one polypeptide chain. The interactions and bonds 

formed between these units (also called subunits) form the quaternary structure of the 
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protein. Note that some proteins may not contain more than one polypeptide chain and 

therefore may not have a quaternary structure. Hemoglobin is an example to a protein 

with quaternary structure that contains four chains. 

2.2 Solvent Accessibility 

Accessible surface area is defined as the surface area of a biomolecule accessible to a 

solvent such as water. The van der Waals area is proportional to the diameter of the atoms 

and can be defined as the surfaces of the red circles in figure 2.3. The accessible area is 

shown as a dashed black line in this figure. When a representative solvent molecule 

(shown as a blue circle in figure 2.3) travels on the van der Waals surface, the route drawn 

by the center of the molecule gives the accessible surface. Since some amino acids are in 

the interior of the protein, they are less accessible to solvent molecules, while amino acids 

that are closer to the surface as a result of protein folding can interact more with solvent 

molecules. 

 

Figure 2.3 Van der Waals space and the space accessible by the solvent [48]. 

2.3 Torsion Angle 

Torsion angles, which are also called dihedral angles, are the angles of rotation around 

the bonds in the backbone of the protein. There are three types of torsion angles. The 
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rotation angle of the protein around the peptide bond is called omega (ω), the rotation 

angle between N and Cα atoms is called phi (), and the angle between Cα and the carbon 

atom (C1) of the C=O group is called psi (ψ).  Torsion angles of a protein are shown in 

figure 2.4. The omega (ω) angle does not show much flexibility and usually takes values 

close to 180 degrees. Phi () and psi (ψ) angles can take various values in a certain range. 

These angles are the internal degrees of freedom of a protein and they control the 

conformation of the protein. 

 

Figure 2.4 Torsion angles of a protein [49]. 

2.4 Protein Structure Prediction 

To date, a lot of research has been done on protein structure prediction. However, the 

structure prediction problem has not been fully solved yet. The three-dimensional 

structure prediction is a very difficult problem. Since direct prediction of the structure has 

various difficulties, it is proceeded step by step. For example, the target protein is first 

compared to the proteins in the database using various alignment algorithms, and 

statistical profile matrices, which summarize the frequency of occurrence of amino acids 

at certain positions, are generated. Then, using these matrices, various features of protein 

structure such as secondary structure, solvent accessibility, torsion angles and contact 

map are predicted. In the next step, these properties, profile matrices and other physical 

principles are used by energy minimization algorithms to predict the three-dimensional 

structure of the protein. 

Protein structure prediction is also used in drug design studies. Accurate identification of 

protein-ligand interactions is important for studies in molecular biology and 

pharmacology. For this purpose, the structures of ligand-bound receptor complexes have 

been identified by X-ray crystallography and NMR. In addition to this, structure of the 
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binding energies of rate constants and amino acids that are important in binding were 

determined as a result of mutagenesis studies. Although these experiments contribute to 

the adequate identification of the protein-ligand complex, they are often effortful and 

difficult to perform routinely. Similar information about protein-ligand complexes can be 

more easily obtained using molecular modeling techniques such as molecular docking 

and molecular dynamics simulations, which can provide detailed dynamic information 

even in the absence of experimental data. In these simulations, predicted coordinate 

values can be used for the three-dimensional structure information of the protein as well 

as the experimental data. It is also possible to improve the predicted structures of proteins 

thanks to molecular dynamics simulations. Identification of ligand-protein interactions is 

critical in drug design and subsequent search for new therapeutic modalities. 

2.4.1 Protein Secondary Structure Prediction 

PSSP aims to assign a secondary structure class label to each amino acid in the protein 

sequence. To compute the accuracy of PSSP, the predicted class labels are compared to 

true labels, which can be obtained from experimentally solved 3D structure using the 

DSSP [50] algorithm. Protein secondary structures were originally represented by three 

states: strand (E), helix (H), and coil (C). Subsequently, Kabsch and Sander extended 

these to  eight states: -helix (H), 310- helix (G), -helix (I), -strand (E), isolated -

bridge (B), turn (T), bend (S), and others (C) [50]. Although eight state PSSP is more 

informative, three state PSSP is still used for 3D structure prediction because it is more 

accurate than eight state PSSP and can still give useful constraints about the formation of 

the 3D structure [51]. In this thesis, secondary structure elements are predicted in 3-states 

where the 8-state labels are transformed to 3-states using table 2.1.  

Table 2.1 Transformation of 8-state labels of protein secondary structure to 3-states 

8-state 3-state 

H 

H G 

I 

E 
E 

B 

T 

L 
S 

- 



10 

 

2.4.1.1 Literature Review for Protein Secondary Structure Prediction 

Many studies have been carried out in the field of protein secondary structure prediction. 

To the best of our knowledge, PSSP first was done by Pauling et al. [52]. First generation 

models achieved around 60% overall accuracy (i.e. Q3 accuracy) and focused on 

predicting secondary structure class of each amino acid using only sequence information 

[53], [54]. The prediction accuracy increased to 77%-80% when multiple sequence 

alignments (MSA) are used as input features [55], [56]. Thereafter, 80.3-81.6% Q3 

accuracy was achieved using PSSMs derived from several MSA algorithms such as PSI-

BLAST and HHBLITS [10]. The Q3 accuracy further reached to 84%-85% using 

structural profiles as additional features, which were derived by aligning the target protein 

to template proteins with known structures [8], [35]. Aydin et al. used different structural 

profiles, which were generated using different template closeness ratio, to show effect of 

structural profiles on accuracy of PSSP [36]. According to these studies, it can be seen 

that the use of informative features increases the success rates of PSSP. 

PSSP studies are not limited to obtaining better feature representations. Developing better 

prediction models is also important for PSSP. Jones outperformed all state-of-the-art 

methods with 78.3% Q3 accuracy using a two-state neural network as the machine 

learning method and PSI-BLAST PSSMs as the input features [57]. Support vector 

machines were first used for PSSP by Hua and Sun who obtained a result comparable to 

the literature [58]. Yang et al. proposed a nearest neighbor classifier and obtained 87.51% 

Q3 accuracy on T99 data set using both homologous and non-homologous features for 

PSSP [7]. Faraggi et al. improved the Q3 accuracy of PSSP with a multistep neural 

network that iteratively predicts the relative solvent accessibility, torsion angles and 

secondary structure [59]. Huang and Chen used four physicochemical features as 

additional attributes to PSI-BLAST PSSM profiles for a support vector machine classifier 

and reached 79.52% Q3 accuracy [60]. Magnan and Baldi showed that it is possible to 

predict secondary structure with high accuracy using one dimensional bidirectional 

recurrent neural networks if sequence-based structural similarity is also added [61]. 

Drozdetskiy et al. obtained 82.0% Q3 accuracy for PSSP and published a web server [62]. 

Wang et al. optimized c and gamma parameters of support vector machine using genetic 

and grid search algorithms and obtained 76.11% Q3 accuracy, which was 11.3% better 

than the model with default parameters [63]. Wang et al. proposed DeepCNF model, 

which integrates Conditional Random Fields and shallow neural networks, and obtained 
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84.4%, 84.7%, 85.4%, 82.3% and 84.5% Q3 accuracy on CASP10, CASP11, CullPDB, 

CB513 and CAMEO datasets respectively [64]. Heffernan et al. showed that using long 

short-term memory and bidirectional recurrent neural networks improves the Q3 accuracy 

of PSSP, because they can capture long range interactions [65]. Wang et al. improved the 

Q3 and Q8 accuracy of PSSP using recurrent based deep auto encoder architecture [51]. 

Aydin et al. compared extreme learning machines, k-nearest neighbor, support vector 

machines, random forest and artificial neural networks and applied information gain ratio 

for feature selection on CB513 dataset. They showed that the best accuracy was obtained 

by support vector machines and better Q3 accuracies were obtained with lower 

dimensional datasets [66]. Aydin et al. compared auto encoder based dimension reduction 

method with other dimension reduction and feature selection techniques and showed that 

similar Q3 accuracies can be obtained in lower dimensions with faster models [67]. Fang 

et al. obtained 85.98%, 83.59% and 80.59% Q3 accuracies on CASP10, CASP11 and 

CASP12 datasets, respectively using a deep learning model that is based on inception-

inside-inception networks [26]. Torrisi et al. reviewed deep learning models and 

discussed the future studies for PSSP [68]. Torrisi et al. improved Q3 and Q8 accuracies 

of PSSP with a deep learning model based on bidirectional recurrent neural networks and 

convolutional neural networks that is trained both on single sequence and evolutionary 

profile-based inputs [69]. Aydin et al. showed that structural profile matrices increase the 

accuracy of PSSP [36].  Klausen et al. improved Q3 accuracy and optimized processing 

time for PSSP with a deep learning model based on convolutional and long short-term 

memory neural networks [70]. Hanson et al. reaches similar Q3 and Q8 accuracies with 

robust performance model based on the ResNet architecture using long-short-term 

memory layers [29]. Kumar et al. improved Q3 and Q8 accuracies for PSSP on four 

datasets using 42 hybrid features with a deep learning model based on convolutional 

neural network and bidirectional recurrent neural network [71]. Zhou et al. proposed an 

effective deep learning architecture for PSSP by combining several layers [72]. Xu et al. 

proposed a deep learning model based on multi task architecture using convolutional 

neural networks, improved transformers and bidirectional long-short-term memory layers 

and improved accuracies on eight datasets [27]. Kotowski et al. showed that using U-net 

architecture increases the accuracy of PSSP [73]. Uddin et al. obtained better accuracy 

with a model based on self-attention mechanism [56]. Guo et al. achieved 81.62% Q3 

accuracy with multiple advanced deep learning architectures [74]. Jumper et al. 

outperformed state-of-the-art methods with a deep learning architecture that uses physical 
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and biological features of protein and take advantage of the multi-sequence alignments 

[75]. Görmez et al. improved Q3 accuracies of PSSP on five datasets with a novel method 

that uses convolutional and graph convolutional neural network layers [28]. Zhao and Liu 

achieved 85.08%, 84.21%, 84.68%, 82.36% and 82.91% Q3 accuracies on 25PDB, 

CB513, CASP10, CASP11 and CASP12 datasets, respectively with an optimized deep 

learning model based on convolutional and long short-term memory neural networks [76]. 

Yang et al. aimed to achieve similar performance with a lightweight embedding network 

[77]. Xu et al. upgraded their previous model and published an open source server for 

PSSP [78]. Gao et al. improved Q3 accuracy on six datasets with a model based on 

wavelet scattering convolutional and the long-short-term memory networks [79]. Yang et 

al. aimed to outperform all state-of-the-art models with a model based on lightweight 

convolutional network and label distribution aware margin loss [80]. Urban et al. 

outperformed their previous model with an upgraded version [81]. Görmez and Aydin 

aimed to increase Q3 accuracy of PSSP by upgrading their previous model using multi-

task approach and bidirectional long-short-term memory networks [82].  

2.4.2 Solvent Accessibility Prediction 

Solvent accessibility prediction (SAP) aims to determine which amino acids are on the 

outer surface of the protein and which are in the inner region of the protein. This way, 

various constraints are obtained for three-dimensional structure prediction. In order to 

determine the accuracy of the SAP methods, the prediction result is compared with the 

correct accessibility information calculated using the DSSP [50] algorithm starting from 

the three-dimensional structure. As the accessible surface area can take different values 

for different amino acids, it is converted into relative solvent accessibility information as 

a result of a standardization process. For this, the accessible surface area of each amino 

acid calculated by the DSSP [50] program is divided by the maximum accessibility of 

that amino acid. Solvent accessibility can be predicted as a real value (i.e. as absolute 

accessibility or relative accessibility) or it can be classified to discrete labels, which are 

obtained by applying thresholds to real-valued accessibility scores. In this thesis, relative 

solvent accessibility prediction has been performed, since, it is more useful for three-

dimensional structure prediction.  
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2.4.2.1 Literature Review for Solvent Accessibility Prediction 

SAP is also among the problems that are studied frequently in the field of protein structure 

prediction. Thompson and Goldstein achieved a significant improvement for SAP with 

the Bayesian probabilistic method [83]. Li and Pan obtained better results than the 

literature with their proposed method trained on multiple sequence alignment data [84]. 

Naderi-Manesh et al. aimed to improve the accuracy of SAP using their model based on 

information theory [85]. Ahmad and Gromiha published a server that contains neural 

network based model for absolute solvent accessibility prediction [86]. Yuan et al. 

proposed a support vector machine based classifier for solvent accessibility prediction 

and aimed to compute effect of kernel functions and sliding window sizes on the 

performance of the model [87]. Ahmad and Gromiha reported that proposed neural 

network architecture obtained better performance than the other methods in the literature 

[88]. Ahmad et al. obtained 18-19.5 mean absolute error with a neural network developed 

for real valued SAP. In their model the correlation between the experimental and 

predicted values ranged from 0.47 to 0.50, and 23.7 mean absolute error can be obtained 

if there is no neighbor information [89]. Adamczak et al. reached 15.3 mean absolute 

error with their proposed predictor based on recurrent neural networks and they published 

this model as a web server [18]. Kim and Park proposed a method based on support vector 

machines and PSSM that is computed by PSI-BLAST to consider handling unbalanced 

data and long-range interactions [90]. Nguyen and Rajapakse developed a web server 

using support vector machines as the classifier and RS126 and Manesh datasets [91]. Sim 

et al. firstly applied fuzzy based k-nearest neighbor method for SAP and they slightly 

improved the accuracy [92]. Faraggi et al. increased mean absolute error by 2-4 with a 

neural network method based on guided-learning approach [19]. Joo et al. obtained 0.148 

mean absolute error with a k-nearest neighbors method that has optimum hyper-

parameters [17]. Mirabello and Pollastri showed that increasing training set size affects 

the performance of the model positively by making analysis on SAP and published the 

most successful model as a web server [34]. Deng et al. obtained a significant 

improvement on SAP using a deep learning model based on sparse autoencoder [93]. 

