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ABSTRACT 

SKIN CANCER DETECTION AND CLASSIFICATION FROM 

DERMATOSCOPIC IMAGES USING DEEP LEARNING 

METHODS 
 

Serdar KALAYCI 

MSc. in Electrical and Computer Engineering 

Supervisor: Prof. Bülent YILMAZ  

June 2023 

 

Early detection of skin cancer is crucial for successful treatment and improved patient 

outcomes. The most prevalent form of cancer is skin cancer and if left undetected, it can 

spread and become more difficult to treat. A dangerous and frequently fatal type of skin 

cancer is melanoma. Regular skin examinations and self-examinations can help identify 

suspicious moles or lesions, which can then be evaluated by a dermatologist. In addition, 

advances in technology and artificial intelligence have enabled the development of tools 

for automated skin cancer screening, providing a convenient and efficient means of early 

detection. This can lead to more efficient diagnosis, reduced healthcare costs and 

improved patient care. By evaluating skin lesions from images, deep learning techniques 

have shown considerable potential in increasing the precision of melanoma detection. By 

using large datasets and complex neural networks, deep learning algorithms can 

effectively distinguish between benign and malignant skin lesions with high accuracy. 

Ensemble of CNN models helps improve the performance and reliability of the 

classification task. By combining the predictions of multiple CNN models lead to more 

accurate and robust predictions. In this thesis, for melanoma classification problem, many 

different data augmentations techniques applied and different convolutional neural 

networks architectures evaluated, applied vignetting effect filter and hair noise in 

accordance with the dataset and results of ensemble of the best CNN models are 

promising.  This thesis attempts to produce a reliable model for the classification of 

melanoma by conducting experiments on two combined publically accessible data sets, 

ISIC 2019 and ISIC 2020. On the testing sets in our studies, the proposed solution attained 

95.75% AUC.  

Keywords: Deep Learning, Convolutional Neural Networks, Vignetting Effect, Hair 

Noise, Skin Cancer 
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ÖZET 

DERİN ÖĞRENME YÖNTEMLERİ KULLANARAK 

DERMATOSKOPİK GÖRÜNTÜLERDEN OTOMATİK CİLT 

KANSERİ TESPİTİ VE SINIFLANDIRILMASI 

Serdar KALAYCI 

 Elektrik ve Bilgisayar Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi:  Prof.Dr. Bülent YILMAZ 

Haziran-2023 

 

Cilt kanserinin erken teşhisi, başarılı tedavi ve daha iyi hasta sonuçları için çok önemlidir. 

Cilt kanseri en yaygın kanser türüdür ve tespit edilmezse yayılabilir ve tedavisi daha zor 

hale gelebilir. Melanom, cilt kanserinin ciddi ve genellikle ölümcül bir şeklidir. Düzenli 

cilt muayeneleri daha sonra bir dermatolog tarafından değerlendirilebilecek olan şüpheli 

benleri veya lezyonları belirlemeye yardımcı olabilir. Buna ek olarak, teknolojideki ve 

yapay zekadaki gelişmeler, otomatik cilt kanseri taraması için araçların geliştirilmesini 

mümkün kıldı ve erken teşhis için uygun ve etkili bir araç sağladı. Bu, daha verimli tanıya, 

daha düşük sağlık maliyetlerine ve daha iyi hasta bakımına yol açabilir. Derin öğrenme 

yöntemleri, görüntülerden cilt lezyonlarını analiz ederek melanom tespitinin doğruluğunu 

artırmada büyük umut vaat ediyor. Derin öğrenme algoritmaları, büyük veri kümelerini 

ve karmaşık sinir ağlarını kullanarak iyi huylu ve kötü huylu cilt lezyonlarını yüksek 

doğrulukla etkili bir şekilde ayırt edebilir. CNN modelleri topluluğu, sınıflandırma 

performansını ve güvenilirliğini artırmaya yardımcı olur. Birden fazla CNN modelinin 

tahminlerini birleştirilmesi daha doğru ve sağlam tahminlere yol açar. Bu tezde, melanom 

sınıflandırma problemi için birçok farklı veri artırma tekniği uygulanmış ve farklı 

evrişimli sinir ağları mimarileri değerlendirilmiş, veri setine uygun olarak uygulanan 

vinyet etkisi ve kıl gürültüsü ve en iyi CNN modellerinden oluşan topluluk sonuçları umut 

vericidir. Bu tez, halka açık iki veri seti olan ISIC 2019 ve ISIC 2020 üzerinde deneyler 

yaparak melanom sınıflandırması için sağlam bir model oluşturmayı amaçlamaktadır. 

Çalışmalarımızda, önerdiğimiz çözüm test setlerinde %95,75 doğruluk elde etti. 

Anahtar kelimeler: Derin Öğrenme, Evrişimli Sinir Ağları, Vinyetting Etki, Kıl Gürültüsü, 

Cilt Kanseri 
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Chapter 1 

Introduction 

1.1 Motivation 

Skin cancer that is on the rise and is severe and potentially lethal is melanoma. It 

ranks in the top five most prevalent malignancies in males and the top seven in women. With 

2% people getting it, it is relatively common in the general population. Additionally, 

melanoma is to blame for 75% of skin cancer-related fatalities [1].  

 

A diagnostic technique called dermatoscopy enables a closer study of the skin without 

the need for invasive procedures. At first, it was mainly utilized to evaluate pigmented 

melanocytic lesions, however, it has now been applied in multiple areas of dermatology. The 

dermatoscope is increasingly being used as a diagnostic tool, similar to how the stethoscope 

is used by general practitioners and pathologists [2]. 

Dermatoscopy images have been used to classify melanoma and deep learning has 

emerged as a promising tool that could be more accurate and effective than conventional 

techniques. Researchers have looked into using deep learning models on dermatoscopy 

images, which offer precise views of skin lesions, in order to make more accurate and 

automated melanoma diagnoses. Deep learning has been proven successful in melanoma 

classification using dermatoscopy images in numerous studies. When using dermatoscopy 

images to distinguish between malignant and benign skin lesions, Lopez et al. [3] developed 

a deep neural network that obtained good accuracy. A deep ensemble architecture was 

presented by Codella et al. [4] and outperformed human experts in melanoma classification 

tests using dermatoscopy images. 
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Deep learning and ensemble methods for melanoma classification have produced 

encouraging outcomes. The ensemble can gain from the diversity and complementary 

qualities of distinct models by merging the predictions of various models. This can lessen the 

effects of overfitting, cut down on generalization errors and increase the stability of the 

classification system. Rather than using a single model, in order to accurately detect 

melanoma, Kim et al. [5] suggested an ensemble model built on multiple deep residual 

networks. 

1.2 Organization of the Thesis 

The remainder of the thesis is structured as follows: A thorough overview of the steps 

in medical diagnosis and dermatoscopy in this field is given in Chapter 2, which starts with 

medical facts about skin and skin cancer, the next section provides general information on 

machine learning as well as technical information on the CNN models utilized in this thesis 

to discuss deep learning and transfer learning and finally a general overview of ensemble 

learning methodologies is offered. Chapter 3 provides a thorough description of the research 

using medical and dermatoscopy images that were carried out using machine learning and 

intricate deep learning techniques. Chapter 4 begins by giving comprehensive details 

regarding the data set used in this thesis and then the flow of the proposed system and the 

key procedures were presented followed by metrics for evaluating performance 

requirements. Numerous approaches that are described in the training flow are explained and 

compared in Chapter 5. In Chapter 6, the results of the suggested techniques are covered and 

Chapter 7 concludes by summarizing the argument, outlining its important contributions, 

explaining where the findings take us and what possible future research might entail. 

 

 

 

 

 



3 

 

Chapter 2 

Background 

2.1 Skin Cancer 

The biggest organ in the human body, the integumentary system, which includes the 

skin and its appendages (hair, nails, perspiration and oil glands), has an average surface area 

of 2.0 square meters. The skin's primary function is to shield the body from various external 

factors, such as germs, chemicals and temperature. Additionally, the skin has bacterial-killing 

secretions and the pigment melanin serves as a chemical barrier against UV radiation, which 

can injure skin cells [6].  

 

 

Figure 2.1 Skin layers [7] 
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Although the skin is made up of several layers, the epidermis, which is the top layer 

and the dermis, which is the layer below it, are the two main layers, as shown in figure 2.1. 

 

Uncontrolled cell development on the skin due to alterations in DNA structure causes 

what leads to skin cancer. In the world, it is the 17th most prevalent cancer, with 1.8 million 

cases anticipated in 2020 [8]. For patients whose melanoma is found early, the predicted five-

year survival rate is over 99 percent. The survival rate falls to 71% when the disease 

progresses to the lymph nodes and to 32% when it spreads to distant organs [9]. The majority 

of skin cancer cases occur on sun-exposed body parts such the hands, face, neck, arms, ears, 

chest and scalp [10]. 

 

 

Figure 2.2 Skin layers and the most common skin cancer types [11]  

The three most prevalent types of skin cancer are melanoma, squamous cell 

carcinomas and basal carcinomas. The two most typical kinds of cancer are basal and 

squamous cell carcinomas. They both start in the skin's basal and squamous layers and while 

both are typically curable, they can both be disfiguring and expensive to treat. Contrarily, 

melanomas, the third most common form of skin cancer, begin in the melanocytes. It is the 

most fatal because to its propensity to spread to other bodily parts, especially vital organs 
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[10]. Excessive exposure to ultraviolet (UV) rays from the sun, tanning beds or sunlamps is 

the main cause of skin cancer. Sunburns can occur as a result of UV radiation damaging skin 

cells. But over time, UV harm accumulates and causes skin texture changes, early aging and 

occasionally skin cancer.  In contrast to malignancies that develop within, skin cancers form 

on the outside and are typically noticeable. By keeping an eye out for odd changes in the 

skin, skin cancer can be diagnosed early. Early skin cancer detection offers the best chance 

for successful medical care [12]. 

2.2 Medical Diagnosis 

The medical diagnosis is influenced by the patient's past, social interactions , ethnicity 

and exposure to sun. In the office, suspicious lesions are biopsied and sent to the laboratory 

for permanent paraffin section processing and pathologist evaluation on representative glass 

slides [13]. 

2.2.1 Medical Practices in Dermatology 

The study of illnesses of the skin, hair and nails is known as dermatology which 

focuses on their diagnosis and treatment. Dermatology encompasses a wide range of research 

and clinical activities aimed at understanding and diagnosing various skin conditions and 

abnormalities. It involves the examination and assessment of both normal and abnormal skin 

conditions, as well as the diagnosis and management of skin diseases, cosmetic concerns, 

cancers and aging-related issues.  

 

Dermatology comprises the study of the skin, subcutaneous hair, fat, oral mucaso, 

nails and genital membranes. It involves the use of different investigative techniques and 

therapeutic approaches, including dermatohistopathology (the microscopic examination of 

skin tissue), topical and systemic medications, cosmetic procedures,  dermatologic surgery, 

phototherapy, radiotherapy immunotherapy and laser therapy [14].  
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2.2.2 Imaging in Dermatology 

Technology has been successfully adapted in the field of dermatology to improve 

visual skin examination. The dermatologist now has new instruments to noninvasively 

examine skin features both macroscopically and microscopically because of advancements 

in optics and light technology. Although there is a learning curve involved, dermatoscopy has 

established itself as the gold standard of care in the majority of dermatologic practices. There 

have been various studies establishing its use and demonstrating its benefits due to its 

widespread availability. Similar to dermatoscopy, dermatologists can now see the skin more 

clearly thanks to the use of digital imaging, 3D imaging, ultrasound and optical coherence 

tomography. Whether used to track nevus progression or noninvasively diagnose, detect or 

characterize cancer margins, these techniques are transforming the sector [15]. 

2.2.3 Dermatoscopy and Its Advantages with Limitations 

The use of a dermatoscope to examine skin lesions is known as dermatoscopy. This 

technique, sometimes referred to as dermatoscopy or epiluminescence microscopy, enables 

examination of skin lesions without being impeded by skin surface reflections. It is an in-

vivo method that has long been effective for assessing suspected skin lesions [16]. 

 

 

Figure 2.3 Dermatoscopy [17] 

To identify lesions and distinguish non-melanoma skin malignancies such basal cell 

carcinoma or squamous cell carcinoma or melanocytic lesions from dysplastic lesions 

melanomas dermatoscopy can be used. A growing number of dermatological disorders, 
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including those affecting the scalp, hair and nails, as well as pigmentary dermatoses, 

inflammatory dermatoses, infectious dermatoses, have recently been identified as having 

dermatoscopy. As the utility of dermatoscopy increases, practitioners in virtually all 

specialties should be knowledgeable about this simple, non-invasive and high-yield 

diagnostic technique [18]. When done by specialists, dermatoscopy has been shown in 

numerous studies to be helpful in the identification of melanoma. It could improve clinical 

diagnosis accuracy by up to 35% and lessen the need to remove benign lesions. It can cause 

primary care to refer to more suspicious lesions and less common ones [19]. 

 

Dermatoscopy has many benefits. It magnifies skin 10 times to make it easier to 

diagnose a variety of skin lesions. Detects both pigmented and non-pigmented skin cancer 

more sensitively, precisely and accurately than unaided eyes. Compared to a visual 

examination using just the eyes alone, dermatoscopy increases the accuracy of skin lesion 

diagnosis. It facilitates the differentiation between benign and malignant lesions by allowing 

the observation of fine structures and patterns that are invisible to the human eye. Due to its 

ability to identify specific dermatoscopic characteristics linked to malignancy, dermoscopy 

aids in the early detection of melanoma. A non-invasive approach, dermatoscopy does not 

include any invasive treatments. It is a recommended option for standard skin inspections 

because it is painless and well-tolerated by patients. On the other hand, it has some drawbacks 

as well. It requires proper training and outcomes interpretation is arbitrary. Applications are 

limited by the low magnification. Dermatoscopic image interpretation can be arbitrary, which 

causes inter-observer variability among various dermatologists. Standardized criteria and 

training programs can increase consistency in interpretation. Dermoscopy is mostly used for 

pigmented lesions like melanoma and melanocytic nevi. Due to the less well-defined 

dermatoscopic features of non-melanocytic and non-pigmented lesions, it may only be 

partially useful in treating these conditions. Dermatoscopy requires specialist tools which 

could be expensive. In some circumstances, especially those with little resources, access to 

high-quality dermatoscopes may be restricted [20]. 
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2.3 Machine Learning 

Machine learning is a branch of artificial intelligence that focuses on developing 

mathematical models and algorithms that can recognize patterns and insights in data without 

explicit programming [21]. This implies that a computer can be trained on a sizable dataset 

and then utilize that training to make decisions or predictions about new data. 

