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   Abstract 

 

In this study, the computational model is updated using an analytical model instead of an 

experimental one. Continuous and discrete parameter models of a Euler–Bernoulli beam are 

constructed analytically and computationally. To construct the computational models, Ansys™ 

software is employed, and 1-D beam elements are chosen to get the finite element model of a 

cantilever beam. To get analytical solutions for the continuous and discrete parameter models, a 

state-space representation is employed. In the first step, only mass and stiffness matrices are 

considered to model the beam. Eigenfrequencies and eigenvectors of the beam are calculated. The 

analytical and computational eigenfrequencies of continuous and discrete parameter models are 

compared. In the seconds step, non-proportional viscous damping and non-proportional structural 

damping matrices are introduced into the analytical discrete parameter model. Then, the frequency 

response functions of the model are generated. The damping matrices are identified using the 

generated frequency response functions. The damping matrices used in the analytical model, and the 

damping matrices identified using the frequency response functions are compared. It is observed 

that the assigned damping matrices and the identified damping matrices are identical, which shows 

that the computational model can be accurately updated provided the FRFs are available. 

 
 

 

 

1. Introduction
*
 

 

Deterministic element-based methods are widely used 

for modeling in structural dynamics; the most common one 

is the finite element method (FEM). Dynamic systems are 

mathematically expressed by mass, stiffness, and damping 

matrices. Finite element packages can populate mass and 

stiffness matrices using the data given in the preprocessing 

step such as, geometry and material properties of the 

structure. At this step, the model does not have a damping 

property, yet. Based on the Rayleigh damping model, a 

proportional damping matrix can be created using mass 

and stiffness matrices. This damping matrix does not 

reflect the actual physical behavior. For this reason, errors 

may occur in the final updated model. The error rate 

increases as the degrees of freedom (dof) of the dynamic 

model increase.  

                                                           
*
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Model updating has been developed with many 

different methods proposed since 1980s. Mottershead and 

Friswell systematically summarized the classical model 

update theory [1]. There are different approaches to model 

updating in the literature. The relevant methods are based 

on a direct algorithm or an iteration algorithm. System 

parameter-based methods have a more apparent physical 

meaning and better computing performance than matrix-

based methods. Response data-based methods are 

becoming more common as there is an advantage to avoid 

errors arising from mode identification. Due to the 

difficulty of modeling damping and measuring the 

dynamic properties, there is incompleteness in updating the 

damping values in existing model update methods.  

The mass matrix of a structure can accurately be 

estimated by finite element model, but there may be errors 

in the stiffness matrix. For this reason, it is stated that the 

stiffness matrix should be updated using an appropriate 

method [2]. A method that reduces the norm of the 

difference between the computational and the experimental 

modes is proposed [3]. It states that the mass and the 
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stiffness matrices should be evaluated simultaneously, 

when updating a model. The model update process would 

be more successful, if performed with the experimental 

model [4]. In another study, it is stated that mass, stiffness, 

and damping matrices should be updated simultaneously 

with the experimental data [5]. In a study held in 2012, 

uncertainties in experimental data were evaluated [6]. 

These studies mentioned in the literature are direct 

methods. 

Iteration methods are another topic in model update. 

It is the method of matching the modal matrices obtained 

with computational models using experimental data and 

constructing the updated model. In the literature, iteration 

is performed using frequency response functions (FRFs) 

measured experimentally, which is known as the response 

function method [7]. The response function method is 

expanded to update the proportional viscous and the 

proportional structural damping matrices [8]. In another 

study, the differences between the computational data and 

the experimental data are minimized by the so-called 

Taguchi method [9]. Sipple and Sanayei proposed a new 

approach to solve the inverse problem [10]. They used a 

new frequency response function-based model update 

method by employing numerical sensitivity, instead of 

analytical sensitivity [10]. It is proposed that the model 

update should be performed with undamped frequency 

response functions [11]. Researchers developed a new 

method to define the structural damping matrix which can 

be used in simple structures as the procedure requires exact 

measurements [12]. The error margin in the model update 

approach is computed by Matta and Stefano [13] using the 

experimental data of a large building. Damping is a crucial 

parameter in model updating studies. There are studies 

which compare different damping models in the literature 

[14][15].  

In the response method, frequency response functions 

are used to quantify the dynamic characteristics of the 

model [16-18]. Natke has summarized the model updating 

methods based on the transfer character [19]. In another 

study, residues in resonance and anti-resonance are taken 

as a reference to update a damped model. Lu and Zhenguo 

evaluated the structural parameters and the damping 

parameters at different network levels [20]. However, 

when Rayleigh damping is employed, the physical 

meaning of the modes is in question. To increase the 

accuracy of the lightweight structure tests, the stiffness and 

the damping matrices are updated using an experimental 

setup [21]. The damping identification in Ref [22] can 

provide a non-proportional structural damping matrix, 

which can be used directly in calculations. 