Zhang et al. aimed to capture long range interaction using stacked deep bidirectional 

recurrent neural network and achieved 8.8 and 8.2 mean absolute error on CB502 and 

Manesh215 datasets, respectively [30]. Aydin et al. compared autoencoder with other 

dimension reduction and feature selection techniques and showed that similar 
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performance can be achieved with lower dimensional datasets [67]. Petersen and 

Marcatili developed a model using convolutional and long short-term memory neural 

networks for SAP and optimized the processing time. They showed that, better accuracy 

can be obtained with the optimized model in less time [70]. Kaleel et al. captured the 

long-range interactions by combining bidirectional recurrent neural networks and 

convolutional layers and they outperformed all of the up to date models [31]. Hanson et 

al. designed a deep learning model with ResNet approaches using long short-term 

memory and they improved the accuracy for SAP [29]. Xu et al. had a significant 

improvement on SAP using their model that is based on multi-task architecture [27]. In 

another article, Xu et al. upgraded their model and they published this model as a web 

server [78]. Görmez and Aydin increased the mean absolute error for SAP using graph 

convolutional neural networks [82].  

2.4.3 Torsion Angle Prediction 

As mentioned before, there are three types of torsion angles: omega (ω), phi () and psi 

(ψ). Because ω is generally close to 180o, TAP typically aims to predict the values of  

and ψ angles for each amino acid of the target protein. These angles take continuous 

values, but form specific clusters for various secondary structural elements in the 

Ramachandran graph. Although, torsion angle class information may also be used for 

three-dimensional protein structure prediction, in this thesis, real values of torsion angles 

are predicted. Similar to PSSP, torsion angle prediction is studied as a supervised learning 

problem. True angle values are first assigned to amino acids of proteins selected to form 

a data set, where the angle values are computed starting from 3D structure information. 

In the next step, a subset of these proteins is selected as training set and the rest as test 

set. A prediction method is developed using training set and predictions are made for 

proteins in test set. TAP may be more effective in predicting the three-dimensional 

structure of proteins than PSSP [22]. 

2.4.3.1 Literature Review for Torsion Angle Prediction 

TAP is a less studied problem compared to SAP and PSSP. Various methods for TAP 

have been developed in the literature. Among these, there are methods that predict real 

(continuous) angle values as well as approaches that predict angle classes. However, 

predicting the real angle values is more difficult and the number of methods developed 

for this is relatively less. Kuang et al. improved the torsion angle state prediction using 
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two separate models that were based on support vector machines and feed forward neural 

networks [21]. Keskin et al. discovered that many torsion angle pairs in the amino acid 

chain of a protein are strongly related with each other [94]. Wu and Zhang used PSSM, 

predicted secondary structure and solvent accessibility, which are used as input for a 

neural network based model and obtained 28 and 48  mean absolute error for phi and psi 

angles, respectively [95]. Xu et al. obtained 38 and 25 mean absolute error for psi and phi 

angles respectively with integrated neural networks [96]. Cheung et al. tried to find all 

possible values of phi and psi angles using Bayesian inference [97]. Heffernan et al. 

obtained 19 mean absolute error for phi and 30 mean absolute error for psi using deep 

neural network architecture [98]. In another study, Heffernen et al. achieved 5% mean 

absolute percentage error for phi and 10% mean absolute percentage error for psi using 

bidirectional recurrent neural networks [65]. Li et al. proposed 4 different deep 

architectures using deep neural network, recurrent neural network, restricted Boltzmann 

machine and recurrent restricted Boltzmann machine and achieved 20 mean absolute error 

for phi and 29 mean absolute error for psi [99]. Gao et al. decreased mean absolute error 

for torsion angles by 2 to 6 using deep neural network architecture [100].  Fang et al. used 

PSI-BLAST PSSM, 30 frequencies generated using HHBlits, and eight structural profiles 

of secondary structure as an input for deep residual inception network architecture to 

predict psi and phi angles [33]. Gao et al. obtained 18.08, 20, and 20.69 mean absolute 

error for phi and 26.68, 30.14 and 32.63 mean absolute error for psi on TS1267, CASP11 

and CASP12 datasets, respectively using combination of k-means clustering, deep 

convolutional neural and residual networks [101]. Klausen et al. improved accuracy and 

optimized processing time for TAP with a deep learning model based on convolutional 

and long short-term memory neural networks [70]. Hanson et al. designed a deep learning 

model with ResNet approaches using long short-term memory and decreased the mean 

absolute error for TAP [29]. Mataeimoghadam et al. decreased mean absolute error by 6 

to 8 for TAP using a simple deep learning architecture [49]. Xu et al. decreased the mean 

absolute error for TAP on eight datasets using a multi-task architecture based deep model 

[27]. In another study, Xu et al. proposed a model to refine the result of other TAP models 

[102]. Newton et al. outperformed all up to date studies for TAP by training separate deep 

learning models for each category of secondary structure [103].  

2.4.4 Contact Map Prediction 
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The protein contact map, which is also called a relic proximity map, indicates amino acid 

pairs that are close together in three-dimensional space. The contact map can be 

represented by a matrix, in which the number of rows is equal to the number of columns, 

which is equal to the number of amino acids. If we call this matrix M, M[i,j] (the element 

in row i and column j of the matrix) takes the value 1 if amino acid i is in a certain 

proximity to amino acid j, otherwise it is 0. Figure 2.5 shows an example for contact map. 

The maximum distance required for two amino acids to be considered close is called the 

threshold distance, which can take different values. Contact maps can be used to predict 

the three-dimensional structure or the folding rates of proteins. They are preferred because 

they are not affected by the rotation and translation of the 3D structure. Starting from an 

accurate contact map, it is possible to predict the three-dimensional structure using 

various algorithms. A contact map can also be considered as a different representation of 

the three-dimensional structure of the protein. Therefore, the difficulty of estimating the 

contact map is approximately close to the difficulty of estimating the three-dimensional 

structure. 

 

 

Figure 2.5 Contact map for the 1DZOA protein. The red dots show the correct map 

and the blue dots show the contact map estimated by the SVMcon method [104]. 

Although significant progress has been made in contact map prediction in the past years, 

this problem has not been largely solved yet. Many machine learning methods have been 

developed for contact map prediction. These include support vector machines [104], 

[105], neural networks [106]–[111], self-organizing maps [112], and rule-based 

classifiers [113]. Deep learning models were also used for protein contact map prediction 
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as well as traditional machine learning methods and the best accuracies were obtained 

with them [108], [110], [114].  In this thesis, contact map of proteins was predicted using 

SPOT-Contact [114] that is one of the most accurate models developed for this task. 

SPOT-Contact was downloaded from Sparks Lab [115]. The predicted contact maps are 

then used to generate amino acid interaction matrix for the GCN models. 
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Chapter 3 

Materials and Methods 

3.1 Benchmark Datasets 

In this thesis, a total of 14 benchmark datasets were used for different purposes. The 

names of these datasets are CullPBD, EVAset, CASP10, CASP11, CASP12, CASP13, 

CASPFM, TEST2016, TEST2018, CAMEO93, CAMEO93_HARD, HARD68, 

validation and train. Among them, CullPDB, EVAset, CASP10 and CASP11 were only 

used for PSSP and the remaining were used for PSSP and TAP. Because only TEST2016, 

TEST2018, validation and train datasets have solvent accessibility label, SAP 

experiments were only performed using these datasets.  

The CullPDB dataset, which have 9084 proteins, was downloaded from the protein 

sequence culling server [116], which includes lists of amino acid sequences from protein 

data bank (PDB). To obtain this dataset, the PC threshold is set to 20%, resolution 

threshold to 2.5, R-value and Rfree thresholds to 1.0. Secondary structure labels were 

assigned using DSSP [50] program. Torsion angles were assigned using a program called 

phipsi_linux, which was downloaded from the internet. Proteins which had different 

number of amino acids in the output and input files of torsion angle assignment program 

were eliminated. At the end of this process, 8552 proteins were obtained.  

EVAset [117] is another dataset that was used for PSSP only. It originally contained 3074 

proteins that were culled from PDB. Before using EVAset, proteins, which have smaller 

than 30 amino acid sequence, were eliminated. After this process, 2876 proteins, which 

had a total of 584 595 amino acids, were obtained.  

The Critical Assessment of Protein Structure Prediction (CASP) [118] focuses on 

improving the performance of protein structure prediction problems and highlighting the 

current progress made in these problems. For this context, many experiments have been 

done and several datasets were published. In this thesis, CASP10 and CASP11 datasets 

were used to assess the performance of PSSP models and CASP12, CASP13 and 

CASPFM datasets were used to assess the performance of PSSP, SAP and TAP models. 

In addition to this, CASP12 had two versions where one of them was used for PSSP 
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models, and the other one was used for multi-task based models, which is the same as the 

dataset used for evaluating the performance of the OPUS-TASS [27] method.  

Remaining datasets, which include TEST2016, TEST2018, CAMEO93, 

CAMEO93_HARD, HARD68, validation and train, are the same as the datasets used in 

the OPUS-TASS [27] paper. These datasets were downloaded from OPUS-TASS GitHub 

page [119]. Proteins, which had more than 700 amino acids, were eliminated from these 

datasets.  

During the experiment phase, each dataset was used for a different purpose for different 

models. In this regard, CullPDB dataset was used to generate train, test and validation 

datasets for IGPRED and GraphUnet-SS. EVAset, CASP10, CASP11, CASP12 were 

used as test sets to compute the performance of the prediction models that were trained 

by CullPDB. For each of these test sets, a separate train set is derived from the CullPDB 

dataset. The Train dataset of the OPUS-TASS paper was used to generate train sets for 

IGPRED-MultiTask.  The validation dataset of the OPUS-TASS paper was used as the 

validation set during training the multi-task learning models and to optimize the hyper-

parameters of these models. CASP13, CASPFM, TEST2016, TEST2018, CAMEO93, 

CAMEO93_HARD, HARD68 and the other version of CASP12 were used as test sets to 

compute the performance of the multi-task learning models.  

The presence of similar proteins in test and training sets will cause the prediction problem 

to be easier. For this reason, a separate train set for a test dataset or test dataset group was 

generated by performing pairwise BLAST alignments [120] with a stringent E-value cut-

off of 0.05. Firstly, a non-redundant 22 proteins from CullPDB datasets were selected to 

generate CullPDB-test dataset, and the remaining 8530 proteins were used to generate 

CullPDB-train dataset. After that, pairwise BLAST alignments were applied between 

CullPDB-train and EVAset, CASP10, CASP11 and CASP12 separately to generate 

CullPDB-train-EVAset, CullPDB-train-CASP10, CullPDB-train-CASP11 and CullPDB-

train-CASP12. In the final phase, pairwise BLAST alignments were applied between the 

train set of the OPUS-TASS paper and CASP13, CASPFM, TEST2016, TEST2018, 

CAMEO93, CAMEO93_HARD, HARD68 and the version of CASP12 used in OPUS-

TASS paper to generate train-TEST2016, train-TEST2018, train-CAMEOs, train-CASPs 

and train-val. The number of proteins and the number of amino acids for each dataset are 

given in table 3.1.  

Table 3.1 The number of proteins and the number of amino acids in benchmark 

datasets. 
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3.2 Feature Extraction 

As mentioned in the literature review, features are one of the most important elements 

used to improve the accuracy of protein structure prediction. Generating rich feature sets 

using several alignment algorithms, structural properties and other properties of amino 

acids can improve the performance of protein structure prediction [8], [10], [35], [36]. 

Because of this reason, position specific scoring matrices (PSSM) calculated using PSI-

BLAST [38], profiles calculated using HHBlits [39], seven physico-chemical properties 

of amino acids, physico-chemical features from AAindex [40] and structural profiles were 

used to generate input features of the machine learning models.  

 Benchmark Dataset Number of Proteins Number of Amino Acids 

CullPDB-train 8530 1959390 

CullPDB-test 22 5229 

EVAset 2876 584595 

CASP10 75 18231 

CASP11 67 17179 

CASP12_v1 39 11246 

CullPDB-train-EVAset 6068 1230357 

CullPDB-train-CASP10 7147 1471812 

CullPDB-train-CASP11 7156 1474300 

CullPDB-train-CASP12 7164 1475788 

train 10042 2235849 

validation 983 215803 

TEST2016 1212 287733 

TEST2018 250 50889 

CAMEO93 93 22901 

CAMEO93_HARD 15 4375 

CASP12_v2 55 10283 

CASP13 32 5354 

CASPFM 56 8100 

HARD68 45 6447 

train-TEST2016 8850 1877909 

train-TEST2018 9903 2195453 

train-CAMEOs 1024 2235849 

train-CASPs 9936 2208407 

train-val 8999 1952387 
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3.2.1 PSI-BLAST PSSM Features 

PSI-BLAST algorithm, which is fast, reliable and available online, allows an amino acid 

sequence to be compared to sequences in the protein database [38], [121]. PSSMs are 

commonly used to represent patterns (i.e., input features) in proteins. In this study, each 

target protein was aligned with the NR database using the PSI-BLAST algorithm. The 

number of iterations was set to three, E-value threshold to 10 and inclusion E-value 

threshold to 0.001. As a consequence, 20 scores were obtained for each amino acid (as 

the output of PSI-BLAST), which formed the PSSM with a dimension of 20 by N, where 

N is the number of amino acids. These values were normalized to the interval between 0 

to 1 by applying a sigmoidal transformation as in Aydin et al [10].  