2.3.1 Categories of Machine Learning Algorithms 

Four major categories can be used to classify machine learning algorithms, which are 

based on the types of learning problems they are designed to address. A list of these categories 

is: 

● Supervised Learning: Using labeled data, an algorithm is trained in supervised 

learning. This indicates that a related output or target variable is linked to the input 

data. The algorithm gains knowledge from this labeled data and can subsequently be 

used on new, unlabeled data to generate predictions or choices. By adjusting the 

algorithm's weights or parameters during training, reduce the gap between the output 

that is anticipated and the output that is actually produced by using supervised 

learning [21]. 

● Unsupervised Learning: Using algorithms to assess unclassified or unlabeled data 

is the subject of the machine learning subfield known as unsupervised learning. The 

input data does not have a corresponding output or target variable and the algorithm 

learns to identify patterns, relationships or clusters without any prior information 

about the data. Unsupervised learning's ultimate goal is to extract meaningful insights 

and structure from the data, such as hidden patterns or collections of related data 

points [22]. 

● Semi-supervised Learning: Semi-supervised learning, a kind of machine learning, 

is used to create a model from a mix of unlabeled and labeled data. The labeled data 

is used to learn patterns and make predictions, while the unlabeled data helps to 

improve the accuracy of predictions. This method is advantageous since it is often 

more difficult and costly to obtain labeled data than unlabeled data. Semi-supervised 

learning algorithms frequently achieve higher accuracy than supervised learning 
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algorithms because they make use of the wealth of unlabeled data rather than only 

labeled data [23]. 

● Reinforcement Learning: A type of machine learning called reinforcement learning 

(RL) involves an agent interacting with its surroundings and learning from the input 

it receives. The agent is rewarded or punished based on its actions in the environment 

and its objective is to discover the best behavior that will maximize the total reward 

in the long run. By experimenting and adapting its behavior based on feedback, the 

agent learns through trial and error. In a variety of industries, including robots, 

gaming and recommendation engines, reinforcement learning has been successfully 

applied [24]. 

2.3.2 Neural Networks 

Mathematical models called neural networks replicate the composition and 

functionality of actual neurons. These models consist of numerous interconnected processing 

units termed nodes or artificial neurons. Each neuron gets input from other neurons, adds up 

those inputs, performs a nonlinear transformation and then sends the outcome to other 

neurons. Usually, the connections between neurons are weighted, signifying that some inputs 

have more impact than others on the output of the neuron [25]. 

 

Figure 2.4 A basic artificial neuron [26] 

Neural networks come in a wide range of varieties. There are many more neural 

network types, as well as modifications and combinations of the more popular types, which 

are listed below: 

 



10 

 

 Feed forward neural networks: The most typical kind of neural network, where 

data travels in a straight line from input nodes through hidden layers to output nodes. 

 

 

Figure 2.5 The two layered feed forward neural network's structure [27] 

 Recurrent neural networks (RNNs): Networks having feedback connections, 

which enable data to loop back into the network, are able to process input sequences 

like time series data or text written in natural language [28]. 

 Convolutional neural networks (CNNs): Convolutional layers apply filters to find 

local patterns in the input in image processing networks. Through the use of 

convolutional layers, CNNs are created to automatically recognize and extract 

hierarchical patterns and characteristics from the input data [29]. 

 Autoencoders: Networks created for unsupervised learning that reduce the 

dimensions of input data before reconstructing the original input from the reduced 

representation [30]. 

 Generative adversarial networks (GANs): Networks created to produce artificial 

data that is similar to the training data. They consist of two networks: a discriminator 

network that attempts to distinguish fake data from actual data and a generator 

network that creates new data [31]. 

 Reinforcement learning networks (RLNs): Networks designed for learning from 

trial-and-error interactions with an environment, where the network receives rewards 

or punishments for actions taken in the environment [32]. 
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2.3.3 Convolutional Neural Networks 

A subclass of deep neural networks called convolutional neural networks has showed 

promise in a number of computer vision applications, including object segmentation, image 

classification and object detection. The visual cortex in the brain has been the inspiration for 

CNNs, a kind of feedforward neural network that aims to automatically learn meaningful 

regions from images and extract features from images without the need for manual feature 

engineering [29]. CNNs typically consist of many layers, including the following, which are 

described in detail in the subsections. 

2.3.3.1 Input Layer 

A convolutional neural network's input layer stores input images as an array of 

numbers, where each member represents a pixel in the image. Based on their dimensions and 

pixel count, the images are represented as a matrix array. 

2.3.3.2 Convolution Layer 

In order to extract features from the input data, the convolutional layer, which is the 

main component, is accountable. The convolution procedure is carried out by a series of 

learnable filters sliding over the input image or feature map [33].  

 

 

Figure 2.6 Convolution operation [34] 

By conducting a dot product between each filter's weights and a specific area of the 

input data, the output feature map is produced by each filter as a single value. The 

convolutional layer may learn to recognize patterns and features at various scales and 
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locations by swiping the filters over the input data. It can then learn to recognize intricate 

features and patterns in the input data. 

2.3.3.3 Pooling Layer 

Following convolutional layers, pooling layers are frequently applied to cut down on 

the spatial dimensions of the feature maps and add some translation invariance to the 

network. The most prevalent pooling technique is max pooling, which only retains the 

greatest value obtained in a specific local region of the feature map and discards the 

remaining values. 

2.3.3.4 Activation Function 

The activation function layer of a convolutional neural network adds nonlinearity to 

the output of the layer before it. Each neuron's output from the layer before is subjected to 

the element-by-element application of the activation function to create a new output [28]. 

This layer's goal is to give the model nonlinearity so that it can pick up on intricate, nonlinear 

interactions between the input and output. The sigmoid function, ReLU (Rectified Linear 

Unit) [35] and its subtypes Leaky ReLU [36] and ELU (Exponential Linear Unit) [37] are 

common activation functions. 

2.3.3.5 Dropout 

Dropout regularization technique is used by convolutional neural networks to 

improve generalization performance and decrease overfitting [38]. During the training phase, 

a certain percentage of neurons in a layer are randomly deactivated. By "dropping out" or 

"zeroing out" a portion of the neuron activations during each training iteration, the dropout 

strategy works by adding unpredictability into the network. Different combinations of 

neurons are triggered or silenced during training, forcing the network to learn increasingly 

robust and generalizable characteristics. Specifically defining a dropout probability or 

dropout rate, which establishes the likelihood of deactivating a neuron, is how dropout is 

really utilized in practice. A random binary mask is applied to the activations of the neurons 

in the dropout layer during training, setting a portion of them to zero for each input example. 

The entire network is utilized during inference or testing without dropout, but the weights of 

the neurons are changed to reflect the decreased activations during training. 
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2.3.3.6 Batch Normalization 

Convolutional neural networks can be trained more steadily and quickly by using the 

batch normalization technique [39]. It entails dividing by the standard deviation and 

subtracting the mean from the activations of a layer over a small sample of training samples. 

By minimizing internal covariate shift or the alteration in the distribution of layer activations 

during training, batch normalization benefits in the stabilization of the training process. As a 

result, there is a quicker network convergence and less need for rigorous initialization or 

learning rate tweaking. 

2.3.3.7 Fully Connected Layer 

Every fully coupled neuron in a convolutional neural network layer, also known as a 

dense layer, is coupled to every neuron in the layer behind it. This layer seeks to learn higher-

level features by combining the lower-level features that the preceding layers have acquired. 

Each neuron in the fully connected layer performs a weighted sum of the inputs after the 

input is typically flattened into a one-dimensional array of values, followed by an activation 

function. The output of the completely linked layer is a vector of probabilities showing the 

likelihood of each class designation. The fully connected layer is often the last layer in a 

CNN and its output is used for making predictions. 

2.3.3.8 Output Layer 

The output layer in a convolutional neural network is responsible for producing the 

final output of the network based on the extracted features from the previous layers. It 

typically consists of one or more neurons that compute a numerical score or probability for 

each possible output class. The output layer applies a suitable activation function to the 

computed score to convert it into a meaningful prediction or decision. Depending on the 

nature of the task, regression, binary classification or multi-class classification may be 

employed as the activation function [40]. 
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2.4 Deep Learning and Transfer Learning 

Deep learning is a branch of machine learning that models and resolves complicated 

issues requiring vast amounts of data by using artificial neural networks. These neural 

networks, which consist of many layers of connected nodes, can learn to recognize patterns 

and other properties in the data using a procedure known as backpropagation. In fields like 

audio and image identification, natural language processing and others where conventional 

machine learning techniques have found it difficult to make significant progress, deep 

learning algorithms have been extremely effective [29]. 

 

Transfer learning is a deep learning method that involves training a new model on a 

related task utilizing an existing neural network that has already been learnt. Transfer learning 

is the concept that a neural network can apply the knowledge it gains from addressing one 

problem to another problem that is closely related [41]. The pre-trained network, also known 

as the source network, is often trained on a large dataset and has mastered the recognition of 

a variety of patterns and characteristics. 

2.4.1 Approaches to Transfer Learning 

The transfer learning process involves adapting the learned representations of the 

source network to the new target task by fine-tuning the weights of some or all of the layers 

in the network. This method frequently produces better results than training a model from 

scratch and can significantly minimize the quantity of data and compute needed to do so [42]. 

There are several common ways to apply transfer learning in deep learning: 

 Feature extraction: A pre-trained model is used in this technique to extract features 

from the input data. The newly created model, which is trained for a particular job, 

such as classification or regression, is then fed the extracted features. 

 Fine-tuning: With this approach, a pre-trained model is used and the weights of some 

or all of its layers are changed in response to a new task. When the new task's structure 

resembles that of the original task for which the pre-trained model was created, fine-

tuning is very beneficial. 
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 Pre-training: This method involves using an existing model that has already been 

trained as a base to train a new model on a separate but related job. For instance, a 

new model can be trained on a smaller dataset of images from the medical field using 

a model that has already been trained on a big dataset of images from the natural 

world. 

 

 

Figure 2.7 Illustration of transfer learning [43] 

These approaches can be combined and customized to suit different applications and 

datasets. Particularly in situations when the amount of accessible data is constrained, transfer 

learning can be a potent technique for lowering the amount of data and training time 

necessary to attain good performance on a new task. The popular CNN models used in the 

transfer learning method and used in this thesis are presented in the subtitles with their 

detailed explanations and prominent architectural features. 

 

 ResNet: ResNet, also known as Residual Network, is a well-known convolutional 

neural network architecture that has drawn significant attention for a number of 

computer vision problems. He et al. [44] introduced it, as a result of their image 

recognition research in 2015. Skip connections, also known as residual connections, 

were introduced by the ResNet design. By addressing the vanishing gradient problem, 

these connections enable the training of extremely deep neural networks, which can 

enhance model performance. ResNet's primary building blocks are residual networks, 

in which intermediate layers of a block are taught a residual function using the input 
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from the block. Other variations of ResNet exist with varying amounts of layers but 

the same fundamental concept. The usage of residual blocks, which enables the 

network to learn identity mappings. As shown in figure 2.8, the residual block also 

has a shortcut connection that skips one or more levels and has two convolutional 

layers as part of its construction. Instead of learning the full mapping from scratch, 

the network can instead learn a residual mapping, which is the difference between the 

block's input and output. Because of this, the vanishing gradient problem, which 

appears in deep neural networks when the gradients get too small to spread throughout 

the network, is mitigated. 

 

 

Figure 2.8 Residual block [44] 

 DenseNet: Short for Dense Convolutional Network, DenseNet is a deep learning 

architecture that has become well-known for its effective parameter management and 

enhanced gradient flow. The term was first used by Huang et al. [45] in their 2017 

research titled "Densely Connected Convolutional Networks." The well-known 

DenseNet design decreases the number of parameters, encourages feature reuse, 

enhances feature propagation and lessens the vanishing gradient issue. Each layer in 

a thick convolutional neural network has a feed-forward link to every other layer. 

Every layer in DenseNet receives as additional input the feature maps of all layers 

that came before it and delivers its own feature maps to all levels that follow, as seen 

in figure 2.9. As a result, each level below layer n receives n inputs. By down 

sampling layers, CNN routinely tries to alter the size of the feature map. DenseNet, 

on the other hand, separates the network into numerous, densely connected sections, 

enabling feature concatenation and down-sampling. Inside the blocks, the size of the 
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feature map is unaltered. Convolution and pooling are two down-sampling techniques 

used outside of dense blocks, however concatenation is employed inside of dense 

blocks since the feature maps inside are all the same size.  

 

Figure 2.9 5-Layer dense block [45] 

 SE-ResNeXt: The advantages of ResNeXt and Squeeze-and-Excitation (SE) blocks 

are combined in SE-ResNeXt, a deep learning architecture. Hu et al. [46] first 

mentioned it in their study titled "Squeeze-and-Excitation Networks”. ResNeXt is an 

architecture for convolutional neural networks that extends the ResNet architecture 

by introducing the concept of "cardinality." The cardinality parameter controls the 

number of parallel paths that process the input data within each residual block. This 

increases the model's capacity for representation and enables the network to record a 

wider range of feature interactions. Each residual block in ResNeXt is made up of a 

number of convolutional layers, batch normalization and ReLU activation function. 