In this study, the computational model is updated 

using an analytical model, instead of an experimental one. 

Non-proportional structural damping and non-proportional 

viscous damping matrices are obtained using the response 

method. First, a computational and an analytical model of a 

600-mm length Euler-Bernoulli aluminum beam with a 

rectangular cross-section of 19 mm   3 mm is constructed. 

The boundary conditions are fixed-free, i.e., a cantilever 

beam. The material properties are as follows: Young’s 

modulus,      GPa and density,         kg/m
3
. 

Computational and analytical models are considered as 

continuous and discrete parameter systems. The percentage 

error between the computational and the analytical model 

is computed. In finite element modeling, as the number of 

elements increase, the convergence rate increases. 

Computational models are formed using Ansys™ where, a 

1-D beam element is chosen to obtain a finite element 

model of the structure. Continuous and discrete parameter 

analytical models are constructed using Matlab™. In the 

first step, the eigenfrequencies and the eigenvectors of the 

beams are calculated by considering mass and stiffness 

matrices only. Computational and analytical results of the 

continuous and the discrete parameter models are 

compared for the transverse vibration case. In the second 

step, non-proportional structural damping and non-

proportional viscous damping matrices are introduced to 

the analytical models. Frequency response functions of the 

analytical models are obtained through a state-space 

representation. The damping matrices are identified using 

the frequency response functions. The damping matrices 

that are used in the analytical model, and the damping 

matrices identified using frequency response functions are 

compared. 

 

2. Continuous Beam Model 

 

The continuous beam model is analyzed 

computationally and analytically. Transverse vibration 

results of the two analyses are compared. In both models, 

the first six eigenfrequencies are considered, and a 

cantilever Euler-Bernoulli aluminum beam is used. The 

dimensions of the beam are as follows: L×W×H   

600×19×3 in millimeters. 

 

2.1. Computational Continuous Beam Model 

 

Ansys Workbench is employed for the computational 

modeling of the continuous model. A 1-D beam element is 

used for the modeling procedure. In the first step, an 

undamped model is constructed. The beam is modeled in 

different element numbers to observe the convergence in 

the results. Convergence in the results is tabulated in Table 

1, where the number of elements is increased 

systematically.  
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2.2. Analytical Continuous Beam Model 

 

The analytical solution of the continuous beam model 

is obtained using Matlab 2019b. The equation of motion 

for a continuous Euler-Bernoulli beam is given as follows: 

 

  

   
      

      

  
             (1) 

 

 

Table 1  The comparison of first six eigenfrequencies of computational continuous model and analytical continuous model 

R
# 

Analytical 

continuous mode 
frequencies (Hz) 

Computational continuous mode frequencies (Hz) 

6 Elements Error (%) 8 Elements Error (%) 10 Elements Error (%) 100 Elements Error (%) 

1 6,815 6,815 0,0 6,815 0,0 6,815 0,0 6,815 0,0 

2 42,711 42,738 0,06 42,715 0,01 42,709 0,005 42,705 0,01 

3 119,592 120,24 0,54 119,77 0,15 119,64 0,04 119,55 0,04 

4 234,353 239,13 2,04 235,82 0,63 234,89 0,23 234,21 0,06 

5 387,402 408,46 5,44 394,04 1,71 389,99 0,67 387,02 0,1 

6 578,712 655,05 13,20 600,48 3,76 587,47 1,51 577,88 0,14 

 

In Eq. (1), E is the modulus of elasticity, I is the moment 

of inertia of the beam’s cross section, Y(x) is transverse 

displacement,   is natural frequency, m is mass per unit 

length, and x is the distance from the fixed point of the 

beam (See A.1 for a closed form solution).  

Computationally and analytically calculated 

eigenfrequencies are tabulated in Table 1, and the 

percentage error is calculated over the analytical results. 

The third mode shape of the continuous six dof beam 

model is shown in Figure 1.  

 

Figure 1. Third mode shape of the computational 

continuous model 

 

3. Discrete Beam Model 

 

For discrete parameter modeling, the identical beam 

is analyzed computationally and analytically. 