3.2.2 HHMAKE Profile Features 

Although PSI-BLAST is the most commonly used alignment algorithm for protein 

structure prediction, it’s slow for iterative search due to the size of the NR database. 

Therefore, Remmert et al. proposed an alignment algorithm that has fast iterative 

sequence search [39]. In this thesis, HMM-profiles, which consist of scores for 

background probability, emission probability, and transition probability distributions, 

were computed using the HHBlits software. For this purpose, each protein was aligned to 

the Uniclust30 database and the number of iterations was set to two, which is the default 

setting for HHblits. In the first phase, 20 PSSMs scores were computed for each amino 

acid as log-odds ratios, which can be expressed as log2(
𝑃𝑒(𝑖,𝑗)

𝑃𝑏(𝑗)
) where 𝑃𝑒(𝑖, 𝑗) is the 

emission probability for the 𝑗𝑡ℎ amino acid at the 𝑖𝑡ℎ match state with 1 ≤ 𝑗 ≤ 20, 1 ≤

𝑖 ≤ 𝑁, 𝑁 being the number of amino acids in the target, 𝑃𝑏(𝑗) is the background 

probability of emitting the 𝑗𝑡ℎ amino acid. Similar to PSI-BLAST PSSMs, these values 

are normalized to interval between 0 to 1 using a sigmoidal transformation [10]. As the 

second set of features, seven transition probability values of the HMM-profile are taken 

directly without applying any normalization. Finally, the three local diversity scores 

denoted as Neff, Neff1, NeffD parameters of the HMM-profile are taken and normalized 

by sigmoidal transformation. As a result, a PSSM with dimension 30 by N was obtained 

for each target. Special care was taken for the file format of the HMM-profiles. For 

instance, a value of a star character (i.e. ‘*’) represents zero for the emission probability 

of match states (i.e. 𝑃𝑒(𝑖, 𝑗)) and for transition probability scores. In the case of emission 

probabilities these values would be mapped first to minus infinity (when 𝑙𝑜𝑔2 transform 
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is applied for computing log-odds score) and then to zero by the sigmoidal transformation. 

Therefore * values are directly taken as zeros in the final feature representation without 

computing the transformations explicitly. Furthermore, the values for Neff, Neff1, NeffD 

parameters were divided by 1000 to obtain the actual values since these are expressed in 

units of 0.001 according to the file format. The values for emission probabilities, 

background probabilities and transition probabilities in HMM-profile files were divided 

by -1000 to obtain the 𝑙𝑜𝑔2 transform of the corresponding probability scores. These 

𝑙𝑜𝑔2-transformed scores obtained for background probabilities were later used directly to 

compute log-odds ratios as explained above and the 𝑙𝑜𝑔2-transformed scores for 

transition probabilities were inverted to compute the transition probability scores. 

3.2.3 Structural Profiles 

A structural profile matrix (SPM) is a collection of probability distributions, in which 

each distribution shows the probability of a given amino acid to belong to one of the 

structure classes. The size of an SPM is C by N, where N is the number of amino acids in 

the target protein and C is the number of structure class labels used for constructing the 

SPM (e.g. C=3 for secondary structure and C=2 for solvent accessibility). In this thesis, 

two types of SPMs are used: a 3 by N SPM derived using secondary structure labels and 

a 2 by N SPM derived using 2-state solvent accessibility labels. Aydin et al. showed that 

using SPMs increased the accuracy of protein structure prediction [36], [37]. In this thesis, 

SPMs were computed using the HHblits method. In the first step, the target protein was 

aligned against the UniClust30 database. In the second step, HMM-profile of the target 

was aligned with the HMM-profiles of the proteins in the PDB99 database, which is an 

in-house (i.e. customized) database derived by Aydin lab using the scripts and commands 

available in the user guide of HHblits starting from the PDB99 dataset obtained from the 

PISCES server [36]. Finally, the SPM was computed as the weighted average of label 

frequencies resulting from the alignment between the target and templates in PDB99. 

Only distant templates were used to construct SPMs. For this purpose, templates having 

a percentage of sequence identity score above 20% were eliminated to minimize the 

impact of template similarity on accuracy rate. Details on computing the structural 

profiles can be found in the paper by Aydin et al. [36]. Once the SPMs are computed, 

each amino acid is represented by 3 scores if the SPM is derived using secondary structure 

labels and 2 scores if the SPM is derived using solvent accessibility labels. These scores 

are taken as the structural profile features. In our IGPRED and GraphUnet-SS models 
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(i.e. our first and third models), which were developed for PSSP, SPMs derived using 

secondary structure labels (i.e. those having dimension 3 by N) were used only. In our 

IGPRED-MultiTask model, which was developed for PSSP, SAP, and TAP, the SPMs 

derived using secondary structure and solvent accessibility labels (i.e. those having 

dimensions 3 by N and 2 by N) were used to obtain structural profile features.  

3.2.4 Physico-chemical properties 

Amino acids in a protein may have different types of physico-chemical properties. Fang 

et al. showed that summarizing these properties may improve the accuracy of prediction 

methods [26]. In this thesis, seven physico-chemical properties, including volume of side 

chain, polarity, polarizability, hydrophilicity, hydrophobicity, net charge index of side 

chain and solvent accessible surface area, are used as the first set of physico-chemical 

input features for each amino acid. 

In addition to using the standard set of 7 physico-chemical properties, 35 features from 

the AAindex database (https://www.genome.jp/aaindex/) are also added forming the 

second set of 42 physico-chemical features. AAindex is a database of amino acid indices 

proposed by Kawashima et al. [40]. It contains numerical values for more than 500 indices 

(representing various properties of amino acids), amino acid substitution matrices and 

amino acid contact potential matrices. In this thesis, a set of 35 indices listed in table 3.2 

are selected and added to the feature set. However, AAindex values were only used for 

one of the proposed models. It is seen from the experimental results that, AAindex values 

did not improve the performance of the model considerably. Therefore, for the other 

studies they have not been used.  

Table 3.2 Selected amino acid indices from AAindex 

AAindex accession 

number 
Description of index 

BHAR880101 Average flexibility indices [122] 

BIGC670101 Residue volume [123] 

PONJ960101 Average volumes of residues [124] 

CHAM820102 Free energy of solution in water, kcal/mole [125] 

CIDH920105 Normalized average hydrophobicity scales [126] 

BASU050101 Interactivity scale obtained from the contact matrix [127] 

BASU050102 
Interactivity scale obtained by maximizing the mean of correlation 

coefficient over single-domain globular proteins [127] 

ZHOH040101 The stability scale from the knowledge-based atom-atom potential [128] 
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3.3 Feature Generation 

Deriving a representative feature set is one of the most important steps for accurate 

prediction of structural elements of a protein. Based on the studies in the literature, 

combining different types of features has been shown to improve the accuracy of 

prediction. In this thesis, a rich feature set is derived for each amino acid, which contains 

20 scores from PSIBLAST alignments, 30 scores from HHblits alignments, 7 scores 

reflecting physico-chemical properties, 35 AAindex values (only used for IGPRED, 

which is our first proposed model), S scores from structural profiles (S=3 for IGPRED 

ZHOH040102 The relative stability scale extracted from mutation experiments [128] 

ZHOH040103 Buriability [128] 

WOLR790101 Hydrophobicity index [129] 

KIDA850101 Hydrophobicity-related index [130] 

FASG890101 Hydrophobicity index [131] 

KRIW710101 Side chain interaction parameter [132] 

SIMZ760101 Transfer free energy [133] 

ROBB790101 Hydration free energy [134] 

RADA880108 Mean polarity [135] 

ROSM880102 Side chain hydropathy, corrected for solvation [136] 

VELV850101 Electronion interaction potential [137] 

WARP780101 Average interactions per side chain atom [138] 

WOLR810101 Hydration potential [139] 

HOPA770101 Hydration number [140] 

ZIMJ680101 Hydrophobicity [141] 

ZIMJ680102 Bulkiness [141] 

GRAR740102 Polarity [142] 

ZIMJ680104 Isoelectric point [141] 

ZIMJ680105 RF rank [141] 

TAKK010101 Side-chain contribution to protein stability (kJ/mol) [143] 

MEIH800103 Average side chain orientation angle [144] 

MCMT640101 Refractivity [145] 

HUTJ700102 Absolute entropy [146] 

HUTJ700103 Entropy of formation [146] 

FAUJ880103 Normalized van der Waals volume [147] 

FASG760103 Optical rotation [148] 

FASG760101 Molecular weight [148] 
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and GraphUnet-SS models and S=5 for IGPRED-MultiTask), and a NoSeq label as shown 

in figure 3.1. 

 

Figure 3.1 Feature matrix representation for a protein. 

This type of feature set was originally proposed by Fang et al. [26]. In addition to features, 

which were explained in feature extraction section, a NoSeq label feature is included to 

denote whether a given row of feature matrix contains feature data (a NoSeq label of zero) 

or not (i.e. it contains zeros from zero-padding) (a NoSeq label of one). This feature is 

included because our deep learning models are designed to take a fixed sized input in time 

dimension (i.e. they expect the number of amino acids to be the same). If the number of 

amino acids in a target protein is less than the sequence length parameter (which is set to 

700), zero-padding is applied for the remaining time steps and the NoSeq label will be set 

to 1 for the zero-padded section. Otherwise, it will be equal to 0. For example, if the length 

of the target protein is 500, then the first 500 rows of the data matrix contain features 

computed as explained above (i.e. including PSI-BLAST PSSM, HHMAKE PSSM, 

structural profiles, AAindex and physico-chemical properties) and the NoSeq label 

feature is set to zero. The last 200 rows have zeros as the values of all features and the 

NoSeq label feature is set to one. If the number of amino acids in a protein is more than 

700, the amino acid sequence will be divided into multiple parts where each part contains 

700 amino acids (with the last part completed into 700 amino acids by zero-padding if 

necessary). Then each part is treated as a separate protein. Figure 3.1 shows the feature 

data matrix for a protein with less than 700 amino acids (with zero padding applied). In 

this matrix, columns represent features and rows represent amino acids. Each protein 

corresponds to a data sample in each mini-batch of neural network model training. 
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3.4 Neural Network Layers  

In this thesis, several deep learning architectures were proposed for SAP, TAP and PSSP. 

Deep learning models are types of neural networks that combine some special layers in 

different number and at different depth. Our proposed models were generated using fully 

connected layers (FCL), convolutional neural networks (CNN), graph convolutional 

networks (GCN) and bi-directional long short-term memories (biLSTM). 

3.4.1 Fully Connected Layers 

Artificial neural networks are formed by the combination of neurons, each of which 

contains a nonlinear function. Each neuron used as an input in a FCL is connected to all 

subsequent neurons, hence the name fully connected layer. In the FCL, neurons first 

perform a linear transformation to the input data, thanks to their specific weights. Result 

for of the neuron in the subsequent layer is dot product of input values and weight. After 

that a bias value is added to this result. Finally, a non-linear transformation is made with 

an activation function. Examples of these functions are Relu, tanh and sigmoid. The 

mentioned stages are shown in equation 3.1 for each neuron in a given layer (excluding 

the first layer).  

tanh⁡(𝑏𝑖𝑎𝑠 +⁡∑ 𝑖𝑛𝑤𝑛
𝑁
𝑛=1                                              (3.1) 

In this equation, 𝑏𝑖𝑎𝑠 represents the constant applied to each neuron, 𝑁 represents the 

number of neurons input to the current neuron, 𝑛 is the index of the input neurons, 𝑖𝑛 

represents the output of the 𝑛𝑡ℎ neuron in the previous layer that is input to current neuron, 

and 𝑤𝑛 represents the corresponding weight for each neuron pair (i.e. the 𝑛𝑡ℎ neuron in 

the previous layer and the current neuron). Thanks to FCLs, many problems such as 

classification, feature extraction and clustering can be solved. In fully connected models, 

deep networks can be created by increasing the number of layers, thus better results can 

be obtained in the prediction problem. However, this fully connected structure does not 

yield sufficient results for some types of problems. Especially in models where artificial 

neural network models are used for feature extraction, other layers are frequently used as 

an alternative to fully connected models. For example, layers such as GCN, LSTM, CNN 

and transformers are used as an alternative to the fully connected layer for problems such 

as image processing, time series and text processing [149]–[153]. An example 

architecture for the fully connected layer is presented in figure 3.2. 
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Figure 3.2 Example architecture for deep fully connected layer [154]. 