The input to the block is processed by a series of simultaneous "transform" layers that 

perform various convolutions on the data after it has been reduced in dimension by a 

"squeeze" layer. In order to create the output of the block, the output of the transform 

layers is lastly "unsqueezed" and added to the initial input. The Squeeze-and-

Excitation (SE) ResNeXt architecture is an extension of the ResNeXt architecture, 
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which in turn is an extension of the ResNet architecture. SE-ResNeXt employs a 

block structure with the addition of a "squeeze-and-excitation" module, as shown in 

figure 2.10. The weighting of each feature channel is adaptively adjusted by the 

squeeze-and-excitation module using a channel-by-channel feature recalibration 

process. It entails of two steps: a "squeeze" step that lowers the feature map's spatial 

dimension to a single value and a "excitation" stage that models channel dependencies 

and teaches how to assign relevance scores to each of them.  A modular block 

structure with multiple parallel paths is used to process the input data. However, it 

also includes the SE module in each block, which enables it to learn more informative 

feature representations by selectively emphasizing important channels. 

 

Figure 2.10 A Squeeze-and-Excitation(SE) block [46] 

 

 ResNeSt: ResNeSt is a deep learning architecture that was first described by Zhang 

et al. [47] in their paper titled "ResNeSt: Split-Attention Networks" from 2020. The 

ResNet architecture, on which Resnest is built, leverages residual blocks to enable 

the training of extremely deep networks. However, Resnest introduces a new concept 

called "split attention" to enhance the feature representation. The idea behind split 

attention is to split the input feature maps into groups, then apply attention mechanism 

on each group independently and finally concatenate the outputs. The split procedure 

separates the input feature maps into a number of branches. To capture various types 

of information, each branch employs a unique set of transformations. Different kernel 

sizes or dilation rates could be part of these modifications. By executing a weighted 

total, the merge process mixes the data from the several branches. A channel-wise 

attention method is used to adaptively learn the weights for the summation. The 

network can concentrate on key features thanks to this attention mechanism, which 

gives informative channels higher weights while suppressing irrelevant ones. In 
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addition, In order to better capture objects at various scales, Resnest employs a 

"repeated multi-scale feature aggregation" technique to capture multi-scale features. 

This is accomplished by combining features from various network levels while 

keeping the network's depth and width in balance. 

                

Figure 2.11 ReNeSt block [47] 

 EfficientNet: EfficientNet is a group of deep learning models that Tan et al. [48] first 

described in their 2019 publication, "EfficientNet: Rethinking Model Scaling for 

Convolutional Neural Networks." With regard to various computer vision tasks, a 

neural network architecture called EfficientNet aims to achieve cutting-edge accuracy 

while maximizing model efficiency. Model size and computational cost may be 

balanced with performance because of the architecture's use of a scaling approach 

that uniformly adjusts the depth, resolution and width of the network. EfficientNet 

uses a compound scaling technique to scale the network's depth, resolution and width, 

as shown in figure 2.12. The model's depth is enhanced by including additional layers 

and its width is increased by including more filters in each layer. By employing larger 

input images, the resolution is raised. The compound scaling approach is calibrated 

to strike a compromise between the accuracy and computational cost trade-offs. 

EfficientNet also introduces a novel compound scaling method for the convolutional 

layers, called the "mobile inverted bottleneck convolution" (MBConv). The MBConv 
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is made up of an inverted residual block that includes a shortcut connection, a 

depthwise convolution and a pointwise convolution. The accuracy of the model is 

maintained as the number of parameters is decreased using the MBConv. 

 

Figure 2.12 Model scaling in EfficientNet [48] 

 TResNet: A novel family of convolutional neural networks that are optimized for 

GPU performance is introduced in "TResNet: High Performance GPU-Dedicated 

Architecture" by Ridnik et al. [49].  Although prior CNNs have had FLOPs (floating-

point operations per second) optimized, the authors contend that this does not always 

result in the greatest performance on GPUs. They suggest several architectural 

modifications that boost CNNs' GPU performance while preserving or even 

enhancing accuracy. TResNets have introduced many major architectural changes. A 

SpaceToDepth stem layer, which is more effective for convolutions on GPUs, 

transforms the input image into a deeper representation. There contain s many 

different layers, such as a downsampling layer with anti-aliasing technology that 

lowers the spatial resolution of the image without aliasing effects, a layer called In-

Place Activated BatchNorm that combines the activation and batch normalization 

procedures. To minimize processes and enhance performance, there offers a novel 

technique for selecting block types that selects the best possible block type for every 
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tier. It also provides squeeze-and-excitation layers that have been improved to 

increase network performance without compromising accuracy. 

 

               
 

Figure 2.13 TResNet basic block and bottleneck design [49] 

 ConvNeXt: In the study "A ConvNet for the 2020s" by Liu et al. [50], ConvNeXt is 

a pure convolutional neural network architecture. They contend that whereas earlier 

CNN designs were accuracy-focused, this resulted in a number of architectural 

decisions that made them ineffective and challenging to expand. ConvNeXt uses a 

hierarchical design, a unique attention mechanism and a progressive training process 

to address these problems. ConvNeXt's hierarchical structure was inspired by the 

visual cortex's hierarchy. Each stage in the network learns at a different level of 

abstraction. In the first stage, simple elements like corners and edges are learned. The 

following stage involves learning intermediate features, like forms and textures. 

High-level features, such as objects and features, are learned in the final step. 

ConvNeXt's innovative attention mechanism enables the network to concentrate on 

an image's key details. This is accomplished by assigning each characteristic a weight 

that represents its relative importance for the classification task. The feature maps' 
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spatial and channel dimensions are both subject to the attention mechanism. 

ConvNeXt's progressive training method enables the network to pick up increasingly 

complicated features as it is trained.  

 

 

Figure 2.14 Block designs for ResNet, Swin Transformer and ConvNeXt [50] 
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2.5 Ensemble Learning 

In order to create predictions or judgments, ensemble learning, a machine learning 

technique, combines numerous unique models. The foundation of ensemble learning is the 

idea that by pooling the predictions of different models, the ensemble can perform better than 

any one model working alone [51]. A base model or weak learner is the name given to each 

individual model in the ensemble. Classification, regression and clustering are just a few of 

the machine learning issues that can be solved with ensemble learning. There are a number 

of commonly used collective learning techniques, some of which are presented with detailed 

explanations in the subsections. 

2.5.1 Boosting Ensemble 

Multiple weak models are trained progressively using the boosting ensemble 

technique [52], with each succeeding model aiming to fix the errors of the prior models. 

Boosting combines the predictions of these weak models in an effort to enhance the 

ensemble's overall performance.The following steps are involved in the process: 

 Model Training: On the whole training dataset, a weak model is initially trained.  

 Weighted Data: A weight is given to each instance in the training dataset; the weight 

is initially set to equal values. The weights show how significant each instance is in 

the following model training. 

 Iterative Training: Model training is carried out across a number of iterations. The 

weights of the incorrectly categorized examples from the prior model are increased 

with each iteration, while the weights of the instances that were correctly identified 

are dropped. This enables the succeeding models to concentrate on the challenging 

instances. 

 Model Combination: The predictions of all the weak models are integrated using a 

weighted voting or averaging process. Usually, the weights are chosen based on how 

well each model performed throughout training. 

 

The main concept behind boosting ensemble is that the ensemble can learn to fix its 

errors and enhance its predictive performance by training models consecutively and placing 
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greater focus on the instances that were incorrectly classified. In deep learning, boosting has 

found utility, particularly in the form of algorithms like AdaBoost [53], Gradient Boosting 

[54] and XGBoost [55]. The use of boosting techniques in deep learning may, however, 

necessitate careful consideration of computer resources, as training numerous models 

consecutively can be computationally costly. 

2.5.2 Bagging Ensemble 

Bagging ensemble, also known as bootstrap aggregating [56], entails building the 

final prediction by integrating the predictions of many models that were trained 

independently using different subsets of the training data. The goal of bagging ensemble is 

to lower variance and boost the models' ability to generalize. The following steps are involved 

in the bagging ensemble process: 

 Bootstrap Sampling: The training data are divided into numerous subgroups using 

random sampling with replacement. The size of each subset, also known as a 

bootstrap sample, is the same as the size of the initial training data, but it may also 

contain duplicate instances. 

 Base Model Training: For each bootstrap sample, a different base model is learned. 

Convolutional neural networks can be used as base model. 

 Base Model Predictions: On the validation or test dataset, predictions are made using 

each base model after training. 

 Ensemble Prediction: The base model predictions are combined via a process called 

aggregation. Popular aggregation methods for classification tasks include majority 

voting, which selects the class with the most support from the basis models. 

 

The main concept behind bagging ensemble is that it can capture distinct patterns and 

lessen the influence of outliers or noisy samples by training multiple models on various 

subsets of the data. Improved generalization performance and robustness result from this. 
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2.5.3 Stacking Ensemble 

Stacking ensemble, also known as stacked generalization [57], is a deep learning 

technique where numerous models, referred to as base models, are trained and their 

predictions are integrated using a different model, referred to as a meta-model. By learning 

to successfully integrate their predictions, the stacking ensemble aims to take advantage of 

the individual models' strengths and enhance overall performance. The following steps are 

involved in the stacking ensemble process: 

 Training Base Models: Using the training dataset, several base models are trained. 

Convolutional neural networks might serve as one of these basic models. Each basic 

model gains the ability to extract various features and record various facets of the 

data. 

 Base Model Predictions: Following training, predictions are made on the validation 

dataset using the base models. These predictions act as inputs for the subsequent 

action. 

 Training of a meta-model: With the input features of the predictions from the base 

models and the targets of the corresponding ground truth labels, a meta-model is 

trained. The meta-model gains the capacity to combine predictions from the 

underlying models to provide final results. The meta-model can be created using any 

machine learning algorithm, such as logistic regression, support vector machines or 

even another deep learning model. 

 Ensemble Prediction: Once the meta-model has been trained, it can be utilized to 

make predictions on new, unseen data. The fundamental model predictions are 

generated first and then the meta-model is used to get the final prediction. 

 

The idea behind stacking ensemble is that the meta-model learns to weight the 

predictions of the base models based on their individual strengths and weaknesses. By doing 

so, the total prediction performance is improved and the limits of individual models are 

overcome. 
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Chapter 3  

Literature Review 

In the discipline of dermatology, the classification of melanoma is a crucial issue 

because it entails the identification of skin cancer. In this domain, reliable and accurate 

melanoma classification models have been developed using traditional methods of machine 

learning. These techniques often start with the extraction of characteristics from skin lesion 

images, then use machine learning algorithms to classify the lesions as melanoma or non-

melanoma. 

 

The ABCD rule is one of the earliest and most well-known systems for classifying 

melanoma [58], which uses visual inspection of the skin lesion to identify asymmetry, border 

irregularity, color variation and diameter. However, this method relies on subjective visual 

assessment and may not always be reliable. The accuracy of melanoma classification has 

been enhanced by the development of additional conventional machine learning techniques. 

For instance, using feature-based approaches, a number of important characteristics, 

including texture, color  and shape have been retrieved from images of skin lesions. Then, 

these attributes are used to train machine learning systems. 

 

One of the commonly used traditional machine learning techniques for melanoma 

classification is the Support Vector Machines (SVMs) [59]. SVMs are binary classifiers that 

can classify data points into two classes by finding the best hyperplane that separates them. 

Asymmetry, color variegation,  border irregularity and diameter are features taken from 

dermatoscopic images that have been used to diagnose melanoma. In a study by Yuan et al. 

[60] was used SVM-based texture classification in order to early detect melanoma. They 

experimented the algorithm using 22 pairs of real skin lesion images and they achived 70% 

accuracy when 200-feature vectors are chosen from each sample. In another study by 
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Gilmore et al. [61] was built a dermatologist diagnostic system based on SVM models to 

detect melanoma. 14 geometrical and color aspects were examined. They experimented using 

four different kernels: sigmoid, polynomial, RBF and decreasing k-MOD. Using a set of 199 

dermatoscopic images (98 dysplastic ,101 melanomas), the best SVM model using the k-

MOD decreasing kernel function achieved 89% sensitivity and an AUC of 76%. Another 

commonly used traditional machine learning algorithm for melanoma classification is 

Random Forest (RF) [62], which is an ensemble learning algorithm that combines multiple 

decision trees. The RF algorithm is a classical machine learning method used for melanoma 

classification. Multiple decision trees are used in the RF ensemble learning technique to 

increase the model's robustness and accuracy. In a study Janney et al. [63] proposed a 

machine learning-based approach for the classification of melanoma from dermatoscopic 

data. The approach used a set of intensity and texture features extracted from 900 

dermatoscopic images and then trained a classifier to distinguish between melanoma and 

benign lesions. Unsharp masking and an anisotropic diffusion filter were used to improve the 

images. 5 different classifiers were compared, including the Random Forest algorithm. The 

area under the receiver operating characteristic curve (ROC) was used to evaluate the 

performance of the classifiers and RF technique classified melanoma substantially better with 

93%. Besides these traditional machine learning methods for melanoma classification, other 

methods have also been used, such as K-Nearest Neighbors (KNN) [64] and Naive Bayes 

(NB) [65]. A non-parametric classification approach called KNN classifies an instance based 

on the class of its k-nearest neighbors in the feature space. In a study Kavitha et al. [66] 

proposed an efficient system that involves classifying data based on textual characteristics 

and total of 250 dermatoscopic images were experimented. The training set images were used 

to train Gray level co-occurrence matrix (GLCM) and Speeded Up Robust Features (SURF), 

which provided accuracy for KNN classifiers of 78.2% and 85.2% for global texture feature 

extraction and local texture feature extraction, respectively. In another study Linsangan et al. 

[67] proposed a system in which the lesion was classified into melanoma, non-melanoma and 

unknown classes following data preparation using Raspberry Pi device that featured 

segmentation and feature extraction. They collected images from International Skin Imaging 

Collaboration (ISIC) [68]. Testing was done on 15 images using a KNN classifier and  a 

precision of 86.67% was achieved. Based on Bayes' theorem, Naive Bayes (NB) is a 



28 

 

probabilistic classification algorithm. The essential premise is that the features demonstrate 

conditional independence given the class label. In other words, the value of each feature is 

considered to be independent of the values of other features, given the known class label. In 

a study by Balaji et al. [69] performed a novel dynamic graph cut algorithm. They performed 

skin lesion segmentation, extract texture, color and asymmetry features from a segmented 

skin region and used a Nave Bayes classifier for skin disease classification. They used ISIC 

2017 dataset for testing and achieved 91.2% accuracy for melanoma cases.  