Computational discrete beam model analysis results are 

obtained using Ansys APDL Mechanical, and Matlab is 

employed to construct the analytical discrete parameter 

model. Eigenfrequencies of the 6-element beam are 

calculated. In the first step, the results of an undamped 

model are compared. Then, the frequency response 

functions are generated by assigning non-proportional 

damping values to the analytical discrete parameter model. 

The damping matrices are identified through the generated 

frequency response functions. (See Section 5)  

 

3.1. Computational Discrete Beam Model 

 

A 6-element beam model is constructed in Ansys 

APDL Mechanical, and the eigenfrequencies are 

computed. The computed eigenfrequencies are tabulated in 

Table 2. First mode shape of the computational discrete 

parameter model is shown in Figure 2. 

 

Figure 2. First mode shape of the computational discrete 

parameter model 

 

3.2. Analytical Discrete Beam Model 

 

The 6-dof discrete parameter model is built in Matlab 

using a state-space representation (See A.2). The 6-dof 

analytical discrete parameter model is shown in Figure 3, 

where m, k, c and d stand for mass, stiffness, viscous 

damping, and structural damping, respectively. 

Eigenfrequencies and frequency response functions can be 

calculated by introducing mass, stiffness, and damping 

matrices to the system. The mass and stiffness matrices are 
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derived from Ansys APDL Mechanical using the “DMAT” 

command. The mass matrix and the stiffness matrix are 

given in Table 3 and Table 4, respectively. The undamped 

eigenfrequencies and the percentage error values are 

tabulated in Table 2.  Then, viscous, and structural 

damping matrices, where introduced in Section 5 are 

assigned. 

 

Table 2. Comparison of eigenfrequencies of computational 

discrete beam model and analytical discrete beam model. 

Mode 
Computational- 

discrete (rad/s) 

Analytical- 

discrete (rad/s) 
Error (%) 

1 891,08 891,23 0,02 

2 2734,57 2735 0,02 

3 4762,15 4762,96 0,02 

4 7068,58 7069,94 0,02 

5 9552,95 9554,43 0,02 

6 11463,04 11464,73 0,02 

 

 

Table 3. The mass matrix of analytical discrete beam 

model 

1.053e-2 2.631e-3 0 0 0 0 

2.631e-3 1.053e-2 2.631e-3 0 0 0 

0 2.631e-3 1.053e-2 2.631e-3 0 0 

0 0 2.631e-3 1.053e-2 2.631e-3 0 

0 0 0 2.631e-3 1.053e-2 2.631e-3 

0 0 0 0 2.631e-3 5.263e-3 

 

Table 4. The stiffness matrix of analytical discrete beam 

model 

3.637e5 -1.819e5 0 0 0 0 

-1.819e5 3.637e5 -1.819e5 0 0 0 

0 -1.819e5 3.637e5 -1.819e5 0 0 

0 0 -1.819e5 3.637e5 -1.819e5 0 

0 0 0 -1.819e5 3.637e5 -1.819e5 

0 0 0 0 -1.819e5 1.819e5 

 

 

Figure 3 Discrete parameter system of six degrees of freedom analytical model (m: mass; k: stiffness, c: viscous 

damping; d: structural damping) 
 

4. Damping Identification  

 

Equation of motion of a damped system in time 

domain is given as follows: 

 

                              (2) 

Here M, K, C and D represent n × n mass, stiffness, 

viscous damping, and structural damping matrices, 

respectively. f and x are   × 1 force and displacement 

vectors. If the excitation is harmonic,               

and              . Hence, Eq. (2) can be written in 

frequency domain as follows: 

 

                         (3) 

The term in square brackets is the dynamic stiffness 

matrix, and the inverse of this matrix is the complex 

receptance matrix        :  

 

                             (4) 

The receptance matrix can be populated using the 

receptance functions estimated through experimentation, 

where the displacement vector      is measured. The 

relation is given by: 

 

               (5) 

The complex receptance matrix consists of real and 

imaginary parts, which can be expressed: 

 

         
        

     (6) 

where the subscripts R and I stand for the real and 

imaginary values of the matrix, respectively. The 

undamped or normal receptance matrix can be expressed 

as follows: 

 

                 (7) 

which is the receptance type frequency response function 

matrix generated from the normal modes. Pre-multiplying 

Eq. (2) by the normal receptance matrix yield 

 

                                (8) 
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Transformation matrix can be expressed by 

                 (9) 

Substituting the transformation matrix into Eq. (8), yields 

 

                        (10) 

where I denote identity matrix. Using the relation given by 

Eq. (6), Eq. (10) can be rewritten as  

 

                     (11) 

so as to eliminate the displacement vector     . 