3.4.2 Convolutional Neural Network 

CNN, which is designed with a shared weight structure, is an artificial neural network 

layer and is generally used for image processing [155]. In a CNN layer, unlike the FCL, 

an input is not connected to all subsequent neurons. In this structure, a convolution 

operation is performed using a given matrix or vector and several number of kernels of 

certain sizes. As a result of this process, a different number of new matrices or vectors 

are obtained for the next layer. This process can also be thought of as obtaining new 

pictures by applying different filters on the picture. In this example, each kernel represents 

a filter. For a CNN layer, similar to a FCL, a nonlinear function is applied to each value 

obtained by the convolution operation. In this way, the CNN layer becomes able to 

produce solutions for nonlinear problems. In a model created using a CNN, it is possible 

to use operations such as pooling, padding, batch normalization and dropout as well as 

convolution and activation function operations. These operations, the use of which varies 

according to the nature of the problem, significantly affect the performance of the model. 

An example for a CNN model is shown in figure 3.3. Unlike the FCL, the fact that it uses 

shared weights and contains different numbers of kernels allows both computations to be 

made in parallel and to reveal the relationships between the inputs at different positions. 

While the order of the input values in a FCL does not matter, this order is important for 

the CNN layer. With this structure, it achieves better performance than the FCL in 
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problems where input ordering is important such as image processing and time series. It 

is considered that, models that use CNN will positively affect protein structure prediction 

problems because amino acid sequence is important in protein structure prediction and 

there is a relationship between nearby amino acids.  

 

Figure 3.3 Example architecture for model that developed using convolutional 

neural network [156]. 

3.4.3 Bidirectional Long Short-Term Memory 

LSTM, which is a special version of recurrent networks, is a neural network layer that 

can detect dependencies between data in a time series. LSTMs achieved significant 

improvement in many problems such machine translation, speech recognition, text 

completion and other time series problems due to its structure [157]–[160].  Unlike other 

recurrent networks, LSTMs overcome the problems of vanishing and exploding gradients 

thanks to persistent memory. There are three main structures in an LSTM cell: input gate, 

output gate, and forget gate. As in a recurrent network, there are hidden states in the 

LSTM structure, where 𝐻(𝑡 − 1) represents the previous state and 𝐻(𝑡) represents the 

current state. In addition to this, there are cell states represented by 𝐶(𝑡 − 1) and 𝐶(𝑡) in 

the LSTM structure. In this structure, the hidden state refers to short-term memory, while 

the cell state refers to long-term memory. 

In the forget gate, it is decided which information is no longer needed in the cell state and 

which information should be deleted. In this context, the inputs 𝑥(𝑡) and ℎ(𝑡 − 1) are 

multiplied by a weight matrix and a bias value is added to the output value. After this 

process, as in a traditional neural network, the output value undergoes a non-linear 

transformation with the help of the activation function. If the value is 0, the information 

is forgotten, otherwise the information continues to be stored. On the other hand, the input 



29 

 

gate contains additional information that will be useful to cell state and is regularized with 

the help of the sigmoid function. Finally, the part where the obtained information is 

presented represents the output door. By default, LSTM structures can capture the 

relationship in one-way serial data. However, as with protein structure prediction, some 

data may be correlated in both directions (forward and backward) of the series. As a 

solution to this problem, forward and backward LSTM structures are created separately 

and then connected to the same output layer. These structures, which are also used in the 

proposed models of this thesis, are called bidirectional LSTM. An example architecture 

of a bidirectional LSTM is shown in figure 3.4 [161]. 

 

Figure 3.4 Example architecture for bidirectional long short-term memories [162]. 

3.4.4 Graph Convolutional Neural Networks  

A graph can be defined as a data structure in which the connections between the data are 

indicated. In a standard graph, there are objects called nodes and structures called vertices, 

which represent the connections between the objects. Graphs, which can have many 

different types can be briefly considered as having 2 types in 2 different categories as 

weighted and unweighted, directed or undirected. Graphs can be used for many situations 

such as maps, social networks, computer networks, energy connections, protein networks 

and epidemics [163]. Recently, when graph information is used as input to deep learning 

models, it has improved the success rates of many problems. Because traditional deep 

neural network layers are not capable of processing graph type data, GCN have been 

proposed as a solution to this problem. A GCN contains convolution operation similar to 
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standard convolutional networks. However, in convolutional networks, the number of 

connections in the nodes is fixed and in order with the node, while the number of 

connections in GCN can vary and is not ordered with the node. An example for GCN is 

shown in figure 3.5. A GCN model needs an input matrix, in which the graph is 

represented. The GCN layer used in this thesis takes two inputs. The first of these is the 

feature vector, which is also used in standard machine learning models. The other input 

is the graph matrix that represents the interactions between amino acids in a protein 

sequence. Due to the nature of the problem predicted in this thesis, it is assumed that 

amino acids affect each other while the protein structure is being formed, but there is no 

relationship between the amino acid chains. In this context, separate and discrete graphs 

were created for each protein sequence. 

 

Figure 3.5 Example architecture for graph convolutional networks [164]. 

3.5 Graph Generation  

Proposed models in this thesis contain a number of mGCN modules, which need a graph 

as an extra input. In this thesis, two different graph generation techniques were used: 

sliding window and graph generated with contact map prediction. The purpose of these 

graphs is to provide amino acid interaction information to models as an extra input. Graph, 

which was generated using sliding window method, was used for the first two models 

(IGPRED and IGPRED-MultiTask) and the other one was used for the third model 

(GraphUnet-SS). 



31 

 

In the sliding window method, a two-sided symmetric window was used to generate 

graph. For this context, it is assumed that amino acids that are close the each other in 

protein sequence have interactions. Therefore, a graph with 700 nodes is generated for 

each protein where each node represents an amino acid and edges represent interactions 

between amino acids, which can be summarized by an adjacency matrix of size 700 by 

700. This graph is unweighted for which the adjacency matrix contains ones or zeros only. 

If there is an edge between nodes m and n, the value at row m and column n of the 

adjacency matrix is one, which represents an interaction between amino acids at positions 

m and n. This graph is also undirected with a symmetric adjacency matrix. This means 

that if there is an edge between nodes m and n, there will also be an edge between nodes 

n and m. Similar to feature extraction step, if the number of amino acids of the target 

protein was less than 700, zero padding was applied and a 700 by 700 adjacency matrix 

was generated. If the number of amino acids was more than 700, it was divided into non-

overlapping amino acid segments of size 700, and a separate graph was generated for each 

segment considering pairwise interactions within the segment. For this second possibility, 

if the last segment contained less than 700 amino acids, zero padding was applied to 

complete its adjacency matrix to 700 by 700. As a result of this procedure, each amino 

acid segment was treated as a separate protein. A total of N disconnected graphs each 

with an adjacency matrix of size 700 by 700 is generated where N is the number of 

proteins in the dataset. This type of graph representation enables to capture short-range 

as well as long-range interactions by defining connections between interacting amino 

acids. In the sliding window method, short-range interactions are modeled only by 

selecting a two-sided symmetric window around each amino acid to define the interaction 

graph of proteins. Based on this constraint, a hyper-parameter called number of 

connections is introduced, which is equal to the number of interactions an amino acid 

makes on one side of the window. This value should be smaller than half of the number 

of amino acids in a protein. For example, if the number of connections is 10, then there 

will be an edge between a given amino acid and 10 amino acids that come before as well 

as 10 amino acids that come after according to the sequence representation of the protein. 

By the nature of the proteins, amino acids that are far away from each other in sequence 

may have interaction in 3-D space. The reverse of this idea is also true. Amino acids that 

are close to each other in sequence may not have interaction in 3-D space. Thus, we 

thought that the sliding window method used to generate graphs for the first two models 

can be improved in a smarter way. For this purpose, protein contact map prediction 
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(PCMP) was used to generate graph in the third model. PCMP indicates whether amino 

acid pairs are close or not in 3-D space. In this study, one of the best PCMP methods 

called SPOT-Contact was used to generate graphs. For this purpose, contact values of 

amino acid pairs for each protein were computed using the stand-alone version of SPOT-

Contact, which is downloaded from Sparks Lab’s web site [115]. This method predicts a 

contact value, which is a floating-point number between 0 to 1, for each amino acid of 

the target protein. Similar to the sliding window method, a graph with 700 nodes is 

generated for each protein. Initially an adjacency matrix of size 700 by 700 was generated 

and all values were set to 0. Then if the predicted contact value for two amino acids is 

greater than 0.5, the corresponding cell value of the adjacency matrix is mapped to 1, 

which means that the corresponding amino acid pair interacts, otherwise, the value of the 

cell stayed as 0 meaning that the amino acid pair does not interact. Using this pairwise 

interaction information, a graph was generated for each protein in the datasets (where a 

protein refers to an amino acid segment of size 700). At the end of this process, similar to 

sliding window approach, a total of N disconnected, unweighted and symmetric graphs 

were generated. Figure 3.6 summarizes the steps of the proposed classification models 

where AAindex values were only used for the first proposed model.  

 

Figure 3.6 Summary of Classification Models 

3.6 Proposed Models 

In this thesis, a total of three deep learning models, which are called IGPRED, IGPRED-

MultiTask and GraphUnet-SS, were proposed for PSSP, SAP or TAP.  
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3.6.1 IGPRED  

The first model proposed in this thesis is a novel deep learning model called IGPRED, 

which consists of several CNN and GCN modules concatenated in different ways and 

followed by FCLs. Figure 3.7 shows the architecture of this model. 

 

Figure 3.7 Architecture of IGPRED 

Each CNN module is generated through six different convolutional layers with kernel 

sizes (1,M), (3,M), (5,M), (9,M), (11,M) and (15,M) that are connected in parallel as in 

inception module. Here, M represents the number of features because 1-D convolutional 

layers are used. These layers are connected using the inception architecture, which 

obtained significant improvements in many areas such as computer vision and 

bioinformatics [165]–[167]. Within each CNN module, the number of filters of the 

convolutional layers are identical and is a hyper-parameter that can be set for each 

module. As a result, different CNN modules can contain different number of filters. Each 

convolution layer consists of four operations in sequential order: convolution, batch 

normalization, activation, and dropout. Figure 3.8 shows the details of each CNN module.  

A GCN module is generated using a multi-graph convolutional layer (mGCN) [168], 

which consists of two operations in sequential order: a multi-graph convolution and 

dropout. An mGCN layer needs a graph as an extra input for each protein. As mentioned 

in Section 3.5 (i.e. Graph Generation section), the sliding window approach was used to 

generate graphs for this model and the number of connections was optimized.  A softmax 

layer with sparse_categorical_crossentropy loss function is used to estimate the 3-state 
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secondary structure information. Adam is used as the optimization algorithm for 

estimating the weight coefficients of neural networks, where beta_1 parameter is set to 

0.95 and beta_2 parameter to 0.99. 

 

Figure 3.8 The layers inside each CNN module 

3.6.2 IGPRED-MultiTask 

The second proposed model of this thesis, which is called IGPRED-MultiTask, is a novel 

multi-task architecture based on CNN, GCN, biLSTM, and FCL layers. At the end of the 

model there are 3 output layers: a fully connected layer with Softmax activation function 

to predict secondary structure, a fully connected linear layer with one node to predict 

solvent accessibility and a fully connected linear layer with two nodes to predict phi and 

psi angles. Figure 3.9 summarizes the architecture of this model. 
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Figure 3.9 Architecture of IGPRED-MultiTask 

Each CNN module consists of 5 different 1-D convolutional layers fed in parallel with 

kernel sizes (1,M), (3,M), (5,M), (9,M), and (15,M) where M represents number of 

features derived for each amino acid. Note that this is a form of an inception network 

similar to the IGPRED model. Except for the kernel sizes, all convolutional layers in the 

same module are identical. Four operations are applied to each layer in sequential order: 

convolution operation, batch normalization layer, activation layer with ReLu function and 

dropout. The outputs obtained from each dropout operation are concatenated to form the 

output of a CNN module, the architecture of which is depicted in Figure 3.8.  

A GCN module of IGPRED-MultiTask consists of two inputs: feature data matrix and a 

graph representing interactions between amino acid pairs. In each GCN module, a 

multigraph convolutional layer (mGCN) is used as the model architecture [168], followed 

by batch normalization and a dropout layer. Similar to IGPRED, the sliding window 

approach was used to generate graph inputs for this model also and the number of 

connections was optimized.   

In addition to CNN and GCN layers, IGPRED-MultiTask also contains BiLSTM layers. 

This is due to the fact that each amino acid interacts with its local neighbors that come 

before and after this amino acid (i.e. the interactions are two-sided). As in the CNN 

module, in each BiLSTM module, the three operations, which include batch 
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normalization, activation layer with ReLu function and dropout were followed after 

BiLSTM layers in sequential order. In each layer, the return_sequences parameter was set 

to true, thus long-range interaction information can be captured and transferred to the next 

layers and an output prediction can be obtained for each time-step (i.e. amino acids). 

As can be seen in the model architecture, three parallel blocks are concatenated at the end 

of the first part of the proposed model. The first block only consists of CNN modules, the 

third block only consists of GCN modules and the second block consist of both CNN and 

GCN modules. By this way, amino acid features are embedded using only CNN modules, 

only GCN modules and a combination of them. It can be anticipated that faulty prediction 

of a block may be fixed by the others.  

After the BiLSTM modules, two dense layers and three output layers follow 

implementing a multi-task architecture. There is an output layer for each of the prediction 

tasks including the prediction of torsion angle, secondary structure and solvent 

accessibility. However, for the datasets, which do not have solvent accessibility 

information, the corresponding output layer is removed. A softmax layer with 

sparse_categorical_crossentropy loss function is used to estimate 3-state secondary 

structure information. Linear layers with mean_absolute_error loss function are used to 

estimate real-valued torsion angle and solvent accessibility information. Adam is used as 

the optimization algorithm for estimating the weight coefficients of neural networks, 

where beta_1 parameter is set to 0.95 and beta_2 parameter to 0.99. 