 

However, these traditional ML methods have some limitations in melanoma 

diagnosis, such as the need for manual feature extraction, sensitivity to feature selection and 

limited ability to handle large amounts of data. These limitations have led to the development 

of deep learning (DL) methods, which have shown promising results in melanoma 

classification based on raw images.  

 

Deep learning methods have shown significant success in melanoma classification. 

Esteva et al. [70] carried out one of the first research in this field. In order to distinguish skin 

lesions as malignant or benign using dermatoscopic images. The developed deep learning 

model performed as well as board-certified dermatologists. In this study, over 130,000 

images of skin lesions were used to train a convolutional neural network to classify the 

lesions as benign or malignant. Subsequently, a number of studies have explored the potential 

of deep learning for melanoma classification. Adegun et al. [71] developed a system for 

melanoma classification that utilizes a multi-stage and multi-scale approach. Lesion-

classifier, a new technique they introduced, divides skin lesions into non-melanoma and 

melanoma based on the outcomes of pixel-wise classification. The effectiveness of their 

approach was evaluated using two widely recognized benchmark skin lesion datasets: ISIC 

2017 and Hospital Pedro Hispano (PH2) [72]. The experimental results demonstrated that 

their method outperformed several state-of-the-art methods. On the ISIC 2017 dataset as well 

as the PH2 dataset, they attained an accuracy of 95%. Another study by Tschandl et al. [73] 

evaluated the classification of pigmented skin lesions between human readers and cutting-

edge machine learning systems. They introduced ISIC 2018 dataset of 10015 training images 

and 1511 test images. According to the study, artificial intelligence algorithms were more 
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precise than human specialists. With sets of 30 randomly chosen lesions, the most effective 

machine learning algorithms averaged 7.94 more accurate diagnoses than the typical human 

reader and 6.65 more accurate diagnoses than expert readers. Another study by Le et al. [74] 

using ISIC 2018 proposed a modified ResNet-50 deep learning model. The model's average 

accuracy was 93% thanks to the tuning and modification of pre-trained model architecture 

and training methods including focus loss and class-weighting.  

 

In addition to the 2018 dataset, ISIC has recently introduced 2 different datasets. 

These were the ISIC 2019 [75, 76, 77] and the ISIC 2020 [78] datasets. In a study by Kassem 

et al. [79] suggested a model that made use of pre-trained GoogleNet [80] models and transfer 

learning. They put the suggested model's capacity to classify various kinds of skin lesions to 

the test using the ISIC 2019 dataset. The eight distinct classes of skin lesions were correctly 

classified using the suggested approach. They had a classification accuracy rate of 94.92%. 

Another study by Gessert et al. [81] using the ISIC 2019 suggested using multi-resolution 

EfficientNets in conjunction with significant data augmentation, loss balancing and 

ensembling approaches. They demonstrated improved performance of models with large 

input sizes. They also suggested that models that do not make use of all the information 

included in the images alone can benefit from metadata. Their ensemble optimal method with 

metadata achieved a sensitivity of 74.2%.  

 

On the other hand, the ISIC 2020 dataset have also been used in many studies for 

melanoma classification puposes. In a study Karki et al. [82] suggested an ensemble-based 

method. To enhance the classification performance, a number of augmentation approaches, 

like hair addition, have been utilized as preprocessing. Test-time augmentation has been 

found to help the model get the optimal decision by averaging out the errors. The proposed 

training strategy for the identification of melanoma appears to work better with the depth and 

width model. The effectiveness of the ensemble models was evaluated using the area under 

the ROC curve. Using an ensemble of all EfficientNet-B5 models and one EfficientNet-B6 

model, they achieved a 0.9411 area under the ROC curve on hold out test data. Another study 

by Kaur et al. [83] using ISIC 2020 suggested a model called LCNET that proposed a few 

preprocessing techniques, including image scaling, oversampling, augmentation and created 
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an accurate model for classifying melanoma lesions. They achieved an average accuracy of 

90.48% on ISIC 2020 dataset. 

 

Except for the studies that work on the ISIC 2019 and ISIC 2020 dataset separately, 

there are not many studies in the literature using these two datasets together. In a study 

Tziomaka et al. [84] suggested an ensemble approach using deep neural networks of various 

dimensions and activation functions. To handle various image resolutions, multi-resolution 

EfficientNets were utilized. To further diversify the ensemble technique, the models were 

used once again in an architecture with a new activation function that considers the metadata. 

The model with the highest ROC-AUC score, which is 94.04%. Another study that used both 

datasets together was suggested by Jaisakthi et al. [85]. They suggested an automated 

technique for classifying skin lesions that makes use of dermatoscopic images and patient 

metadata. They carried out a variety of investigations using two different transfer learning 

techniques, such as feature extraction and fine tuning. In the feature extractor technique, the 

features from the subsequent layers and the contextual data were combined and the LGBM 

classifiers were trained on them. They were able to acquire an EfficientNet-B6 AUC score of 

0.9174 with this model. To further improve the results, they applied a fine-tuning approach 

that combines the last layers of the pretrained architecture with a simple neural network that 

accepts contextual data as input. Through the use of this method, they were able to lessen the 

problem of hyper-parameter tweaking and achieve a higher AUC score for Efficient B6 with 

Ranger Optimizer of 0.9681.  

 

All things considered, deep learning techniques have demonstrated significant 

promise for melanoma classification and have produced results with excellent accuracy on 

sizable datasets of skin lesion images. In addition, it is understood that as the amount of data 

set trained and more effective models are used, more consistent and stable classification 

performances emerge. In this regard, especially the datasets made available by ISIC trigger 

promising developments for the solution of this difficult melanoma classification problem. 
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Chapter 4 

Materials and Methods 

4.1 Datasets 

4.1.1 The ISIC Archive 

ISIC (International Skin Imaging Collaboration) is a global consortium that aims to 

improve the early detection of melanoma through the use of digital imaging. The project 

began in 2010 as a collaboration between skin imaging experts, dermatologists and computer 

scientists from around the world [68].  

 

The ISIC Archive is a publicly available database of skin images collected by the 

consortium for research purposes. It contains over 50,000 images of skin lesions, including 

melanoma, acquired using various imaging modalities such as dermatoscopy, clinical 

photography and confocal microscopy. The images are accompanied by metadata such as 

age, gender and lesion location, as well as diagnostic labels provided by dermatologists. The 

ISIC Archive has been used extensively for the development and evaluation of automated 

melanoma detection algorithms based on machine learning and deep learning techniques. 

Several studies have reported high performance of these algorithms in detecting melanoma, 

with some achieving sensitivity and specificity exceeding those of dermatologists [86]. 

 

The International Skin Imaging Collaboration (ISIC) organizes an annual challenge 

to advance the field of dermatology using computer vision and machine learning techniques. 

The ISIC 2019 dataset [75, 76, 77, 87] focuses on the automated classification of skin lesion 

images into nine categories: melanoma, melanocytic nevus, benign keratosis,  actinic 
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keratosis / Bowen's disease (intraepithelial carcinoma), basal cell carcinoma,  

dermatofibroma, squamous cell carcinoma, vascular lesion and unknown. The ISIC 2019 

dataset is a collection of skin lesion images, which is the largest dataset for skin lesion 

analysis to date. It consists of 25,332 images, which were collected from a variety of sources, 

including hospitals, clinics and research centers. The images were captured using a variety 

of devices, including professional cameras and smartphones and under different lighting 

conditions. The images were annotated by dermatologists with ground truth labels. The ISIC 

2019 dataset consists of 25,331 dermatoscopy images with labels and related metadata, such 

as the location of the skin lesion and the patient's age and gender. There are eight distinct 

diagnostic groups in which the labels of the ISIC 2019 dermatoscopy images fall. Melanoma, 

basal cell carcinoma, benign keratosis, melanocytic nevus, vascular lesion, actinic keratosis, 

dermatofibroma and squamous cell carcinoma are the specific diagnoses that are contained 

in the dataset. 

 

The ISIC 2020 dataset [78] include dermatoscopic images and is publicly available 

dataset that can be used to classify and diagnose skin cancer. ISIC 2020 is the latest iteration 

of this dataset and was introduced in 2020. The ISIC 2020 dataset consists of 32,542 benign 

and 584 malignant skin lesions from more than 2,000 patients. Each image in the dataset is 

accompanied by a set of clinical metadata, including the patient age, gender and the anatomic 

location of the lesion and an anonymous patient identification number, which enables the 

mapping of lesions from the same patient. The ROC-AUC score is used as the ranking's 

evaluation tool and the ISIC 2020 Challenge's objective is to classify benign and malignant 

tumors. The dataset's benign images fall into one of eight categories (nevus, solar lentigo, 

cafe-au-lait macule, seborrheic keratosis, lichenoid keratosis, atypical melanocytic 

proliferation, lentigo NOS and unknown), while all of the dataset's malignant images are 

diagnosed as melanoma.  Notably, there are no examples of basal cell or squamous cell 

carcinoma in the sample, which limits the issue to melanoma classification. 
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Figure 4.1 Melanoma samples 

 

Figure 4.2 Non-melanoma samples 
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4.1.2 Class Distributions 

The ISIC 2019 dataset consists of 9 classes which are Melanoma (MEL), Basal Cell 

Carcinoma (BCC), Melanocytic Nevus (NV), Benign Keratosis (BKL), Actinic Keratosis 

(AK), Vascular Lesion (VASC), Squamous Cell Carcinoma (SCC), Dermatofibroma (DF) 

and none of the others (UNK). Class distributions of the classes given in figure 4.3 with 

counts. 

 

Figure 4.3 Class labels in ISIC 2019 dataset  

The ISIC 2019 dataset contains a total of 25331 images, 20809 samples belong to the 

non-melanoma class, while 4522 samples, which corresponds to 17.85% of the samples, are 

in the melanoma class. 

 

Figure 4.4 Class distributions of ISIC 2019 dataset  
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The ISIC 2020 dataset contains a total of 33126 images, 32542 samples belong to the 

non-melanoma class, while 584 samples, which corresponds to 1.76% of the samples, are in 

the melanoma class. 

 

Figure 4.5 Class distributions of ISIC 2020 dataset  

After merging two datasets, the final dataset contains a total of 58,457 images. 53,351 

samples belong to the non-melanoma class, while 5,106 samples, which corresponds to 

8.73% of the samples, are in the melanoma class. 

 

Figure 4.6 Class distributions of both dataset after merging 

As shown from the figure 4.6, the final dataset appears to be highly imbalanced.This 

extremely affects the melanoma bias. In order to get rid of this problem, it is very important 

to choose the performance metric correctly. 
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4.2 Proposed Model 

There are various stages in the proposed system. Started with the collection of the 

data given as the first stage. In the next stage, the process continued with the preparation of 

the data, followed by the data preprocessing stage. The process was terminated with model 

building and model evaluation. These processes are shown in the figure 4.7 below. 

 

 

Figure 4.7 Training flow 

In terms of flow, the first stage is to specify the issue that the model is meant to 

address and the kind of data that is needed. The information was gathered from a variety of 

sources, including open databases, once the data type has been determined. Data was first 

pre-processed to eliminate noise, deal with missing values and standardize the data. For deep 

learning models, this phase is crucial since it assures that the data is reliable and consistent. 

The training, test and validation sets were ultimately constructed using the pre-processed 

data. The training set was utilized to create the deep learning model, the validation set to 

modify the hyperparameters and prevent overfitting and the test set to assess the model's 

performance. 

4.2.1 Data Preparation 

It was necessary to merge the metadata from the ISIC 2019 dataset with those from 

the ISIC 2020 dataset. As the "anatomy site general" feature was in both ISIC 2019 and ISIC 

2020 datasets, they were categories that could match. For the patient ID feature that is in ISIC 

2020 but not in ISIC 2019, all samples in ISIC 2019 were filled with null. Age values given 

at 5 intervals were also converted into features. With the use of one hot encoding technique, 

category variables such as age, gender and anatomy site general were turned to binary vectors 

after the metadata had been combined. To ensure there were no idle features, these 

transformations were performed to the full dataset, which meant they included the test set 
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that had previously been allocated but excluded it. Following these transformations, the 

resulting metadata features are:  

 Age : From 0 to 90 at intervals of 5  

 Gender : Male,female,unknown gender  

 Site: Torso, head/neck, oral/genital, lower extremity, upper extremity, palms/soles 

and none.  

4.2.2 Data Preprocessing 

Data Preprocessing steps are given in table 4.1 below. The parameters given in Table 

4.1 are explained in the subsections. 

Table 4.1 Data preprocessing steps 

Parameter Value 

Image Resizing 

Train-Test Split 

Stratified K-Fold Cross Validation 

Standardization and Normalization 

224 * 224 * 3 

85% Train, 15% Test 

5 

[0,1] 

4.2.2.1 Image Resizing 

Image resizing refers to the process of changing the dimensions of the input image 

before feeding it into the network. This is typically done to ensure that all images are of the 

same size and aspect ratio, which is necessary for the network to learn and generalize 

effectively. All images were resized using the bilinear interpolation method, which computes 

new pixel values as a weighted average of the surrounding pixels. In particular, the value is 

determined for each new pixel location by interpolating between the four closest nearby 

pixels using a weighted average. The weights are based on the separation between the new 

pixel location and its surrounding pixels [88]. Bilinear interpolation is a simple and 

computationally efficient technique for resizing images and it is commonly used in 

convolutional neural networks to prepare input images for processing. By resizing images, 

the computational requirements of the network can be reduced without significantly 

sacrificing the accuracy of the model. In this thesis, all images from both dataset resized to 

224*224*3. Thus, all images have been resized to a single size with 3 channels. 
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4.2.2.2 Stratified Train-Test Split  

It is essential to have a reliable method of evaluating model performance. One such 

technique is the train-test split, which divides a dataset into a training set and a test set. The 

test set is used to assess the model's performance after the training set has been used to 

evaluate the model. A straightforward and widely used technique is the train-test split, in 

which a portion of the dataset is randomly chosen for training and the remaining data is 

utilized for validating [89]. Split process involved the use of stratified technology. A method 

or procedure known as stratification guarantees that various classes or categories are 

proportionately represented in the data. The test set assesses the model's performance on new 

data while the training set is used to optimize the model's parameters. In this thesis, 85-15 

split was used where 85% of the dataset is used for training and the 15% is used for testing. 