Substituting Eq. (6) into Eq. (11) yields 

 

            
        

            (12) 

which can be rearranged as 

 

   
           

     
     

    
       

            
(13) 

where the left-hand side has real and imaginary 

components. Since the right-hand side of Eq. (13) has only 

real components, the following statements are true for all 

frequencies: 

 

   
           

            

        
       

        
(14) 

   
           

           (15) 

Viscous and structural damping can be identified by 

substituting Eq. (9) into Eq. (14), which yields: 

 

                   
       

        (16) 

If the complex receptance matrix has been measured 

experimentally, the normal receptance matrix can be 

calculated, and if the normal receptance matrices are 

known, damping matrix can be calculated. Note that, Eq. 

(16) can be solved in a least-squares approach. It is 

recommended to use the pseudo inverse operator        

for the matrix inversion, which returns a least-squares 

solution. Hence, 

 
 
 
     

     
 

  
     

 
 

 

 
  

     
 

  
     

  
   

      
 

 
   

      
 
  (17) 

 

5. Frequency Response Functions 

 

In this section, non-proportional damping matrices 

are assigned to the analytical discrete parameter model, 

and the complex frequency response functions are 

generated. The assigned viscous and structural damping 

matrices are identified through the complex frequency 

response functions.  

One of the frequency response functions of the non-

proportional structural damped six degrees of freedom 

discrete parameter model, namely FRF11 is shown in 

Figure 4. In Figure 5, all the diagonal terms of the 

frequency response function matrix of the discrete 

parameter model are given. To yield the effect of damping 

on the model, the undamped aka normal frequency 

response functions (NFRFs) of the model are compared 

with the damped frequency response function. The 

comparisons are made for viscously damped and 

structurally damped models in Figures 6 and 7, 

respectively. 

 

 

Figure 4. Frequency response function of the non-

proportional structural damped six degrees of freedom 

discrete parameter model (FRF 11) 

 

 

Figure 5. Frequency response functions of non-

proportional structural damped six degrees of freedom 

discrete parameter model (FRFs) 
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Figure 6. Frequency response function and normal 

frequency response function of the non-proportional 

viscous damped six degrees of freedom discrete parameter 

model (FRF 11 and NFRF 11) 
 

The non-proportional viscous damping matrix 

assigned to the analytical discrete parameter model is as 

follows: 
 

                   
 

 
 
 
 
 
 
  
   
 
 
 
 

   
  
   
 
 
 

 
   
  
   
 
 

 
 

   
  
   
 

 
 
 

   
  
   

 
 
 
 

   
  

 

 
 
 
 
 
 

 

 

The identified viscous damping matrix through the 

complex frequency response functions is as follows: 
 

             

 
 
 
 
 
 
  
   
 
 
 
 

   
  
   
 
 
 

 
   
  
   
 
 

 
 

   
  
   
 

 
 
 

   
  
   

 
 
 
 

   
  

 

 
 
 
 
 
 

 

 

 

Figure 7. Frequency response function and normal 

frequency response function of the non-proportional 

structural damped six degrees of freedom discrete 

parameter model (FRF 11 and NFRF 11) 

The non-proportional structural damping matrix 

assigned to the analytical discrete parameter model is as 

follows: 

   

 
 
 
 
 
 

      
        

 
 
 
 

        
       
        

 
 
 

 
        
        
        

 
 

 
 

        
        
      

 

 
 
 

      
     
     

 
 
 
 

     
    

 

 
 
 
 
 
 

 

The identified structural damping matrix through the 

complex frequency response functions is as follows: 

 

             

 
 
 
 
 
 

      
        

 
 
 
 

        
       
        

 
 
 

 
        
        
        

 
 

 
 

        
        
      

 

 
 
 

      
     
     

 
 
 
 

     
    

 

 
 
 
 
 
 

 

It is shown that the assigned and the identified 

damping matrices are identical.  

 

6. Conclusions 

 

 It is shown that the damping matrix values assigned to 

the model can be identified identically through the 

complex frequency response functions of the model.  

 

 Once the frequency response functions of a structure 

are known by measurement, the structural and viscous 

damping matrices can be identified.  

 

 If the computational model is updated using the 

identified damping matrices, the results will be more 

accurate for engineering structures.    
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Appendices 
 

Using (Eq.1) and the boundary conditions for a 

cantilever beam, the closed form natural frequency can be 

written as follows:  

 

     
  

  

   
  (A.1) 
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The state-space representation used for the system is 

as follows: 

 

   
  

               
  

   
 

    ;            ;         

(A.2) 

 

 

 

 

 

 

 

 

 

 

 