Several models have been generated that contain certain module blocks while excluding 

others to analyze the effect of each module. The first model IGPRED-SS is the same as 

the original model but excludes the output layers for torsion angle and solvent 

accessibility. Therefore, IGPRED-SS only predicts secondary structure at the output and 

does not perform multi-task learning. The second model IGPRED-TA is the same as the 

original model but excludes the output layers for secondary structure and solvent 

accessibility. Similar to IGPRED-SS, IGPRED-TA only predicts torsion angles at the 

output and does not perform multi-task learning. The remaining models are generated 

using various numbers of CNN, GCN and BiLSTM modules. For this purpose, a total of 

12 models, which include IGPRED-CNN-free, IGPRED-CNN-1, IGPRED-CNN-2, 

IGPRED-CNN-3, IGPRED-CNN-4, IGPRED-GCN-free, IGPRED-GCN-1, IGPRED-

GCN-2, IGPRED-GCN-3, IGPRED-GCN-4, IGPRED-BiLSTM-free and IGPRED-

BiLSTM-1 are generated. IGPRED-CNN-free is the version of IGPRED-MultiTask that 

does not include any CNN Module blocks. IGPRED-CNN-1 is the version of IGPRED-
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MultiTask that only includes CNN Module 1 as the convolutional module block. 

IGPRED-CNN-2 is the version of IGPRED-MultiTask that only includes CNN Modules 

1 and 2 as the convolutional module blocks. IGPRED-CNN-3 is the version of IGPRED-

MultiTask that only includes CNN Modules 1-3 as the convolutional module blocks. 

IGPRED-CNN-4 is the version of IGPRED-MultiTask that only includes CNN Modules 

1-4 as the convolutional module blocks. The remaining versions are derived similarly. 

Detailed architecture of these models can be found at supplementary material of 

IGPRED-MultiTask paper [82].   

3.6.3 GraphUnet-SS 

The third proposed model of this thesis is a deep learning model called GraphUnet-SS 

that consists of several CNN, biLSTM and GCN layers concatenated based on U-net 

architecture and followed by fully connected layers. Firstly, modules for CNN, biLSTM 

and GCN layers, which are shown in figure 3.10, were developed. 

 

Figure 3.10 Architecture of modules that were used in GraphUnet-SS.  

“CNN Module 1” contains 3 blocks and “CNN module 2” 2 blocks that are connected 

serially. Each block in CNN modules consists of 3 operations in sequential order 

including 1-D convolution operation with kernel size (7, M) where M represents the 
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number of features, batch normalization and Relu activation function. Similar to CNN 

modules, BiLSTM module also consists of 3 operations in sequential order: bi-directional 

long short-term memory operation, batch normalization and Relu activation function. 

Python Keras library [169] was used to implement biLSTM and CNN modules. Unlike 

the CNN and biLSTM modules, the GCN module takes two inputs where one of them is 

a feature matrix and the other one is a graph, which is in the form of an adjacency matrix 

that represents the pairwise interactions between amino acids. This module consists of 2 

operations connected in sequential order: Multi Graph Convolution Operation (mGCN) 

[168] and dropout. Connecting these four modules following the U-net architecture and 

the fully connected dense layers a deep learning model was developed, the architecture 

of which is shown in figure 3.11. 

 

Figure 3.11 Architecture of GraphUnet-SS.  

Similar to ProteinUnet [73] model, our proposed architecture also contains blocks based 

on the U-shaped backbone of the U-Net model [170]. Top side of the model architecture 
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is considered as as the contracting path and the bottom side (before the last biLSTM 

module) is considered as the expansive path. These structures can also be considered as 

the decoder and the encoder sections of the model. Unlike the ProteinUnet, our proposed 

model (GraphUnet-SS) contains multi graph convolution operations in the contracting 

path. Therefore, it needs an extra input in the form of a graph. In addition to this, 

GraphUnet-SS also contains biLSTM module at the end of the U-shaped backbone, 

because according to the literature, using LSTM layers can improve the accuracy of 

secondary structure prediction [27], [65], [69]. In GraphUnet-SS model all of the “CNN 

module 1” blocks in the contracting path are identical. In addition, convolution operations 

in “CNN module 1” are also identical. Therefore, the number of filters and the kernel size 

are the same for each convolution operation. Glorot Uniform in Keras library of Python 

[171] was used with seed as an initializer to make GraphUnet-SS more stable. As 

mentioned before, Relu was also used in GraphUnet-SS as an activation function at the 

end of each convolution operation.  All of the “CNN module 2” blocks and convolution 

operations inside the “CNN module 2” are also identical. However, the number of filters 

parameter was optimized separately for CNN module 1 and CNN module 2. (i.e. there are 

two different number of filters parameters for the convolution operations). Dimension of 

the graph node embedding and the number of graph filters are also the same across the 

GCN modules with the initializer set to Glorot Uniform. For the biLSTM module, the 

dimensionality of the output space was optimized and “return_sequences” parameter was 

set to True. Default values were used for all the other parameters. A Softmax layer with 

sparse_categorical_crossentropy loss function was used to estimate 3-state secondary 

structure information. Adam was used as the optimization algorithm for estimating the 

weight coefficients of neural networks, where beta_1 parameter was set to 0.95 and 

beta_2 parameter to 0.99. 

3.7 Hyper-Parameter Optimization 

It is a well-known fact that, choosing the right hyper-parameters is important for a 

machine learning model to perform accurately. Therefore, hyper-parameters of a machine 

learning model are optimized by selecting different value combinations iteratively and 

choosing the particular combination that gives the highest performance. In grid search 

optimization, a parameter grid that contains a finite set of values for each hyper-parameter 

is defined, and then optimum hyper-parameter configuration is found by evaluating the 
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performance of the model for each value combination. One disadvantage of grid search 

is such that some of the intermediate values that are not represented in the parameter grid 

(and hence missed) may indeed cause the model to perform better if they were included 

in the parameter grid. To overcome this limitation, a denser parameter grid should be 

selected. However, the computational cost grows exponentially as the parameter grid 

contains more and more values. Considering the fact that the proposed models contain 

many hyper-parameters, grid search would not be the best approach to optimize them. 

Therefore, in this thesis, the hyper-parameters of the proposed neural network models are 

optimized using the Bayesian optimization algorithm. Studies show that Bayesian 

optimization technique outperforms the traditional optimization algorithms [41], [42]. It 

is also advantageous due to the fact that it can sample intermediate values in the parameter 

ranges.  

Bayesian optimization algorithm was implemented using scikit-optimize library of 

Python [172]. Gp_minimize method was implemented using the following parameter 

settings:  acq_func='EI' and n_calls=100 [172]. Here acq_fnc is the function to minimize 

over the Gaussian prior and n_calls is the number of calls to the function. All the other 

parameters of gp_minimize are set to their default values. This method uses a Gaussian 

process with two aims: modelling the surrogate function and optimizing the expected 

probability which is based on improving the existing best solutions through new trials. It 

assumes that the function values track a multivariate Gaussian distribution. A Gaussian 

kernel designates the covariance of the function values among the parameters. In each 

iteration, the next value of a parameter is selected through the acquisition function over 

the Gaussian prior. 
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Chapter 4 

Experiment Results 

4.1 Experiment Results of IGPRED 

In order to assess the prediction performance of IGPRED, five different datasets were 

used as test sets including CullPDB-test, EVAset, CASP10, CASP11, and CASP12. For 

each benchmark, separate train sets were re-generated from the original CullPDB dataset 

by performing pairwise BLAST alignments as explained in section 3.1 benchmark 

datasets. Each dataset had two versions: the first one included structural profiles and the 

other one did not include structural profiles in the feature set. In addition to this, for the 

versions that included structural profiles, two dataset versions were further derived: the 

version that did not include AAindex, which shows in table 3.2, values and the version 

that included AAindex values in the feature set.  

4.1.1 Hyper-parameter optimization 

In the first step, the optimum hyper-parameters were found using CullPDB-train dataset. 

To achieve this, 10% of the proteins in CullPDB-train were randomly selected as the test 

set for optimization (i.e. validation set called CullPDB-val) and the remaining proteins 

were selected as the train set for optimization denoted as CullPDB-train-opt. For the 

IGPRED model, learning rate, the number of filters in convolution layers 

(n_filters_conv), batch size, the number of epochs, dropout rate, the number of hidden 

units (i.e. neurons) in dense layers (n_dense), the number of connections in graphs 

(nconn) and the number of outputs in multi-graph layers (out_dim_gcn) are optimized 

using the Bayesian optimization technique as explained in section 3.7 hyper-parameter 

optimization. Note that a separate number of filters parameter is defined for each CNN 

module (i.e. at the module level), a separate output dimension parameter is defined for 

each GCN module and a separate number of hidden units parameter for each dense layer. 

As there are five CNN modules, five GCN modules and two dense layers, considering the 
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other hyper-parameters as well, a total of 17 hyper-parameters were defined and 

optimized. table 4.1 shows the lowest and highest values of these hyper-parameters. 

Table 4.1 Hyper-parameter ranges of IGPRED used for optimization 

 

Table 4.2 shows the optimized values of the hyper-parameters for both versions of the 

datasets (with and without using structural profiles in feature sets). In this table, 

n_filters_conv, n_dense and out_dim_gcn rows show the hyper-parameters for each 

module in the order shown in figure 3.7. Note that these experiments did not include the 

AAindex values in the feature set.  

Table 4.2 Optimum hyper-parameters for IGPRED 

 

4.1.2 Adding structural profiles 

After hyper-parameter optimization, a total of ten different models were trained using the 

two versions of the five train sets (i.e. with and without structural profiles) and predictions 

are computed on the corresponding test sets. The same hyper-parameter configuration 

found for CullPDB-train is used in these experiments. Table 4.3 shows results for the 

Parameter Lowest Highest 

learning rate 10-6 10-1 

n_filters_conv 50 150 

batch size 22 27 

epoch 10 200 

dropout rate 0 0.6 

n_dense 400 1400 

nconn 5 50 

out_dim_gcn 20 200 

Parameter Dataset without structural profiles Dataset with structural profiles 

learning rate 0.00011778 1.501 × 10-5 

n_filters_conv 103, 107, 96, 115, 98 119, 113, 115, 101, 112 

batch size 4 4 

Epoch 96 78 

dropout rate 0.5 0.3 

n_dense 547, 537 564, 473 

Nconn 11 17 

out_dim_gcn 123, 189, 87, 63, 71 101, 123, 116, 75, 25 
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datasets that did not use structural profiles and table 4.4 includes the results when 

structural profiles are added to the feature set. In these tables, Accuracy represents the 

overall accuracy (i.e. Q3 measure), SOV [173] denotes the segment overlap measure, 

MCC [174] is the Matthew’s correlation coefficient. MCC, recall and precision metrics 

are computed for each secondary structure class in a one versus all setting. CullPDB-train, 

CullPDB-train-EVAset, CullPDB-train-CASP10, CullPDB-train-CASP11, and 

CullPDB-train-CASP12 are used to train the models for CullPDB-test, EVAset, CASP10, 

CASP11, and CASP12, respectively.  

Table 4.3 Accuracy measures of IGPRED without using structural profiles 

 

Table 4.4 Accuracy measures of IGPRED with structural profiles 
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According to these results, the models that used structural profiles obtained better 

accuracy rates than the models that did not use structural profiles. Using structural profiles 

increased the overall accuracy rate by 1.39% for CullPDB-test, 0.22% for EVAset, 0.63% 

for CASP10, 0.5% for CASP11, 0.50% for CASP12 compared with the models that did 

not use structural profiles. 

When the MCC values of secondary structure classes are compared the highest values are 

obtained for helices, followed by loops, followed by strands. When the recall values are 

compared, except for CASP10, the same ordering is obtained: helices come first, followed 

by loops and then strands. For CASP10, the ordering is loops, followed by helices and 

then strands. Finally, when the precision values are compared, except for CullPDB-test, 

loops come first, followed by helices and then strands. For CullPDB-test, helix 

performance is the best, followed by loops and then strands. In all cases, the accuracy of 

beta-strands is lowest as compared to helices and loops. This is reasonable because the 

proposed model architecture can only capture local correlations between amino acids, 

which is characteristic of helices and loops. The lower accuracy rates for beta-strands can 

be due to non-local (i.e. distant or long-range) interactions present between amino acids 

of beta-strand segments. It can be anticipated that if such interactions are predicted a priori 

(e.g. in the form of contact maps) with sufficient accuracy and used as input to GCN, the 

accuracy rates of beta-strands may improve. 

4.1.3 Adding physico-chemical features from AAindex database 

In addition to using structural profile features, adding new physico-chemical properties 

of the amino acids to the feature set is also explored. For this purpose, 35 AAindex values 

were selected and added to the feature set that includes structural profiles (among with 

other feature categories) and train/test experiments are repeated for the five benchmarks. 

Table 4.5 shows the overall Q3 accuracies of IGPRED on five benchmarks. 