4.2.2.3 Stratified K-Fold Cross Validation  

A method for assessing a model's performance on a specific dataset is cross-

validation . A form of k-fold cross-validation that is frequently applied to classification issues 

is stratified k-fold cross-validation [89]. The dataset is divided into k folds of equal size and 

using stratified k-fold cross-validation, the model is trained and tested k times. Each time, 

one of the folds is used as the validation set while the remaining k-1 folds serve as the training 

set. The stratified aspect of the data is produced by ensuring that the proportion of samples 

from each class in the training and validation sets is nearly equal. This approach is quite 

useful when working with datasets that are unbalanced and have an unequal distribution of 

samples by class.  
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Figure 4.8 Stratified K-Fold Cross Validation 

Without stratification, there is a chance that some classes will not be adequately 

represented in the training set or the validation set, which will produce biased results. 

Because each sample is used at least once for both training and validation, stratified k-fold 

cross-validation allows us to obtain a more accurate assessment of the model's performance 

on unobserved data. This gives a better idea of how effectively the model generalizes to new 

data and can help to see potential problems like overfitting that may not be obvious when 

using simply a single train/test split.In this study we took the value of k as 5. That is, 17% of 

the entire data set was used as a test set at each training stage. 
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4.2.2.4 Standardization and Normalization 

Standardization and normalization are preprocessing techniques used to transform the 

input data in a CNN before feeding it into the model. Standardization and normalization are 

applied to make the data features more meaningful, comparable and suitable for model 

training [89]. The process of standardization entails changing the input data so that the 

standard deviation is equal to one and the mean is equal to zero. This transformation is carried 

out independently for each feature in the data, so that each feature has a mean of zero and a 

standard deviation of one. Standardization helps to center the data and make it more suitable 

for training neural networks by making the data distribution more symmetrical and reducing 

the effect of outliers. 

 

Normalization, on the other hand, involves scaling the input data to a fixed range, 

usually between 0 and 1. This transformation is also carried out independently for each 

feature in the data, so that each feature is scaled to the same range. Normalization makes the 

data more consistent and can enhance the model's convergence during training. 

Standardization and normalizing are frequently combined in practice to preprocess the input 

data for a CNN. Standardization and normalization work together to improve the input data's 

uniformity, comparability and suitability for model training. 

4.3 Evaluation Progress 

In order to achieve the most accurate and stable results, a process consisting of many 

stages was followed. First of all, it was tried to choose a CNN model and model parameters 

that are mostly used in imbalanced datasets in general. We compared whether the Shades Of 

Gray method [90], which we thought would be helpful in data preprocessing, contributed to 

the Color Constancy stage and generally proceeded with the pros and cons of using different 

hyperparameter sets specific to the subject. In the solution of such problems, problem-

specific parameters other than the generally selected parameters were preferred and the 

hyperparameter optimization phase was continued. In the last case, considering the pros and 

cons of problem-specific data augmentation, in order to solve the overfitting problem, two 

different image processing-based data augmentation techniques were applied separately and 
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together, giving comparative scores in order to get better results. After these stages, 

performance comparison results were obtained by considering the image features in other 

CNN models or the features of the model in which the image and metadata were combined. 

At this stage, 6 models were selected among the 8 models with the highest scores. Finally, 

the process was terminated with the ensemble method, in which different methods were also 

used and the best method was chosen by using the predictions of 6 different models selected 

in order to obtain more stable and better results by using the models together. 

 

As seen in figure 4.9, the process has been tried to be explained with flow decision 

charts. All models were compared with the AUC metric by taking the average of validation 

socres in the validation data set prepared with stratified a 5-fold cross validation method. In 

comparative tables, recall, sensitivity, weighted F1-Score and AUC metrics were presented. 

Moreover, high scores received in the tables are marked in bold.  The following sections was 

first started with the base model and then, as seen in the figure 4.9, while continuing with 

each stage, the detailed explanation of the techniques used and the results, as well as the 

achieved scores were presented together with the previous achieved. 

4.3.1 Base Model  

Training started with the building of the base model on which performance 

comparisons would be made in the later time during the experiments. For this, first of all, 

some hyper parameters had to be kept constant for the building of the model. Some elements 

are often needed to construct a CNN model for image classification in deep learning, as 

previously discussed. Using transfer learning with weights pretrained on ImageNet [91] 

instead of building a new CNN model can be retrained to perform the new task with higher 

accuracy and less training time. 
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Figure 4.9 Evaluation progress 
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The parameters used in the base model and their reference values are given in the 

table 4.2 below. 

Table 4.2 Base model parameters 

Parameter Value 

CNN Backbone 

Epochs 

Loss Function 

Learning Rate Scheduler 

Optimizer 

Learning Rate 

Early Stopping Patience 

Batch Size 

ResNet-50 

30 

Binary Cross Entropy (BCE) 

Reduce Learning Rate On Pleateu 

Adam 

0.00001 

5 
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Base model parameters and why they were chosen are explained in separate 

subsections below. 

4.3.1.1 CNN Backbone 

We chose ResNet-50 as CNN backbone. ResNet-50, also known as Residual 

Network-50 with its 50 layers, is a deep neural network that can recognize intricate patterns 

and hierarchical data structures. Learning more expressive features is facilitated by this 

depth. The concept of residual connections was proposed by ResNet-50, which helps deeper 

networks deal with their degradation issue. By allowing gradients to pass straight through the 

network, these connections solve the vanishing gradient issue and make it possible to train 

deeper networks. The learned representations from ResNet-50 can be transferred and fine 

tuned for various computer vision applications, saving time and computational resources. 

4.3.1.2 Loss Function 

Convolutional neural networks frequently use the loss function Binary Cross Entropy 

(BCE) to solve binary classification issues [92]. It calculates the difference between the 

actual probability distribution of binary classes and the anticipated probability distribution. 

The mathematical definition of BCE is as follows: 
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 𝐵𝐶𝐸 =
1

𝑁
∑ −(𝑦𝑖 × log( 𝑝𝑖) + (1 − 𝑦𝑖) × log( 1 − 𝑝𝑖))

𝑁

𝑖=1

 (4.1) 

 

where 𝑵 is the number of samples, 𝒑𝒊 is the predicted probability, 𝒚𝒊 is the ground truth label 

(0 or 1) and log is the natural logarithm. Backpropagation and gradient descent optimization 

methods are used to modify the model's weights and biases in order to minimize the BCE 

loss during training. Getting the predicted and true class probabilities as close to each other 

as possible can improve classification performance. Due to its efficiency and simplicity, the 

BCE loss function is a popular loss function for convolutional neural networks doing binary 

classification tasks. 

4.3.1.3 Optimizer 

Adam (Adaptive Moment Estimation) optimizer [93] is a highly regarded 

optimization technique used in deep learning. It combines the benefits of momentum and 

RMSProp [94] to improve the weights of the neural network during training. The Adam 

optimizer has been shown to be effective in converging faster and more accurately than other 

optimization algorithms [28]. The Adam optimizer computes an exponentially decaying 

average of previous gradients and previous squared gradients of the weight variables during 

the training phase and changes the weights of a neural network accordingly. In order to help 

the optimization method converge more quickly, the momentum of the gradients is also 

included. The first moment and second moment of the past squared gradients of the weight 

variables are kept as an exponentially decaying average by the Adam optimizer. The mean 

and variance of the gradients are both estimated using the first moment and the second 

moment, respectively. In conclusion, the Adam optimizer tracks an exponentially decaying 

average of previous gradients and previous squared gradients, respectively, combining the 

benefits of momentum and RMSProp optimization techniques. The optimizer then uses these 

estimates to update the weight variables during the training process. 

4.3.1.4 Learning Rate Scheduler 

Many deep learning frameworks use the ReduceLROnPlateau algorithm, which 

lowers the learning rate of the optimizer when the loss function stops improving after a 
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predetermined number of epochs [95]. This algorithm can be configured to monitor different 

metrics such as loss or validation accuracy and can be configured to adjust the learning rate 

in different ways, such as by a fixed factor or by a percentage of the current learning rate. A 

CNN's performance can be enhanced by lowering the learning rate on plateau since it will be 

able to avoid local minima and converge to a better optimum. However, it is important to be 

careful when using this technique as reducing the learning rate too aggressively can cause 

the model to converge too slowly or not at all. It is important to monitor the training progress 

carefully and adjust the parameters accordingly. 

4.3.1.5 Basic Image Augmentations  

The amount and diversity of training material for CNNs can be artificially increased 

using techniques called image augmentations. These techniques involve applying various 

transformations to the input images to create new versions of the same image with slightly 

different features. By doing so, the CNN can learn to generalize better and be more robust to 

various types of input variations. In this thesis, three different image augmentation techniques 

were used as a basis and to be used in the next steps.  

 Transpose: CNNs frequently use the data augmentation method known as "image 

transpose augmentation" to enlarge and diversify the training dataset. It involves 

flipping the image along its diagonal axis, which swaps its rows and columns. By 

applying image transpose augmentation, the model can learn to recognize the same 

object or pattern from different viewpoints or orientations. This is particularly useful 

in image classification tasks where the object or pattern of interest may appear in 

different orientations or positions in the image. The technique was applied randomly 

by 50% chance to each image during training.  

 Horizontal Flip: The input image is flipped horizontally along the y-axis, resulting 

in a new image that is a mirror image of the original image. The technique was applied 

randomly by 50% chance to each input image during training.  

 Vertical Flip: The input image is flipped vertically along the x-axis, resulting in a 

new image, thus the top of the image becomes the bottom and the bottom becomes 

the top. The technique was applied randomly by 50% chance to each image.  
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4.4 Performance Evaluation Metrics 

Performance evaluation metrics are used to quantify the effectiveness and accuracy 

of a machine learning model or algorithm [96]. These metrics are used to compare various 

models or algorithms as well as to assess how well the model is working on a certain dataset. 

The choice of evaluation metric depends on the problem domain and the specific goals of the 

machine learning project. A technique used in machine learning to assess the performance of 

the model is the confusion matrix [97].  

 

A confusion matrix is used to evaluate the effectiveness of a classification model. On 

a set of data that was divided into various classes or categories, the matrix shows the number 

of accurate and inaccurate predictions the model made. The rows of the matrix reflect the 

actual classes of the data and the columns of the matrix show the anticipated classes by the 

model. The four cells of the matrix correspond to the results of the classification problem for 

true positive (TP), false positive (FP), false negative (FN) and true negative (TN) cells. The 

values in the matrix's diagonal correspond to the wrong classifications (FP and FN), while 

the values off the diagonal correspond to the correct classifications (TP and TN).  

 

 

Figure 4.10 Confusion matrix 
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The terms in the confusion matrix's definitions are listed below. 

True Positive (TP): The number of cases that the model accurately recognized as positive 

but are genuinely positive is known as the true positive value. 

True Negative (TN): The number of samples that a classification model accurately predicted 

as negative and are therefore considered to be true negatives. 

False Positive (FP): False positive is a prediction made by a model that claims a positive 

outcome when in fact the actual outcome is negative. 

False Negative (FN): False negatives (FN) refer to instances in a confusion matrix where the 

model incorrectly predicts the negative class while the actual class is positive. 

 

The confusion matrix, which provides a comprehensive view of the model's 

performance, can be used to determine F1-Score, recall , precision and accuracy. 

 

Accuracy: In machine learning and classification tasks, accuracy is a performance evaluation 

metric that assesses the proportion of accurate predictions provided by a model relative to 

the total number of predictions. It can be mathematically stated as the proportion of accurate 

predictions to total predictions. 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

(𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁) 
  (4.2) 

 

In other words, accuracy measures how well a model is able to correctly predict both 

positive and negative instances. While accuracy is a commonly used metric, it may not be 

the best measure of model performance in certain scenarios, such as imbalanced datasets, 

where distinct classes do not have an equal number of instances. 

 

Sensitivity: Sensitivity is a performance statistic used to assess how well a binary 

classification model is working. It determines the percentage of true positives or the number 

of positive cases that the model correctly discovered, out of all the real positive cases in the 

dataset. 
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 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 
  (4.3) 

 

In situations where correctly recognizing all positive cases is essential, a high 

sensitivity means that the model can successfully detect a significant portion of positive 

cases. High sensitivity, meanwhile, can also lead to a lot of false positives—negative cases 

that are mislabeled as positive. Sensitivity should be used in conjunction with other measures 

like specificity and precision for a more full evaluation of the model's performance. 

 

Specificity: Specificity is a performance indicator that gauges how well a model can 

recognize examples of the negative class. It is calculated by dividing the overall number of 

instances that are truly negative by the percentage of those that are. 

 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑡𝑦 =
𝑇𝑁

(𝑇𝑁 + 𝐹𝑃) 
  (4.4) 

 

A model's specificity measures how well it can avoid false positives and correctly 

identify negative examples. A higher specificity score signifies that the model correctly 

classifies negative cases as negative and has a low rate of false positives. A larger rate of false 

positives or the mistaken identification of negative occurrences as positive, is indicated by a 

lower specificity score, on the other side. 

 

Precision: Precision is a performance evaluation indicator that expresses how many accurate 

positive predictions a model makes relative to all positive predictions. Or, to put it another 

way, accuracy is the ratio of true positives to all positive model predictions. 