Table 4.5 Q3 accuracy of IGPRED when new physico-chemical properties are added 

to feature set 
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These results are comparable to those presented in table 4.4. Therefore, using AAindex 

values as additional physico-chemical features did not improve the overall prediction 

accuracy. Because of these reason, AAindex values were not used to train the other 

proposed models.  

4.1.4 Comparison with the state-of-the-art 

In the next step, IGPRED is compared with the state-of-the-art methods in the literature. 

Table 4.6 shows the overall accuracy of MUFOLD-SS [26], OPUS-TASS [27] and our 

model on CASP datasets. 

Table 4.6 Q3 accuracy comparison between IGPRED and state-of-the-art methods 

on CASP datasets 

 

Based on these results, our model outperforms the state-of-the-art methods on all of the 

CASP datasets. The improvements obtained when structural profiles are included to the 

feature set are statistically significant according to a two-tailed Z-test [175] with p-values 

less than 0.01 for all CASP datasets. Note that the results of MUFOLD-SS and OPUS-

TASS are taken from the corresponding paper, while our results are obtained on subsets 

of the CASP datasets (i.e. on CASP proteins that have PDB IDs and that are not short as 

described in Section 2.2.3). The reason for this difference is because the CASP datasets 

(including the label assignments) used by MUFOLD-SS are not shared publicly. Based 

on this, the results presented in table 4.6 contain variance components due to slightly 

different versions of the datasets being used. Nonetheless, obtaining improvements 

consistently on all datasets is promising. 

4.1.5 Learning Curves 

Another factor that can be analyzed is the overfitting behavior of the models. Deep 

learning models with many layers can be prone to overfitting due to large number of 

weight coefficients learned during training. In the proposed model architecture, batch 

normalization and dropout are used as regularization techniques to prevent overfitting. In 

Method CASP10 CASP11 CASP12 

MUFOLD-SS 86.49% 85.20% 83.36% 

OPUS-TASS ------ ------ 85.47% 

IGPRED without SP 87.24% 85.26% 85.76% 

IGPRED with SP 87.87% 85.76% 86.54% 
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order to understand whether a model has learned the patterns in train set well enough and 

is able to generalize to new examples, learning curves can be used. Figure 4.1 shows the 

learning curves of the model for different datasets. In all of these experiments, structural 

profiles were used in the feature set. Each subfigure shows the accuracy of the model with 

respect to the number of epochs, which is directly proportional to model complexity.  

These curves show that our model did not suffer from significant amount of overfitting 

since the test curves follow the train curves closely. 

 

Figure 4.1 Learning curves for the version of IGPRED that uses structural profiles: 

(a) CullPDB, (b) EVAset, (c) CASP10, (d) CASP11 and (e) CASP12 

4.1.6 Accuracy with respect to length of protein 
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In this thesis, long proteins were split naively using blocks of 700 amino acids as 

explained in section 3.3 feature generation. This was preferred for computational reasons. 

In order to analyze whether this type of splitting degrades performance, the overall 

accuracy values were computed for proteins belonging to different length intervals 

(including those that are longer than 700 amino acids) in EVAset, which is the only 

benchmark that has sufficient number of long proteins. The results of this experiment are 

given in table 4.7. 

Table 4.7 Q3 accuracy of IGPRED on EVAset at different length intervals 

 

Based on these results, as the length of the protein increases, there is only a minor decrease 

in the overall prediction accuracy. For example, the accuracy obtained for the fourth 

length interval is around 0.2% lower than the accuracy of the third length interval both of 

which contain proteins with no splitting applied. This shows that as the protein length 

increases, the prediction accuracy may decrease slightly even if there is no splitting due 

to missed correlations caused by long-range interactions (the convolutional networks 

developed for IGPRED only model short-range interactions between the amino acids). 

On the other hand, the accuracy of the last length interval (that contains proteins longer 

than 700 amino acids) is only 0.1% lower than the accuracy of the fourth interval and 

only 0.3% lower than the top performing second and third intervals. Based on this result, 

although the naïve splitting approach ignores domain boundaries and any interactions 

between the split regions, it can be anticipated that the splitting process has little 

contribution to the decrease in accuracy. This can be because the proposed model already 

ignores long-range interactions and the decrease in performance for long proteins can be 

mainly due to this restriction. If there is an extra degrade in performance due to splitting, 

that may happen due to missed correlations/interactions around the boundaries of the 

feature matrix (i.e. at positions close to every 700th amino acid) which may affect a few 

amino acids only. As a result, the naïve splitting approach can be preferred due to its 

computational simplicity without degrading performance considerably.  

Length Intervals Q3 Accuracy 

1 – 175 amino acids 86.39% 

176 – 350 amino acids 86.44% 

351 – 525 amino acids 86.41% 

526 – 700 amino acids 86.23% 

> 700 amino acids 86.11% 
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4.2 Experiment Results of IGPRED-MultiTask 

For IGPRED-MultiTask, a total of ten benchmark datasets, which include train, 

validation, CASP12, CASP13, CASPFM, TEST2016, TEST2018, CAMEO93, 

CAMEO93_HARD and HARD68, were used. The train set is used to train models, the 

validation set is used to optimize hyper-parameters and the remaining eight sets are used 

as test sets to measure performance of IGPRED-MultiTask. 

4.2.1 Hyper-parameter optimization 

In the first step, the optimum hyper-parameters were found using train and validation 

datasets. For the IGPRED-MultiTask model, learning rate, the number of filters in 

convolution layers (n_filters_conv), batch size, the number of epochs, dropout rate, the 

number of hidden units (i.e. neurons) in dense layers (n_denses), the number of 

connections in graphs (nconn), the number of outputs in multi-graph layers 

(out_dim_gcn) and number of units for LSTM layers (n_unit_lstm) were optimized using 

the Bayesian optimization technique as explained in section 3.7 hyper-parameter 

optimization. Note that a separate number of filters parameter is defined for each CNN 

module (i.e. at the module level), a separate output dimension parameter is defined for 

each GCN module, a separate number of hidden units parameter for each dense layer and 

a separate number of units for each LSTM modules. As there are five CNN modules, five 

GCN modules, two dense layers, and two LSTM modules considering the other hyper-

parameters as well, a total of 19 hyper-parameters were defined and optimized. Table 4.8 

shows the lowest and highest values of these hyper-parameters. 

Table 4.8 Hyper-parameter ranges of IGPRED-MultiTask used for optimization 

Parameter Lowest Highest 

learning rate 10-6 10-1 

n_filters_conv 20 200 

batch size 20 27 

epoch 10 200 

dropout rate 0 0.6 

n_denses 100 1500 

nconn 0 75 

out_dim_gcn 20 200 

n_unit_lstm 20 200 



49 

 

 

Table 4.9 shows the optimized values of the hyper-parameters for IGPRED-MultiTask. 

These values are then used to train the neural network models. In this table, the values of 

n_filters_conv, n_denses, out_dim_gcn and n_unit_lstm are shown for each module 

following their sequential order in the architecture of IGPRED-MultiTask. For instance, 

a total of five n_filters_conv parameters were defined and optimized for CNN Modules 

1-5 and the optimized values are presented in this order (i.e. 175 is the optimum value for 

this parameter for CNN Module 1). Note that these experiments include PSI-BLAST 

PSSMs, HHblits scores, physico-chemical properties and structural profiles in the feature 

set.  

Table 4.9 Optimum hyper-parameters for IGPRED-MultiTask 

 

4.2.2 Performance measures and comparison with the state-of-the-art 

After hyper-parameter optimization, the IGPRED-MultiTask is trained on the original 

training set (i.e. train set) and predictions are computed on a total of eight test sets. 

Accuracy (ACC) for 3-state secondary structure and mean absolute error (MAE) for 

torsion angles were used in the literature to evaluate the model performance [26], [27], 

[72], [95], [99].  The results of these experiments are summarized in table 4.10, in which 

ACC for 3-state secondary structure and MAE for torsion angles are computed on eight 

test sets. Note that for each benchmark in table 4.10, a single train and a single test 

operation are performed. In these experiments, we obtain testing results on multiple 

independent data sets, which provides an estimate of the variation in performance results 

with respect to different data set conditions including the difficulty of the dataset.  

Hyper-parameter types Optimum  Hyper-parameter 

learning rate 0.000210060076 

n_filters_conv 175, 86, 64, 112, 125 

batch size 26 

epoch 156 

dropout rate 0.2 

n_dense 675, 280 

nconn 16 

out_dim_gcn 96, 81, 79, 32, 28 

n_unit_lstm 58, 30 
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In this table, IGPRED-MultiTask is our proposed model and is trained using the original 

training set. IGPRED-MultiTask* represents our proposed model trained on the reduced 

versions of the original training set (see section 3.1), which is a more difficult 

experimental setting. Our results are compared with the state-of-the-art methods OPUS-

TASS [27], SPOT-1D [29], NetsurfP-2.0 [70] and MUFOLD [26], whenever possible for 

secondary structure and torsion angle predictions. Based on these results, our model (both 

IGPRED-MultiTask* and IGPRED-MultiTask) outperforms all the other state-of-the-art 

methods in all test sets and in all performance metrics. Note that IGPRED-MultiTask has 

the same experimental conditions as the other state-of-the-art methods (in terms of the 

training set used). Therefore, it is more convenient to compare IGPRED-MultiTask 

directly with the state-of-the-art. On the other hand, it is promising to observe that 

IGPRED-MultiTask* is also better than the state-of-the-art. Since IGPRED-MultiTask* 

is evaluated on the reduced training sets derived for each test set, the results obtained for 

IGPRED-MultiTask* can be regarded as the actual performance of our proposed model 

in the most stringent experimental conditions.  

The reason for the improved performance over the state-of-the-art can be due to the 

following two factors. The first one can be related to the model architecture, which utilizes 

deep learning models including CNN, mGCN and BiLSTM modules jointly. For instance, 

one difference between our model and OPUS-TASS is the utilization of mGCN modules 

by our model, which also is not present in other state-of-the-art methods. The second can 

be due to the structural profile features employed as input to our model, which may have 

provided additional useful information. 

Table 4.10 Comparison of IGPRED-MultiTask with the state-of-the-art methods for 

secondary structure and torsion angle predictions. (aResults are taken from the 

paper of the OPUS-TASS method) 

Models Accuracy SS3 MAE psi MAE phi 

TEST2016 

SPOT-1Da 87.16% 16.27 23.26 

OPUS-TASS 87.79% 15.78 22.46 

IGPRED-MultiTask* 87.98% 15.13 22.29 

IGPRED-MultiTask 88.29% 15.04 21.81 

TEST2018 

MUFOLDa 84.78% 17.78 27.24 

NetsurfP-2.0a 85.31% 17.90 26.63 
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4.2.3 Loss Curves 

SPOT-1Da 86.18% 16.89 24.87 

OPUS-TASS 86.84% 16.40 24.06 

IGPRED-MultiTask* 87.35% 15.85 23.37 

IGPRED-MultiTask 87.64% 15.76 23.22 

CASP12 

MUFOLD 83.36% ------ ------ 

SPOT-1D a 84.82% 18.44 26.90 

OPUS-TASS 85.47% 18.08 25.98 

IGPRED-MultiTask* 86.57% 17.63 24.81 

IGPRED-MultiTask 86.61% 17.57 24.78 

CASP13 

SPOT-1D a 86.53% 18.48 26.73 

OPUS-TASS 87.62% 17.89 25.93 

IGPRED-MultiTask* 88.27% 17.09 24.61 

IGPRED-MultiTask 88.41% 17.05 24.47 

CASPFM 

SPOT-1D a 82.37% 19.39 30.10 

OPUS-TASS 83.40% 18.85 28.00 

IGPRED-MultiTask* 84.18% 18.29 27.21 

IGPRED-MultiTask 84.24% 18.27 27.17 

CAMEO93 

SPOT-1D a 87.72% 16.89 23.02 

OPUS-TASS 89.06% 16.56 21.98 

IGPRED-MultiTask* 89.27% 16.19 21.74 

IGPRED-MultiTask 89.28% 16.25 21.65 

CAMEO93_HARD 

SPOT-1D a 82.31% 18.75 31.02 

OPUS-TASS 82.56% 18.52 30.17 

IGPRED-MultiTask* 84.11% 17.60 27.57 

IGPRED-MultiTask 84.09% 17.58 27.64 

HARD68 

SPOT-1D a 83.79% 18.35 27.77 

OPUS-TASS 83.78% 18.03 27.16 

IGPRED-MultiTask* 84.61% 17.51 26.54 

IGPRED-MultiTask 84.81% 17.38 26.32 
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As explained before IGPRED-MultiTask is trained on original training set and predictions 

are computed on test sets using this model. Figure 4.2 shows the loss curves of IGPRED-

MultiTask for secondary structure prediction on training set and validation set. These 

curves show the loss until the optimum number of epochs after which the training is 

stopped. According to these figures, model training is performed successfully reaching 

the optimum validation loss. For the IGPRED-MultiTask* the behavior of losses is 

observed to be similar to IGPRED-MultiTask 

 

Figure 4.2 Loss curves for IGPRED-MultiTask. (A) Train loss (B) Validation loss. 

4.2.4 Two-tailed Z-test 

Based on the performance results and state-of-the-art comparison, the improvements 

obtained by IGPRED-MultiTask* over the OPUS-TASS method (which is selected as the 

best method among state-of-the-art methods) are statistically significant according to a 



53 

 

two-tailed Z-test at p <= 0.05 for TEST2016, TEST2018, CASP12 (excluding the phi 

angle predictions), and CAMEO93_HARD (excluding the phi angle predictions). The 

results on the remaining test sets or prediction tasks can be regarded as comparable. Table 

4.11 shows the p-values that are computed for the Z-test experiment that compares 

IGPRED-MultiTask* and OPUS-TASS results. 