 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑃) 
  (4.5) 

 

Precision refers to the model's ability to prevent false positive predictions, which are 

situations in which the model predicts a positive result in error. A high precision score 

indicates that the model has a low percentage of false positives and is good at correctly 
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predicting outcomes when they are in fact positive. In binary classification tasks, where the 

objective is to forecast either positive or negative outcomes, precision is frequently used. 

 

Recall: Recall, an indicator used to assess performance, quantifies the percentage of real 

positive cases that a model correctly identifies as positive. To obtain the calculation, by the 

total of true positives and false negatives, divide the number of true positives. 

 

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

(𝑇𝑃 + 𝐹𝑁) 
  (4.6) 

 

Measured by recall, a model's ability to identify each pertinent instance of a given 

class among all the examples that genuinely fit into that class. A high recall score shows that 

a model can recognize the majority of the important examples of a class, whereas a low recall 

score shows that the model misses many important instances. 

 

F1-Score: F1-Score is a metric frequently used to assess the effectiveness of a binary 

classification model. It generates a single score, which is the harmonic mean of precision and 

recall and balances the trade-off between these two criteria. 

 

 𝐹1 − 𝑆𝑐𝑜𝑟𝑒 =
2 × 𝑇𝑃

2 × 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 
  (4.7) 

 

When there is a trade-off between precision and recall and both are significant, the 

F1-Score is helpful. While a low F1-Score denotes that the model may be biased towards one 

metric or the other, a high F1-Score indicates that the model is performing well in both 

precision and recall. It is a helpful indicator for assessing how well models perform in 

situations when recall and precision are crucial. 

 

Area Under Curve: The area under the curve (AUC) is a performance indicator that is 

frequently used to assess the effectiveness of binary classification models. The area under 

the curve is produced by graphing the true positive rate (sensitivity) vs the false positive rate 
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(1-specificity) at various threshold settings. An increase in the AUC value, which ranges from 

0 to 1, indicates improved model performance. The AUC quantifies the probability that a 

model will rate a randomly selected positive example higher than a randomly selected 

negative example. An AUC of 0.5 indicates that the model only performs marginally better 

than guessing at classifications, whereas an AUC of 1.0 indicates perfect performance. 

Because it is unaffected by changes in the decision threshold, the AUC provides a single 

scalar number that summarizes the complete performance of the model and is a useful tool 

for comparing the performance of different models. 
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Chapter 5 

Experimental Studies 

In this section, many techniques mentioned in the training flow are presented with 

their explanations and comparative results. Along with the pros and cons, the order of 

application of the techniques also reveals the evaluating process. First, visual and 

comparative results of the effect of Shades Of Gray method with image preprocessing are 

given. Then, since the addition of data augmentation is used to solve the overfitting problem, 

techniques compatible with the dataset are preferred and comparative results are given in this 

section. In the next 3 steps, different methods for step scheduler, optimization and loss 

function as hyperparameter optimization step are given in the literature, including specific 

methods for this problem and also discussions. Then, the effect and results of two different 

image augmentation techniques, vignetting effect and hair noise, were emphasized in order 

to improve the model in accordance with the data set. The effect of using patients' clinical 

data and its impact on accuracy were then monitored. The model obtained with the best 

parameters obtained at these stages was also run with different CNN models and comparative 

results were given. Finally, it is aimed to further improve the results by using 6 model 

ensemble methods that show the best performance from 8 different models tested. While 

giving all these results, precision, recall, F1-Score and AUC values are given in a table 

comparatively. Again, these tables are based on the base model first and as the steps progress, 

in addition to the results obtained in that step, the models with the highest accuracy reached 

until that step are listed at the bottom. In addition to the table, if there is a situation that is 

expected to be observed in the step, for example, loss plot or figures such as confusion matrix 

are also presented in order to show the increase and decrease in the number of melanoma 

samples. Finally, the experimental studies ended with the comparative results of all models 

and the selection of the models with the highest scores. 
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5.1 Base Model Performance Results 

Base model performance results are given in table 5.1. 

Table 5.1 Base model performance results 

Experimented Model Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

AUC: Area Under Curve 

 

Base model loss plot for Fold-0, which was used both for the base model and for all 

performance graphs after that, during training are given in figure 5.1. In addition, 

classification report is given in figure 5.2 and confusion matrix is given in figure 5.3. 

 

 

Figure 5.1 Base model loss plot during training  
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Figure 5.2 Base model classification report 

 

 

Figure 5.3 Base model confusion matrix 
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5.2 Step 1 : Color Constancy 

The term "color constancy" describes how well the human visual system can 

distinguish between an object's true colors under various lighting situations. The goal of color 

constancy techniques in computer vision is to automatically change an image's colors to 

counteract the effects of illumination so that the perceived colors of the objects in the image 

are more accurate [98]. 

 

There are several techniques for maintaining color constancy, including the white 

patch, retinex theory-based, gray world assumption and Shades Of Gray techniques [99]. The 

gray world assumption method uses this assumption to modify the image's colors by 

assuming that the average color of the entire image is achromatic. The white patch method 

assumes that the brightest patch in the image corresponds to a white surface and uses this 

information to adjust the colors. The retinex theory-based methods simulate the neural 

processes that take place in the human visual system to estimate the reflectance of the 

surfaces in the image.  

 

Shades Of Gray method is a simple and commonly used color constancy method that 

aims to correct the color of an image under different illuminations by neutralizing the 

illuminant's color. This method works by computing the average color of the image, which 

should be a neutral color under the assumption that the image contains objects that are not 

colored by the illumination, such as white or gray surfacesA color-corrected image is 

produced by scaling each of the image's color channels by a factor that equalizes the average 

value of the three channels.  

 

In order to correct for variances brought on by various imaging devices or acquisition 

conditions, a technique known as color compensation is employed to modify the color 

distribution of images. The objective is to standardize the color look across images to increase 

comparability and the effectiveness of subsequent analytic operations. According to Barata 

et al. [100], using a color compensation strategy to lessen how the image acquisition setup 
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affects the color attributes that are retrieved from images leads to improved performance for 

the classification of skin cancer.  

Figure 5.4 Original images at the top,  Shades Of Gray method applied images at the 

bottom 

As given in figure 5.4, it is seen how the 4 randomly selected sampling Shades Of 

Gray method have an effect on the selected images. By normalizing the color look of images, 

this technique serves to minimize the effects of color differences brought on by various 

acquisition settings or imaging instruments. This makes it possible to compare images more 

effectively, allowing for more accurate analysis and interpretation. Applying the Shades Of 

Gray method also had a significant impact on the accuracy and the comparative results with 

the base model are given in table 5.2. 

Table 5.2 Comparison results of base model and Shades Of Gray algorithm applied 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Step 1: Shades Of Gray 93.69 94.00 0.9380 0.9299 

AUC: Area Under Curve 
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5.3 Step 2 : Deep Augmentation 

By randomly applying these augmentations to training images, the network has a 

wider range of image variations, making it more robust and capable of better generalization 

to real-world scenarios [101]. 

 Random Brightness and Contrast Augmentations: Brightness augmentation 

randomly adjusts the overall brightness of an image, adding or subtracting a constant 

value from each pixel. This can simulate changes in lighting conditions and help the 

network learn to recognize objects under different lighting scenarios. The contrast of 

an image is randomly adjusted via contrast augmentation, which increases or 

decreases the contrast between light and dark pixels. This can make the network better 

able to discern small details and features in images and less sensitive to changes in 

image contrast when performing classification.  

 Color Jitter Augmentations: Using the Color Jitter technique, the image's 

saturation, brightness, contrast and hue channels are randomly altered. It can be used 

to strengthen the model's resistance to changes in illumination conditions. 

 CLAHE Augmentations: CLAHE is a method for enhancing contrast while keeping 

the image's overall brightness and color [102]. The CLAHE algorithm works by 

dividing the image into small rectangular sub-blocks and applying local histogram 

equalization to each of them. This technique helps to enhance the contrast of the 

image, especially in regions where there poor lighting conditions or shadows. 

 Image Blur Augmentations: These techniques simulate the effect of image blur, 

which can occur due to various factors such as camera motion or defocus conditions. 

In this part, we used one of three image blur techniques with randomly. The first, 

motion blur, the technique is often used to simulate the effect of motion in real-world 

scenarios, such as images captured by a moving camera or images of moving objects. 

The second technique, known as median blur, involves replacing each pixel's value 

in an image with the median value of its nearby pixels. The final augmentation 

method is called Gaussian blur and it entails applying a Gaussian kernel to the image. 

This convolved and blurred the image by replacing each pixel's value with a weighted 
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average of its nearby pixels. The level of blur added to the image is determined by 

the Gaussian kernel's standard deviation. 

 Image Noise Augmentations: In order to increase the generalization of the model, 

image noise augmentations include adding random noise to the input image [103]. 

We applied one of two random image noise approaches. The first is Gaussian noise, 

which is an additive noise type that adheres to a Gaussian distribution. By assigning 

random values drawn from a Gaussian distribution to each pixel, this kind of noise 

can be applied to an image. The second is known as ISO noise that develops when 

high ISO settings are applied when taking images. It can result in random patterns of 

pixel intensity variations that affect the overall quality of the image.  

 Cutout Augmentations: Cutout is an image augmentation technique used in 

convolutional neural networks to improve the model's robustness to occlusions and 

increase its generalization capabilities [104]. The technique involves randomly 

selecting a square-shaped region within an image and replacing the pixel values in 

that region with zeros. Cutout randomly masks out a contiguous rectangular region 

of pixels from an image during training, effectively creating a "hole" in the image. 

 

Albumentations [105] library was used to implement augmentation techniques of 

image augmentations. Because albumentations [106] offers fast and flexible solutions. 

Probabilities and details of the methods applied during the training are given in table 5.3. 

Table 5.3 Augmentation Technical Details 

Augmentation Probability Parameters 

Random Brightness And Contrast 50% Factor range = 0.2 

Color Jitter 50% Brightness=0.2, Contrast=0.2, Saturation=0.2, Hue=0.2 

CLAHE 50% threshold = (1,4) , Grid Size: (8,8) 

Image Blur 50% 
One Of ( Median Blur(blur limit=5) , Gaussian Blur(blur 

limit=5) , Motion Blur(blur limit=5) )  

Image Noise 50% 

One Of (ISO Noise(intensity=(0.1, 0.5), 

color_shift=(0.01, 0.05)) , Gauss Noise(variance 

range=(5,30)) 

Cutout 50% Num_holes=8,  max height and width of the hole = 8 
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Figure 5.5 shows the effects on the 6 selected images from the dataset and the 12 

images after applying these images, in order to visually observe how it creates an effect on 

the images according to the probability and technical details. 

 

Figure 5.5 Original images at the top, randomly deep augmentations applied images at 

the second and the third row.  

Comparative results obtained by applying deep augmentation techniques are 

presented in table 5.4. As seen in the table, the AUC value increased from 0.9299 to 0.9336. 

This proves that promising results can be obtained to increase accuracy while providing a 

difference in the training set during the training phase. 

Table 5.4 Comparison results of previous models and deep augmentations applied 

Experimented Model Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Step 1 : Shades Of Gray 93.69 94.00 0.9380 0.9299 

Step 2: Deep Augmentations 93.72 94.18 0.9384 0.9336 

AUC: Area Under Curve 

 

The biggest problem we experienced in this problem was that overfitting occurred as 

a result of the incredible imbalance between the classes, which was seen on the left of the 

graphs in figure 5.6 below. In order to provide differentiation in the data set, which is one of 

the solution methods in order to combat overfitting, the successful effect of using image 
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augmentation techniques in accordance with the data set is clearly seen in the graph on the 

right of the graphs in figure 5.6. 

Figure 5.6 Loss plot for base model on the left and deep augmentation applied model 

on the right 

As seen in figure 5.7, confusion matrix shows that true predicted melanoma labels 

increase from 491 to 511. 

 

 

Figure 5.7 Confusion matrix for deep augmentations applied model 
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5.4 Step 3 : Scheduler 

The learning rate is a hyperparameter that controls how much the weights of the 

model should change while being trained. There are methods for adjusting the learning rate 

during training to enhance model performance. During backpropagation, it establishes the 

size of the step that is taken in the gradient's direction. The model may take a very long time 

to converge to a satisfactory solution if the learning rate is too low. The model may overshoot 

the ideal answer and fail to converge if the learning rate is too high [107].  

 

Learning rate scheduler is a technique that adjusts the learning rate during training. 

Learning rate schedulers automatically adjust the learning rate during training, typically by 

reducing or increasing it over time, to ensure efficient convergence of the model. By doing 

so, the model's performance can be enhanced and overfitting can be avoided. There are 

several types of learning rate schedulers, including step decay, exponential decay and cyclic 

learning rates. In this thesis, we tried CyclicLR-triangular2 [108], CosineAnnealingLR [109] 

and OneCycleLR-cos [110] learning rate techniques. If these are to be explained more 

technically, 

 CyclicLR-triangular2 learning rate scheduler: CyclicLR-triangular2 is a learning 

rate scheduler used in convolutional neural networks that employs a cyclic learning 

rate policy. It is based on the idea of cyclic learning rates, which entails changing the 

learning rate during training in order to hasten convergence and maybe arrive at a 

more effective solution [108].  

 

Figure 5.8 CyclicLR-triangular2 learning rate scheduler 
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As seen in figure 5.8, the learning rate climbs from an initial value to a 

maximum value in the first half of each cycle for the CyclicLR-triangular2 scheduler 

and then declines from the maximum value back to the initial value in the second half 

of each cycle. The scheduler uses a triangular waveform to achieve this cycle, hence 

the name "triangular2". The effect of using this scheduler in a CNN is that it can help 

the network converge faster and potentially reach a better solution compared to using 

a fixed learning rate. The cyclic nature of the learning rate helps the network avoid 

getting stuck in local optima and can help it explore different regions of the loss 

landscape. Additionally, the triangular waveform of the learning rate cycle provides 

a smooth transition between high and low learning rates, which can help prevent the 

network from making large updates that could destabilize the training process.  

 CossineAnnealing learning rate scheduler: The learning rate of a convolutional 

neural network (CNN) is modified during the training process using the 

CosineAnnealingLR scheduler technique. The backpropagation optimizer's step size 

for updating the neural network's weights is determined by the learning rate [109].  

 

 

Figure 5.9 CossineAnnealing learning rate scheduler 

As seen in figure 5.9, the CosineAnnealingLR scheduler reduces the learning 

rate in a cosine annealing manner, meaning that it gradually decreases the learning 

rate from an initial maximum value to a minimum value as the training progresses. 

This method helps to prevent overfitting and achieve better performance by allowing 

the network to explore the solution space more effectively. It functions by permitting 
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the learning rate to be larger early in the training process when the weights are further 

away from their optimal values and then gradually reducing the learning rate as the 

weights get closer to their optimal values. The CosineAnnealingLR scheduler 

employs a cosine annealing schedule to smooth learning rate updates and lessen the 

possibility of exceeding the ideal weights. The number of epochs in a training cycle 

is a hyperparameter that affects the performance of the scheduler. The larger the 

number of epochs, the slower the decrease in the learning rate, allowing the network 

to explore the solution space more thoroughly. 

 OneCycleLR-cos learning rate scheduler: Convolutional neural networks can use 

a method called the OneCycleLR-cos learning rate scheduler to regulate the learning 

rate while training [110]. This scheduler varies the learning rate in a cyclical pattern 

that consists of three phases: a gradual increase in the learning rate, a gradual decrease 

and a steep drop towards the end of training. The initial phase aims to quickly 

converge the model to a good solution, while the second phase enables the model to 

explore other regions of the parameter space. Towards the end of training, the last 

step aids in fine-tuning the model. The cosine annealing policy and the One Cycle 

policy are combined by the OneCycleLR-cos scheduler to adjust the learning rate.  

 

 

Figure 5.10 OneCycleLR-cos learning rate scheduler 

As seen in figure 5.10, the One Cycle policy gradually increases and then 

decreases the learning rate, while the cosine annealing policy reduces the learning 

rate gradually towards the end of the training process. The OneCycleLR-cos 
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scheduler provides an optimal learning rate schedule that ensures better convergence 

and faster training of the CNN. By dynamically modifying the learning rate based on 

the loss function and the number of iterations, this scheduler helps to prevent the 

model from being overfitted or underfitted. 

 

Comparative performance results of the base model and CyclicLR-triangular2, 

CosineAnnealingLR, OneCycleLR-cos learning rate techniques are given in table 5.5. 

Table 5.5 Comparison results of previous models and different learning rate schedulers 

applied 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Step 1: Shades Of Gray 93.69 94.00 0.9380 0.9299 

Step 2: Deep Augmentations 93.72 94.18 0.9384 0.9336 

Step 3a: CyclicalLR-triangular2 93.37 93.99 0.9346 0.9278 

Step 3b: CosineAnnealingLR 93.68 94.14 0.9381 0.9346 

Step 3c: OneCycleLR-cos 94.00 94.46 0.9411 0.9350 

AUC: Area Under Curve 

 

As seen in table 5.5, OneCycleLR-cos learning rate scheduler got better AUC than 

other schedulers. A smooth learning rate schedule is provided by the OneCycleLR-Cos 

scheduler, which progressively raises the learning rate to a maximum value before gradually 

lowering it. Having a solid balance between initial learning that happens quickly and fine-

tuning at the conclusion of training is made possible by this.  

 

The loss plots of all models obtained during the training are given in figure 5.11.In 

fact, although there was a perfect match between the validation loss and the training loss with 

the CyclicalLR-triangular2 learning rate scheduler, the AUC metric value did not show 

success in the same way. The OneCycleLr-cos learning rate scheduler, on the other hand, 

seems to be good for the training stage. 
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Figure 5.11 Loss plot for deep augmentation applied model on top left,  Step 3a: 

CyclicalLR-triangular2 on top right, Step 3b: CosineAnnealingLR on bottom left, Step 

3c: OneCycleLR-cos on bottom right 
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5.5 Step 4: Optimization 

Optimizers are an essential component of the training process in convolutional neural 

networks. By reducing the loss function, which calculates the difference between the 

expected and actual output, they assist in updating the model parameters during training. In 

order to minimize the loss function and have it converge toward the best outcome, the 

optimizer modifies the model's weights and biases [111]. There are several optimizers used 

in CNNs, such as SGD [112], RMSprop [94], Adam [93], Nadam [113]. CNN's performance 

and training can be significantly impacted by the optimizer selected. In this thesis, in addition 

to Adam, we tried AdamP [114], AdamW [115] and RMSprop optimizers. If these are to be 

explained more technically, 

 RMSprop optimizer: RMSprop (Root Mean Square Propagation) is an optimization 

approach used in deep learning to update a neural network's weights. The technique 

scales the learning rate using a moving average of the squared gradients. In order to 

avoid convergence problems, it seeks to prevent the learning rate from being either 

too high or too low. RMSprop divides the learning rate for each weight by a running 

average of the magnitudes of the most recent gradients. Due to the ratio of the 

magnitudes of the most recent gradients in each dimension, the gradient in each is 

scaled as a result. The technique also has a decay parameter that regulates how much 

the prior gradient magnitudes are forgotten, allowing it to adjust to shifting data 

distributions over time. Especially those involving sparse data deep learning 

applications, have found the RMSprop optimizer to be effective [94]. 

 AdamP optimizer: The AdamP optimizer expands on the Adam optimizer, which 

combines the AdaGrad's adaptive learning rate with momentum optimization's 

momentum. AdamP fixes the weight decay issue brought on by the L2 regularization 

by adding a new penalty term to the Adam optimizer. The weight decay or L2 

regularization, which adds a penalty term to the loss function to deter excessive 

weights, prevents overfitting. L2 regularization, however, might cause weights to be 

pushed towards zero, which would delay learning and have a negative impact on the 

optimization process. AdamP addresses this issue by introducing a penalty term that 

is proportional to the gradient of the weight decay term, which allows the optimizer 
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to differentiate between the regularization penalty and the true gradient. This 

technique improves the optimization of scale-invariant weights, which are weights 

that have the same effect regardless of their scale and which are often used in 

convolutional neural networks [114]. Overall, AdamP is an extension of the Adam 

optimizer that improves the optimization of scale-invariant weights by correcting the 

weight decay problem caused by L2 regularization. It achieves this by introducing a 

penalty term that is proportional to the gradient of the weight decay term, which helps 

modify between the regularization penalty and the true gradient. 

 AdamW optimizer: A variation of the Adam optimizer called the AdamW (Adam 

with Decay) optimizer is used to update the neural network's parameters while it is 

being trained. The weight decay term that has been added to the update rule is the 

primary distinction between AdamW and Adam. By encouraging the optimizer to 

choose a solution that is more generalizable to fresh data, this weight decay factor 

helps prevent overfitting [115]. Because the weight decay term is inversely related to 

the square of the weight values, heavier weights suffer a greater penalty than lighter 

weights. When training large neural networks with numerous parameters, the AdamW 

optimizer is very successful since it helps keep the network from overfitting the 

training data. It is frequently employed in deep learning applications, such as image 

recognition and natural language processing. In addition to the weight decay term, 

AdamW also has an adaptive learning rate that modifies the learning rate for each 

parameter in accordance with the gradient history. In comparison to conventional 

stochastic gradient descent techniques, this enables the optimizer to converge more 

quickly and consistently. 

 

As seen in table 5.6, AdamW optimizer got better AUC than others. As seen in figure 

5.12 AdamW has been shown to convergence generalization performance. Weight decay is 

incorporated right into the optimization process by AdamW. This lessens the influence of 

high parameter values and regularizes the weights of the model, preventing overfitting. It 

helps the model achieve a suitable balance between fitting the training data and avoiding 

overfitting by skillfully controlling the learning rates and including weight decay. 
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Table 5.6 Comparison results of previous models and different optimizers applied 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Step 1: Shades Of Gray 93.69 94.00 0.9380 0.9299 

Step 2: Deep Augmentations 93.72 94.18 0.9384 0.9336 

Step 3c: OneCycleLR-cos 94.00 94.46 0.9411 0.9350 

Step 4a: RMSprop 93.68 94.19 0.9371 0.9311 

Step 4b: AdamP 93.95 94.32 0.9407 0.9344 

Step 4c: AdamW 94.04 94.39 0.9416 0.9369 

AUC: Area Under Curve 

 

 

 

 

Figure 5.12 Loss plot for OneCycleLR-cos applied model on top left,  Step 4a: RMSProp 

on top right, Step 4b: AdamP on bottom left, Step 4c: AdamW on bottom right 
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5.6 Step 5: Loss Function 

Convolutional neural networks use a loss function to measure the difference between 

the expected output of the network and the actual output (ground truth). The goal of the 

model's training process is defined by the loss function. Reducing this loss function is the 

target of training a CNN, which is accomplished through backpropagation weight changes. 

In order to quantify how effectively the model is working, it measures the difference between 

the projected results and the labels from the ground truth. The model learns to predict events 

correctly by reducing the loss function. 

 Binary Cross Entropy with Weights: A variant of the binary cross-entropy loss 

function frequently employed in CNNs for binary classification tasks is binary cross 

entropy with weights. The model can be influenced to focus more on correctly 

classifying positive cases by altering the weight allocated to the positive class. When 

dealing with imbalanced datasets, when one class has noticeably more samples than 

the other, the Binary Cross Entropy with Weights loss function in CNNs can be 

helpful [116]. The model can concentrate more on accurately predicting these samples 

and avoid being biased towards the majority class by giving the minority class larger 

weights. In addition to addressing the imbalanced datasets issue, this enhances the 

model's performance for the minority class. 

 Binary Focal Loss: When performing binary classification tasks, a modified version 

of the Binary Cross-Entropy Loss function called Binary Focal Loss is widely used, 

especially when working with datasets that are unbalanced and may have one class 

that is significantly underrepresented. Lin et al. [117] introduced the Focal Loss 

function. It seeks to solve the issue of class imbalance by concentrating training on 

challenging examples that are confidently misclassified. By concentrating on cases 

that are difficult to classify, the binary focal loss function, a variation of the binary 

cross-entropy loss function, solves the problem of class imbalance. In order to 

prioritize the loss on incorrectly classified or challenging cases, it introduces a 

modulating factor termed the "focusing parameter" to downweight the loss 

contribution of well-classified examples.  
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Comparative performance results of loss function are given in table 5.7. By giving 

misclassified samples, especially those belonging to the minority class, greater weights, the 

focused loss function addresses how to handle class imbalance. It assists the model in 

concentrating on difficult cases and successfully balances the effects of several classes. In 

this sense, its success can be seen from the confusion matrix. In particular, the number of 

samples found in the melanoma class, which should be noted here, increased from 524 to 

547, which shows that Binary Focal Loss provides a consistent result in imbalance data sets. 

Table 5.7 Comparison results of previous models and different loss functions applied 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Applied with Shades Of Gray 93.69 94.00 0.9380 0.9299 

Applied Deep Augmentations 93.72 94.18 0.9384 0.9336 

Step 3c: OneCycleLR-cos 94.00 94.46 0.9411 0.9350 

Step 4c: AdamW 94.04 94.39 0.9416 0.9369 

Step 5a: wBCE 93.30 90.29 0.9135 0.9366 

Step 5b: Binary Focal Loss 93.88 94.26 0.9401 0.9373 

AUC: Area Under Curve 

 

      

Figure 5.13 Confusion matrix for Step 4c:AdamW applied model on top left,  Step 5b: 

Binary Focal Loss applied model on right 
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5.7 Step 6: Vignetting Effect 

As we were examining the dataset and looking at the images, we noticed that some 

of the images had black areas around the center circle, as if these images were taken with a 

microscope, as seen in figure 5.14. But it was also seen that this round frame softened from 

the corners to the middle, which reminded us of the vignetting effect.  

 

 

Figure 5.14 Some of the images had black areas around the center circle 

 

When an image's light intensity falls toward its borders, a typical optical distortion 

known as vignetting results [118]. As a result, the image's edges may appear darker than its 

center. Vignetting can be obtained in image processing using various techniques, one of 

which is to apply a Gaussian distribution function. In this technique, a Gaussian distribution 

function is applied to the image, which simulates the light falloff that occurs in the image due 

to vignetting. The Gaussian function used in this technique has the following equation:  

 𝑓(𝑥) =
1

𝜎√2𝜋 
 𝑒

−(𝑥−𝜇)2

2𝜎2  (5.1) 

 

where 𝒇(𝒙) represents the value of the Gaussian kernel at position (x,y) on the 2d image, 𝝈 is 

the standard deviation of the Gaussian function, 𝝅 is the mathematical constant, 𝝁 is mean 

of kernel and 𝒆 is the exponential function. The Gaussian function is centered at the image 
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center and has a standard deviation that determines the extent of the vignetting effect. The 

resulted image is created by multiplying the values of the Gaussian function by the image's 

original pixel values. As a result of the experience, we got the value of sigma as 70. The 

Gaussian function has a bell-shaped curve, with the peak in the image's center and values 

dwindling outward from it. When multiplied with the original pixel values, the Gaussian 

function reduces the intensity of the pixels towards the edges of the image, resulting in a 

corrected image with reduced vignetting. The original images and the images obtained after 

applying the vignetting effect filter are shown in figure 5.15. 

 

 

Figure 5.15 Original images at the top, vignetting effect applied images at the bottom 

Applying the vignetting effect method also had a significant impact on the accuracy 

and the comparative results with the base model are given in table 5.8. 