Table 4.11 P-values between IGPRED-MultiTask* and OPUS-TASS 

 

4.2.5 Solvent accessibility results 

Regarding solvent accessibility, relative solvent accessibility labels are available in 

TEST2016, TEST2018, validation and training set only. Since our model can also predict 

the relative solvent accessibility information, we evaluated the solvent accessibility 

prediction performance of our model on TEST2016 and TEST2018 data sets. The mean 

absolute error of IGPRED-MultiTask* is obtained as 14.09 for TEST2016 and 15.01 for 

TEST2018 data sets. We are not able to compare these results with the state-of-the-art 

because to the best of our knowledge there is no solvent accessibility prediction result 

presented in the literature for TEST2016 and TEST2018. 

4.2.6 Error regions of secondary structure prediction 

To give some details about error regions, Q3 accuracies are calculated for the amino acids 

that are at the beginning and the amino acids that are at the end of secondary structural 

segments. Table 4.12 shows these accuracies for IGPRED-MultiTask* on the eight test 

sets. This calculation is done for helix (H), strand (E) and loop (L) segments separately 

and also for all the segments, which is presented in “mean acc” column of table 4.12. In 

addition to this analysis, Q3 accuracy is calculated for the amino acids that are at the 

Dataset SS PHI PSI 

TEST2016 0.001 0.001 0.204 

TEST2018 0.045 0.030 0.016 

CASP12 0.017 0.357 0.047 

CASP13 0.307 0.293 0.131 

CASPFM 0.161 0.342 0.280 

CAMEO93 0.603 0.342 0.720 

CAMEO93 HARD 0.029 0.213 0.005 

HARD68 0.2187 0.412 0.441 
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beginning and at the end of the proteins in validation set which are presented in “acc 

begin-3” and “acc end-3” columns of table 4.12. For this purpose, three amino acids that 

are at the beginning and three amino acids that are at the end of each protein are selected. 

According to these results the proposed model has significantly lower accuracy at the 

terminals of secondary structure segments and slightly lower accuracy around the N-

terminal and C-terminal of the proteins as compared to the accuracies obtained in table 

4.10. This shows that it is more difficult to predict secondary structure information at the 

terminals of secondary structure segments and the at the terminal regions of amino acid 

chains. This can be due to the fact that these are transition regions for secondary structure 

elements. As local windows are taken around each amino acid to form the feature vectors, 

the composition of those vectors at segment ends will include information from multiple 

segments. Furthermore, the feature vectors at the terminals of segments may be located 

closer to class boundaries of secondary structure elements. All these factors may make 

the prediction task more difficult at the terminal regions of structural segments. 

Table 4.12 Q3 accuracies of IGPRED-MultiTask* for regions 

 

4.2.7 Capabilities of IGPRED-MultiTask in different conditions 

In addition to evaluating the performance of IGPRED-MultiTask on benchmark data sets 

and comparing with the state-of-the-art, we performed several other experiments to 

analyze the capabilities of our model in different conditions. For this purpose, we derived 

new versions of IGPRED-MultiTask that contain certain module blocks while excluding 

others as explained in proposed models section. We also considered removing structural 

profile matrices from the input feature set. Detailed architecture of these models are 

shown in supplementary material of the paper for IGPRED-MultiTask [82]. Based on the 

Dataset H E L mean acc acc begin-3 acc end-3 

TEST2016 80.52% 73.77% 76.21% 76.58% 87.32% 85.71% 

TEST2018 80.01% 74.12% 75.10% 76.81% 86.11% 85.43% 

CASP12 79.87% 73.15% 75.22% 76.37% 86.01% 84.12% 

CASP13 82.26% 73.86% 77.12% 78.12% 86.12% 83.20% 

CASPFM 75.26% 69.15% 79.10% 74.70% 82.11% 80.16% 

CAMEO93 83.13% 72.91% 80.01% 78.14% 87.33% 85.14% 

CAMEO93 HARD 74.19% 68.94% 80.06% 74.55% 81.06% 79.87% 

HARD68 75.90% 69.29% 78.56% 73.86% 81.76% 80.03% 
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experimental results, it can be concluded that using all modules (including CNN, mGCN, 

and BiLSTM modules), multi-task learning and structural profiles have contribution in 

improving the accuracy of protein structure prediction tasks studied in this work. Table 

4.13 shows the performance measures of all derived models and in table 4.14, we include 

detailed performance metrics of the proposed model including overall accuracy (Q3 

measure), precision, recall, MCC and segment overlap (SOV) scores for protein 

secondary structure prediction, in which the MCC, recall and precision were computed 

for each secondary structure segment separately. In both tables, the performance metrics 

are computed for proteins in validation set.  

Table 4.13 Results for the all derived models on the validation set 

 

Table 4.14 Detailed results of original model for secondary structure prediction on 

validation set 

Model Acc SS3 psi phi 

IGPRED-MultiTask* 87.85% 16.01 23.04 

IGPRED-MultiTask-WO-SP 87.42% 16.09 23.11 

IGPRED-SS 87.35% -------- -------- 

IGPRED-TA -------- 16.24 23.40 

IGPRED-GCN-free 87.20% 16.63 23.50 

IGPRED-GCN-1 87.56% 16.32 23.40 

IGPRED-GCN-2 87.53% 16.30 23.47 

IGPRED-GCN-3 87.56% 16.33 23.20 

IGPRED-GCN-4 87.78% 16.12 23.09 

IGPRED-CNN-free 87.02% 16.65 23.62 

IGPRED-CNN-1 86.95% 16.67 23.63 

IGPRED-CNN-2 87.23% 16.36 23.51 

IGPRED-CNN-3 87.61% 16.15 23.14 

IGPRED-CNN-4 87.75% 16.07 23.07 

IGPRED-BiLSTM-free 86.51% 17.01 23.82 

IGPRED-BiLSTM-1 87.35% 16.12 23.12 
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4.3 Experiment Results of GraphUnet-SS 

As mentioned in section 3.1 benchmark datasets, similar to IGPRED model, a total of five 

datasets were used in GraphUnet-SS in which four of them were used to assess the 

performance of the model and the other one was used to generate validation and train sets. 

In the first phase CullPDB dataset was divided into two parts, which are CullPDB-train 

and CullPDB-validation, using BLAST algorithm with configuration that was mentioned 

in benchmark dataset section. After that, separate train sets were generated for each 

dataset, which are called CullPDB-train-EVAset, CullPDB-train-CASP10, CullPDB-

train-CASP11 and CullPDB-train-CASP12, from CullPDB-train using BLAST algorithm 

with same configuration. The number of proteins and the number of amino acids for each 

dataset were given in section 3.1 benchmark datasets.  

4.3.1 Hyper-parameter optimization 

In GraphUnet-SS, number of filters for CNN module 1 (n_unit_conv_1), number of filters 

for CNN module 2 (n_unit_conv_2), dimension of graph node embedding for GCN 

module (n_unit_gcn_1), dimensionality of the output space for biLSTM module 

(n_unit_lstm_1), number of neurons for fully connected dense layer (n_unit_dense_1), 

dropout rate for all layers (dr_rate), learning rate for optimizer (lr), number of epochs 

(epoch) and batch size (batch) were optimized. Note that the same dr_rate was used for 

all layers and all CNN module 1, CNN module 2 and GCN modules were identical within 

themselves. Activation function of classification layer was Softmax, activation function 

for all remaining layers were Relu, loss function was sparse categorical cross entropy and 

weight optimizer was Adam. Non-optimized parameters were used by default. Unlike the 

IGPRED and IGPRED-MultiTask models, GraphUnet-SS did not include number of 

connections parameters, because contact map prediction was used to generate graph input 

for the GCN modules. Table 4.15 shows the lowest and highest values of these hyper-

parameter. 

Table 4.15 Hyper-parameter ranges of GraphUnet-SS used for optimization 

Parameter Lowest Highest 

lr 10-6 10-1 

epoch 5 110 

batch 1 16 
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In the second phase, hyper-parameters of GraphUnet-SS were optimized using CullPDB-

train and CullPDB-validation datasets where CullPDB-train was used to train model and 

CullPDB-validation was used to assess performance of model with determined hyper-

parameters. For this purpose, scikit-optimize library were used with the parameter spaces 

shown in table 4.15. Table 4.16 shows the optimum hyper-parameters for GraphUnet-SS 

found using Bayesian optimization. 

Table 4.16 Optimum hyper-parameters for GraphUnet-SS 

 

4.3.2 Learning curves for training phase 

A model, which is configured with optimum hyper-parameters, for each dataset was 

trained at the end of the hyper-parameter optimization. For this purpose, 4 different 

models were trained using CullPDB-train-EVAset, CullPDB-train-CASP10, CullPDB-

train-CASP11 and CullPDB-train-CASP12 as train datasets for EVAset, CASP10, 

CASP11 and CASP12, respectively. For each model CullPDB-validation was used as the 

validation dataset. The optimum hyper-parameters listed in table 4.16 were used and the 

remaining hyper-parameters were assigned as explained in section 3.1 hyper parameter 

optimization. In addition to this two different callback functions, which are lr_callback 

dr_rate 0 0.6 

n_unit_conv_1 20 180 

n_unit_conv_2 20 180 

n_unit_gcn_1 20 120 

n_unit_lstm_1 10 60 

n_unit_dense_1 100 1000 

Hyper-parameter types Optimum  Hyper-parameter 

lr 0.008956293630918124 

epoch 49 

batch 8 

dr_rate 0.2 

n_unit_conv_1 95 

n_unit_conv_2 137 

n_unit_gcn_1 42 

n_unit_lstm_1 40 

n_unit_dense_1 446 
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and early_stopping_callback from Keras [176], were used during training. Learning rate 

of the model was divided by 2 using lr_callback, when no improvement was seen on 

validation loss for 2 epochs. Training was stopped by using early_stopping_callback, 

when no improvement was seen on validation loss for 6 epochs. Figure 4.3 shows the 

training loss, validation loss and learning rate of each model during the training phase. 

It’s obviously seen in this figure that, as the number of epochs increases, training loss and 

validation loss resemble each other. Although optimum number for epochs is 49, number 

of epochs in the figures are smaller than 49. The reason of this is because the original 

optimum number of epochs was found using Bayesian optimization on CullPDB-train 

and CullPDB-validation datasets but the new optimums were found using early-stopping 

(which can be seen as a second phase of optimization for the number of epochs) on the 

specific training set derived for each test set and CullPDB-validation 

 

Figure 4.3 Training Loss, Validation Loss and Learning Rate on Each Epoch for 

EVAset, CASP10, CASP11 and CASP12 

4.3.3 Performance measures 

After training phase, the performance of GraphUnet-SS, which was trained separately 

using CullPDB-train-EVAset, CullPDB-train-CASP10, CullPDB-train-CASP11 and 

CullPDB-train-CASP12, was assessed on EVAset, CASP10, CASP11 and CASP12 

respectively. The performance measures of GraphUnet-SS are shown in table 4.17, which 
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include Precision, Recall, Q3 Accuracy, the segment overlap score (SOV) [173] and the 

Matthews correlation coefficient (MCC) [174]. 

Table 4.17 Accuracy measures of GraphUnet-SS 

 

According to the results in this table, the best Q3 accuracy was obtained on CASP10 and 

the worst Q3 accuracy was obtained on EVAset. When the MCC values of secondary 

structure classes are compared the highest values are obtained for helices, followed by 

loops, followed by strands. When the recall values are compared, except for CASP10 and 

CASP11, the same ordering is obtained: helices come first, followed by loops and then 

strands. For CASP10 and CASP11, the ordering is loops, followed by helices and then 

strands. Finally, when the precision values are compared, except for CASP12, helices 

come first, followed by loops and then strands. For CASP12, loops performance is the 

best, followed by helices and then strands. In all cases, the accuracy of beta-strands is 

lowest as compared to helices and loops. These results are similar to the results obtained 

for IGPRED that shows in table 4.4. 

4.3.4 Capabilities of GraphUnet-SS in different conditions 

As can be seen from the architecture, GraphUnet-SS consist of several layers including 

CNN, GCN and biLSTM modules. Other versions of GraphUnet-SS were derived by 

excluding some layers or by changing the depth of model. For this purpose, a total of 

seven models, which include GraphUnet-SS-biLSTM-free, GraphUnet-SS-GCN-free, 

GraphUnet-SS-CNN-free, GraphUnet-SS-depth-2, GraphUnet-SS-depth-3, GraphUnet-

SS-depth-5 and GraphUnet-SS-depth-6, were generated. GraphUnet-SS-biLSTM-free is 

the same version of GraphUnet-SS, however it did not include the biLSTM module before 
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the fully connected layer. Similar to GraphUnet-SS-biLSTM-free, GraphUnet-SS-GCN-

free is the version of the original model that did not include the GCN modules and 

GraphUnet-SS-CNN-free is the version of original model that did not include the CNN 

modules. It is considered that GraphUnet-SS has a depth of four, because the number of 

contracting and expansive paths are four. GraphUnet-SS-depth-2 is the version of original 

model where the number of contracting and expansive paths are two. Similar to 

GraphUnet-SS-depth-2, GraphUnet-SS-depth-3, GraphUnet-SS-depth-5 and GraphUnet-

SS-depth-6 were generated by changing number of contracting and expansive paths. 

Table 4.18 shows the Q3 accuracy of each model. 

Table 4.18 Q3 accuracies of various model generated from GraphUnet-SS 

 

According to these result, using all modules, which include CNN, GCN and biLSTM 

layers with a depth of four obtained the best accuracy for CASP10, CASP11 and CASP12. 

Although, GraphUnet-SS-biLSTM-free and GraphUnet-SS-depth-5 models obtained 

slightly better Q3 accuracy for EVAset than the original model, GraphUnet-SS has better 

performance in the vast majority of datasets. In addition to this, GraphUnet-SS is faster 

than the GraphUnet-SS-depth-5, because of the computational reasons. 

4.3.5 Comparison with the state-of-the-art 

In the next step, our model is compared with the state-of-the-art methods in the literature. 

Table 4.19 shows the comparison of GraphUnet-SS with ProteinUnet [73] and IGPRED 

[28] on EVAset, CASP10, CASP11 and CASP12, with MUFOLD-SS [26] on CASP10, 

CASP11 and CASP12 and with OPUS-TASS [27] on CASP12 datasets. According to 

these results, GraphUnet-SS outperforms the OPUS-TASS on CASP12, MUFOLD-SS 

on all CASP datasets and ProteinUnet and IGPRED on all of the four datasets.  Note that, 

the result of OPUS-TASS, MUFOLD-SS and IGPRED were taken from the 

Model EVAset CASP10 CASP11 CASP12 

GraphUnet-SS-CNN-free 86.46% 87.52% 85.92% 86.75% 

GraphUnet-SS-GCN-free 86.41% 87.45% 85.96% 86.71% 

GraphUnet-SS-biLSTM-free 86.85% 87.44% 86.09% 86.89% 

GraphUnet-SS-depth-2 86.45% 87.62% 85.81% 86.32% 

GraphUnet-SS-depth-3 86.53% 87.56% 85.70% 86.64% 

GraphUnet-SS-depth-5 86.84% 87.83% 86.06% 86.95% 

GraphUnet-SS-depth-6 86.68% 87.73% 86.13% 86.71% 



61 

 

corresponding papers. ProteinUnet model was re-trained by us using similar steps as in 

GraphUnet-SS and its accuracy is computed using the newly trained model. 

Table 4.19 Q3 accuracy comparison of GraphUnet-SS with the models in the 

literature. 

 

 

 

 

 

 

Model EVAset CASP10 CASP11 CASP12 

OPUS-TASS --------- --------- --------- 85.47% 

MUFOLD-SS --------- 86.49% 85.20% 83.36% 

ProteinUnet* 86.35% 87.26% 85.72% 86.54% 

IGPRED 86.34% 87.87% 85.76% 86.54% 

GraphUnet-SS 86.82% 87.88% 86.30% 87.03% 
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Chapter 5 

Conclusions and Future Prospects  
 

5.1 Conclusions 

Protein structure prediction is one of the most challenging problems in the bioinformatics 

field. Protein structure prediction refers to the prediction of the 3-D structure of a protein. 

Because there are several difficulties in predicting the 3-D structure directly, preliminary 

predictions of protein secondary structure (PSSP), solvent accessibility (SAP) and torsion 

angles (TAP) are made. Studies show that, using the output of multiple sequence 

alignment algorithm, physico-chemical properties of amino acids and structural profiles 

as features improves the accuracy of PSSP, SAP and TAP [10], [35], [36], [55], [56]. As 

well as the feature sets, machine learning models also effect the prediction results. In 

these days machine deep learning models achieved significant improvement on PSSP, 

SAP and TAP [26], [27], [31], [69], [102].  

In this thesis, three novel deep learning models were proposed for PSSP, SAP and TAP. 

Firstly, a rich feature set was generated using several alignment algorithms, structural 

properties and other properties of amino acids. For this purpose, target proteins were 

aligned using PSI-BLAST and HHBlits algorithms separately. As a result of these 

process, 20 PSSMs values were computed with PSI-BLAST and 30 scores were computed 

with HHBlits. In addition to this structural profiles of solvent accessibility and secondary 

structure were computed as the weighted average of label frequencies of the template 

proteins obtained using HHBlits. In the final step of the feature extraction phase, seven 

physico-chemical properties and 35 AAindex values were added to feature set for each 

amino acid. 

Neural network models have many hyper-parameters such as learning rate, dropout rate, 

batch size and number of epochs. Unlike the traditional neural network models, deep 

learning models have several layers and each layer has its own hyper-parameters. It is 

known that hyper-parameters are among the most important factors that affect the 
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performance of model. Therefore, using optimum hyper-parameters is one of the crucial 

steps for deep learning models. In grid search technique, which is used for parameter 

optimization, parameter space is squeezed within a certain range. Moreover, if the number 

of parameters is large as in deep learning, grid search technique can take too much time. 

Because of this reason, hyper-parameters of the proposed models in this thesis are 

optimized using the Bayesian optimization technique, which is faster and better than the 

grid search [41], [42].  

In the first study, a novel deep learning model to predict secondary structure was 

developed using CNN and GCN modules. In this model, each CNN module consists of 

six different convolutional layers with kernel sizes (1,M), (3,M), (5,M), (9,M), (11,M) 

and (15,M) that are connected in parallel as in inception module and each GCN module 

consists of multi-graph convolution operation. Because this model consists of a multi-

graph convolution operation, it needs a graph as an extra input. For this context, a graph 

for each protein was generated using neighbor information of amino acids. It is assumed 

that amino acids which are close to each other in a 1-D sequence interacts each other in 

3D space. This model was tested on five datasets including CullPDB-test, EVAset, 

CASP10, CASP11 and CASP12. For this purpose, a separate train set for each test set 

was generated with pairwise BLAST alignment using CullPDB-train set. Experiments 

were done on three different feature combinations. The first combination includes PSI-

BLAST PSSMs, HHBlits scores, seven physico-chemical properties. In the second 

combination, structural profiles were added as extra features and finally in the third 

combination AAindex features were also added. Experiment results show that best 

accuracies were added using second combination and 89.19%, 86.34%, 87.87%, 85.76% 

and 86.54% Q3 accuracies were obtained for CullPDB-test, EVAset, CASP10, CASP11 

and CASP12 respectively. In addition to this, accuracies were computed with respect to 

the length of the target protein and it is seen that the best accuracies were obtained for 

proteins that contain between 175 and 180 amino acids. It has been shown that our model 

outperformed the MUFOLD-SS [26] and OPUS-TASS [27] methods.  

In the second study, the first model was updated by adding biLSTM layers and it was 

extended using the multi-tasking approach to predict solvent accessibility and torsion 

angles. CNN and GCN modules were the same as the first model and biLSTM modules 

contained forward and backward LSTM modules to capture long range interactions of 

amino acids. In this model, the same benchmark datasets as the OPUS-TASS [27] model 

were used to assess performance of our model including TEST2016, TEST2018, 
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CAMEO93, CAMEO93_HARD, CASP12, CASP13, CASPFM, HARD68, validation 

and train. Training set is used for model training and validation set is used as test data for 

hyper-parameter optimization, and the remaining were used as test sets. Similar to the 

first model, separate train sets were obtained for each test set by applying pairwise 

BLAST alignments. According to the experimental results, our model obtained better Q3 

accuracies for PSSP and mean absolute error for phi and psi angles than MUFOLD-SS 

[26], OPUS-TASS [27], SPOT-1D [29] and NetsurfP-2.0 [70]. Because solvent 

accessibility labels were available for TEST2016 and TEST2018 datasets, solvent 

accessibility prediction was performed on these datasets only. Mean absolute errors of 

14.09 and 15.01 were achieved for TEST2016 and TEST2018, respectively. However, 

SAP is not compared with the state-of-the-art models because to the best of our 

knowledge there is no solvent accessibility prediction result presented in the literature for 

these datasets. In this study, several other versions of the model were also generated to 

measure the effect of each module on performance. In addition to these analysis, Q3 

accuracies are calculated for the amino acid that is at the beginning and the amino acid 

that is at the end of secondary structural segments and results shows that amino acids at 

the terminal points had lower accuracy than the amino acids that are located in between.  

In the last study, a novel deep model was developed based on the U-net architecture using 

CNN, GCN and biLSTM modules for PSSP. Unlike the other models, a graph was 

generated using contact map prediction, which enables to incorporate long-range 

interactions between amino acids. Similar to the second study, other version of the model 

was generated by excluding some layers or by changing the depth of the model. CullPDB-

train dataset was used to generate training datasets and EVAset, CASP10, CASP11 and 

CASP12 were used to assess the performance of models. The best accuracies of the 

models were achieved as 86.85%, 87.83%, 86.13 and 86.95% for EVAset, CASP10, 

CASP11 and CASP12, respectively. According to the experimental results, our model 

outperformed OPUS-TASS [27], MUFOLD-SS [26] and ProteinUnet [73]. Note that, in 

this experiment, the result of OPUS-TASS [27] and MUFOLD-SS [26] are taken from 

the corresponding papers and the result of ProteinUnet [73] was obtained by us by re-

training this model on our training sets and computing the accuracies on test sets.  
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5.2 Societal Impact and Contribution to Global 

Sustainability 

Thanks to Human Genome Project [4], a large number of protein sequences were 

generated day by day, however the 3-D structure of many is unknown. The proteins whose 

3-D structure has been experimentally solved accounts for less than 0.6% of the known 

proteins. This proportion was 0.7%, 1,2% and 2% in 2008, 2007 and 2004 respectively 

[177]. When the overall growth of the released structures per year is examined, it is 

observed that the proportion of proteins with known structures gradually decreases [178]. 

Besides that, the cost of experimentally solving the structure of a new protein is estimated 

to be around $100,000 [179]. Proteins are used in many areas such as designing novel 

drugs or enzymes. In addition to this, they are the primary source of nutrition for the living 

organisms. Climate change affects the yield and quality of the agriculture products, which 

affects the proteins contained in these resources [180]. It is foreseen that artificial food 

production will increase with the decrease in soil fertility. If the relationship between the 

amino acid sequence and the function of proteins can be understood completely, it will 

be possible to design new proteins, understand the working principles of proteins, and 

modify proteins to perform specific tasks. Since there is a close relationship between the 

structure and function of proteins, structure information is important to understand the 

function of a protein. Because of all these reasons it is useful to predict the 3-D structure 

of proteins more accurately. In this thesis, novel deep learning models were developed 

for protein secondary structure, solvent accessibility and torsion angle predictions. 

Performance evaluations on several benchmark test sets show that our models 

outperformed state-of-the-art. Because secondary structure, solvent accessibility and 

torsion angle information can be used for 3-D structure prediction, more accurate 

prediction of these properties will potentially improve the accuracy of 3-D structure 

prediction methods. With the contribution of the thesis to the prediction of protein 

structure, it also contributes to the sustainability of the world due to the reasons 

mentioned. 
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5.3 Future Prospects 

All studies in this thesis focus on predicting structural properties of proteins, which is 

useful for 3-D protein structure prediction. Although significant improvements were 

obtained for PSSP, SAP and TAP, there is still room for further improvement. As a future 

work, we are planning to upgrade our models using other deep learning models such as 

attention and transformers layers. We are also aiming to combine the best performing 

models using ensembles to further improve the prediction accuracy.   

One of the main factors affecting the performance of our methods is the graph used as 

input for GCN modules. In the first two studies, local neighbor information was used to 

generate the input graphs and in the last study, graphs were generated using contact map 

prediction, which allowed us to incorporate long-range interactions between amino acids. 

The first and the third studies concentrated on PSSP, which were analyzed on the same 

datasets. Experimental results showed that the third study outperformed the first study. 

Therefore, it can be argued that generating input graphs using more advanced approaches 

may have the potential to improve the performance of PSSP, SAP and TAP. Because of 

this reason, as a future work, we will try to make more accurate contact map predictions, 

which will allow us to generate more accurate input graphs for GCN modules of our deep 

learning models.  

In our prediction models, we used structural profiles as a subset of the input features. To 

derive these profiles, we used the HHblits alignment method. We set the percentage of 

sequence similarity threshold to 20, which includes structurally distant templates only. 

This represents the most stringent experimental condition. As a future work, we are 

planning to compute structural profiles more accurately using more advanced alignment 

methods. Furthermore, we would like to train our models using structural profiles that are 

computed using other values of the sequence similarity threshold. This might enable our 

models to perform more accurately when structurally similar templates are available.  

Deep learning models benefit considerably from large training sets. When more data 

samples are available in training set, this might potentially improve the prediction 

accuracy further. For this purpose, we are planning to increase the number of proteins in 

our training sets by including newer proteins that are added to Protein Data Bank, re-train 

our models and test their performance on test sets. We can also form newer test sets using 

proteins published in recent CASP competitions or using recent proteins that are 

deposited to PDB. 
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The main aim of all the studies in this thesis is to contribute to the 3-D structure prediction. 

Because of this reason, after getting additional improvements in predicting structural 

properties of proteins, we are planning to incorporate our prediction models into the 

pipeline of state-of-the-art 3-D structure prediction methods and improve the accuracy of 

3-D protein structure prediction. All the methods developed will also be made available 

as a web service application and will be integrated to our existing web server at 

http://psp.agu.edu.tr.  
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