Table 5.8 Comparison results of previous models and vignetting effect filter applied 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Step 1: Shades Of Gray 93.69 94.00 0.9380 0.9299 

Step 2: Deep Augmentations 93.72 94.18 0.9384 0.9336 

Step 3c: OneCycleLR-cos 94.00 94.46 0.9411 0.9350 

Step 4c: AdamW 94.04 94.39 0.9416 0.9369 

Step 5b: Binary Focal Loss 93.88 94.26 0.9401 0.9373 

Step 6: Vignetting Effect 93.98 94.43 0.9408 0.9378 

AUC: Area Under Curve 
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5.8 Step 7: Hair Noise 

Experimental studies have shown that data augmentation techniques helped to 

achieve better results. They not only diversified the dataset but also improved the results. As 

we were observing the images in the dataset, we noticed that there are samples with body 

hair overlapping in the lesion area. There were actually two different approaches here. First, 

what would happen if these hairs were cleared from the samples. Second or opposite 

approach, what would happen if, taking into account the loss of information when these hairs 

are removed, we gathered some samples suitable for hair addition and randomly added these 

hairs to the images in data augmentation steps.  

 

Hair removal is a crucial preprocessing step in image processing that improves the 

quality of the images and the precision of future analysis tasks, including the classification 

of melanoma. Numerous strategies for getting rid of hair have been given in the literature, 

including thresholding-based techniques, morphological filtering techniques and machine 

learning techniques [119, 120, 121, 122]. Setting a threshold value to distinguish the hair 

from the background and then deleting the hair pixels are the steps in threshold-based 

techniques. Morphological filtering methods use mathematical operations such as erosion, 

dilation and opening/closing to remove hair and other small objects in the image. Machine 

learning-based methods use algorithms such as SVMs or CNN to identify and remove hair 

pixels based on their features and characteristics. 

 

One of the most popular techniques for hair removal is the "dull razor technique," 

which involves eliminating body hair using a dull razor blade [123]. This method has been 

applied as a pre-processing step to enhance the classification accuracy of skin lesions in 

melanoma diagnosis. The basic idea behind using this technique is to remove hair from the 

skin surface, which can cause artifacts and interfere with the accurate detection of melanoma 

lesions. In the study by Alizadeh et al. [124] was used the dull razor technique to remove hair 

from skin lesion images in the ISIC dataset. By using the dull razor technique, the authors 

were able to achieve a higher accuracy in melanoma classification compared to when the 

images were not pre-processed in this manner. 
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Improvement in classification is expected thanks to the use of dull razor technique, 

which is used in the image preprocessing stage and aims to improve the image and most of 

the hair noise is removed. The image needs to be preprocessed, with the majority of the 

human hair-related noise that it contains being eliminated.  

 

The first stage in the dull razor process is to conduct a dilation operation, then an 

erosion phase, to reduce tiny details in the image. The difference between the original and 

processed images is then calculated. It uses an erosion process on the variance mask to lessen 

noise. In order to complete the process, the noise mask is used to replace the original image's 

pixels. Performance results by using this technique are given in the table 5.9 below.  

Table 5.9 Comparison results of previous models and applied with dull razor technique 

for hair removal 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Step 1: Shades Of Gray 93.69 94.00 0.9380 0.9299 

Step 2: Deep Augmentations 93.72 94.18 0.9384 0.9336 

Step 3c: OneCycleLR-cos 94.00 94.46 0.9411 0.9350 

Step 4c: AdamW 94.04 94.39 0.9416 0.9369 

Step 5b: Binary Focal Loss 93.88 94.26 0.9401 0.9373 

Step 7a: Hair Remove 93.59 94.13 0.9370 0.9333 

AUC: Area Under Curve 

Although an improvement in accuracy was expected with dull razor technique for 

hair removal, contrary to expectations, AUC score was not improved. There could be many 

reasons to explain this result. The most important conclusion to be drawn should be, there 

were significant pixels in the cleared areas. In other words, as a result of performing an 

erosion process from the image, removing an area under and around the hair that is related 

or related to the disease, depending on the mask size, had a negative effect on accuracy. 

Comparative images of how the hair removal process affects the images and which masks 

are removed and the hairs are cleaned are shown in the figure 5.16 below. 
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Figure 5.16 Original images at the top,  mask images in the middle, hair removed images 

at the bottom 

 

When the dataset is examined, it is seen that in some images the hairs are less 

pronounced or more, while in some images the hairs are more prominent and take up more 

space in the image. If successful results were not obtained in hair removal, then we continued 

the work by suggesting what would happen if we used some hairs as masks and randomly 

applied the masks to the images as a data augmentation technique. This time, an experimental 

investigation was done using a data augmentation technique to randomly add hair noise to 

the images rather than eliminating hair. The study's findings are shown in table 5.10 and the 

table below includes a comparison with hair removal. As a result, hair noise data 

augmentation technique was be used in the following stages, since adding hair noise rather 

than cleaning hair has a positive effect on performance. 
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Table 5.10 Comparison results of previous models and random hair noise 

augmentations applied 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Step 1: Shades Of Gray 93.69 94.00 0.9380 0.9299 

Step 2: Deep Augmentations 93.72 94.18 0.9384 0.9336 

Step 3c: OneCycleLR-cos 94.00 94.46 0.9411 0.9350 

Step 4c: AdamW 94.04 94.39 0.9416 0.9369 

Step 5b: Binary Focal Loss 

Step 7a: Hair Remove 

93.88 

93.59 

94.26 

94.13 

0.9401 

0.9370 

0.9373 

0.9333 

Step 7b: Hair Noise 93.83 94.32 0.9395 0.9379 

AUC: Area Under Curve 

Comparative images of how the hair noise process affects the images and which 

masks are used for augmentations and how to augment images are shown in the figure 5.17 

below. 

 

Figure 5.17 Original images on the top panel,  mask images in the middle and images 

with hair noise added in the last row 
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5.9  Step 8: Vignetting Effect and Hair Noise  

Experimental studies have shown that using vignetting effect filter and using hair 

noise data augmentations has reached better scores than the previous ones. For this reason, 

we wanted to see the effect of using both techniques in addition to data augmentation 

techniques and using these two techniques together on images randomly.  

Figure 5.18 Original images in the first row,  mask images in the second row, images 

with hair noise added in the third row and images with hair noise and vignetting effect 

added in the fourth row. 
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Comparative scores are given in table 5.11 and as can be seen from the table, using 

both techniques also stands out as an increase in the AUC metric. 

Table 5.11 Comparison results of previous models and vignetting effect filter with 

random hair noise augmentations applied 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Step 1: Shades Of Gray 93.69 94.00 0.9380 0.9299 

Step 2 : Deep Augmentations 93.72 94.18 0.9384 0.9336 

Step 3c: OneCycleLR-cos 94.00 94.46 0.9411 0.9350 

Step4c: AdamW 94.04 94.39 0.9416 0.9369 

Step 5b: Binary Focal Loss 93.88 94.26 0.9401 0.9373 

Step 6: Vignetting Effect 93.98 94.43 0.9408 0.9378 

Step 7b: Hair Noise 93.83 94.32 0.9395 0.9379 

Step 8:Vignetting Effect and Hair Noise 93.85 94.23 0.9396 0.9381 

AUC: Area Under Curve 
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5.10 Step 9: Metadata 

Features of images and metadata fusion is the process of merging data that has been 

taken from both the visual information included in images and the related metadata. This 

fusion strategy tries to improve the performance of machine learning models or other data 

analysis tasks by utilizing the complimentary information offered by both modalities [125]. 

Metadata characteristics describe additional details linked to contextual information about 

images. The dataset includes information about the age, gender and anatomic site in context. 

Understanding the images and their accompanying semantics may benefit from the valuable 

context and insights provided by these metadata. Combining image and metadata information 

has various advantages, including, 

 Improved Performance: The fusion approach can capture a more thorough 

representation of the data by merging information from many modalities, which 

enhances performance in image classification tasks. 

 Enhanced Robustness: Metadata features can offer more context and semantics to 

the data, which may help to clarify any limitations or ambiguities in the visual 

material. The model can handle situations where the visual content alone may not be 

sufficient by utilizing both image and metadata information, making it more resilient 

to fluctuations in the data. 

 Improved Interpretability: Combining image and metadata elements can produce 

insights that can be used to interpret decisions. It is simpler to comprehend the 

variables affecting the model's predictions or classifications when both visual and 

contextual information is taken into account. 

5.10.1 Metadata Features Preparation 

After ISIC 2019 and ISIC 2020 datasets were combined, only age, gender and 

anatomic site features were used as metadata. It is seen in the dataset that not all data are 

filled in these categories. First of all, when the gender category is examined, it is seen in 

figure 5.19 that 449 samples are not filled, that is, data is missing in non-a-number(nan). 
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Figure 5.19 Different gender labels in the dataset 

Then, when the anatomic site category is examined, it is seen in figure 5.20 that 3158 

samples are again not filled, data is missing in non-a-number(nan). 

Figure 5.20 Different anatomic site labels in the dataset 

Finally, when the age category is examined, it is seen in figure 5.21 that 505 samples 

are again not filled, data is missing in non-a-number(nan). 
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Figure 5.21 Different age labels in the dataset 

 

It was necessary to combine different labels in these three categories. For the gender 

category, 3 labels consisting of male, female and non-a-number(nan) can be taken. Then, 7 

labels consisting of head/neck, torso, lower extremity, upper extremity, oral/genital, 

palms/soles and nan can be taken for the anatomic site category. And finally, for the age 

category, 20 labels consisting of 0.0, 5.0, 10.0, 15.0, 20.0, 25.0, 30.0, 35.0, 40.0, 45.0, 50.0, 

55.0, 60.0, 65.0, 70.0, 75.0, 80.0, 85.0, 90.0 and non-a-number(nan) can be taken. 

Thus, a metadata conversion result consisting of 30 different categories in total was 

obtained. One-hot encoding method was used to convert categorical data to binary format 

[126]. Each category in the variable is represented by a binary vector in one-hot encoding, 

with the exception of the index corresponding to the category, which is set to one. All other 

elements in the vector are zero. Machine learning algorithms are able to handle and 

comprehend categorical data efficiently because of its binary vector representation. 
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5.10.2 Proposed Image Features and Metadata Fusion Model 

Due to its capacity to automatically learn hierarchical and discriminative features 

from raw image data, CNNs have grown to be a prominent alternative for feature extraction 

in computer vision tasks. CNNs were created with the explicit purpose of utilizing the spatial 

correlations found in images and capturing regional patterns and structures. The spatial 

dimensions are downsampled by the global average pooling layers. Flattening is done for 

reshaping multidimensional feature maps to a one-dimensional vector. The image and 

metadata converted to one dimension are combined.  

Figure 5.22 Conventional concatenation-based image and metadata fusion 

The dense layer applies a set of weights to each input, followed by an activation 

function, using the flattened feature maps or the output from the previous layers as its input. 

The weights establish how much each input contributes to the dense layer's output. By 

minimizing internal covariate shift, batch normalization was employed to normalize the 

activations of a network. The network can learn complex patterns and produce nonlinear 

predictions thanks to the activation function's introduction of nonlinearity. In order to prevent 

neurons from overly depending on one another while making predictions, dropout was 
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employed to limit co-adaptation between neurons. The classification layer was used for 

which generates predictions for melanoma or non-melanoma as output. Image features and 

metadata features are combined and the proposed model is given in figure 5.22. 

Table 5.12 Comparison results of previous models and vignetting effect filter with 

random hair noise augmentations applied 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 93.66 94.13 0.9379 0.9290 

Step 1: Shades Of Gray 93.69 94.00 0.9380 0.9299 

Step 2: Deep Augmentations 93.72 94.18 0.9384 0.9336 

Step 3c: OneCycleLR-cos 94.00 94.46 0.9411 0.9350 

Step 4c: AdamW 94.04 94.39 0.9416 0.9369 

Step 5b: Binary Focal Loss 93.88 94.26 0.9401 0.9373 

Step 6: Vignetting Effect 93.98 94.43 0.9408 0.9378 

Step 7b: Hair Noise 93.83 94.32 0.9395 0.9379 

Step 8: Vignetting Effect and Hair Noise 93.85 94.23 0.9396 0.9381 

Step 9: Metadata 93.96 94.33 0.9408 0.9400 

AUC: Area Under Curve 

Comparative scores are given in table 5.12 and as can be seen from the table, using 

metadata features stands out as a notable increase in the AUC metric. 

 

Figure 5.23 Step 8: Vignetting Effect and Hair Noise applied model on the left, Step 9: 

metadata applied model on the right 

 



83 

 

5.11 Step 10: Pretrained CNN Architectures 

In this section, results of selected cnn models with or without metadata are given 

together, in addition to adequate explanations about other cnn architectures. 

5.11.1 ResNet-101 

In comparison to its predecessors, ResNet-101 extends the ResNet architecture by 

adding 101 levels, making it deeper and more expressive. The additional layers enable it to 

efficiently learn hierarchical representations and capture more complicated features. 

Table 5.13 Comparison results of ResNet-50 and ResNet-101 models 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 8 : ResNet-50 without metadata  93.85 94.23 0.9396 0.9381 

Step 9: ResNet-50 with metadata 93.96 94.33 0.9408 0.9400 

Step 10a: ResNet-101 without metadata 93.89 94.27 0.9400 0.9388 

Step 10b: ResNet-101 with metadata 94.04 94.45 0.9416 0.9409 

AUC: Area Under Curve 

As seen in table 5.13, as the CNN Backbone, ResNet-101 outperformed ResNet-50. 

Better results were obtained with the ResNet-101 architecture in both excluding and 

including metadata in terms of learning distinguishing features and demonstrating the 

efficiency of improving classification accuracy. 

5.11.2 DenseNet-169 

When compared to previous architectures, DenseNet-169 uses fewer parameters 

while maintaining or even enhancing performance. Because of the tight interconnectedness, 

features can be reused and data from lower layers can be transmitted straight to higher ones. 

Because of the decreased network redundancy and improved parameter efficiency, 

DenseNet-169 uses less memory and performs computations more quickly. 
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Table 5.14 Comparison results of ResNet-50 and DenseNet-169 models 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step8: ResNet-50 without metadata  93.85 94.23 0.9396 0.9381 

Step 9: ResNet-50 with metadata 93.96 94.33 0.9408 0.9400 

Step 10c: DenseNet-169 without metadata 93.91 94.34 0.9404 0.9384 

Step 10d: DenseNet-169 with metadata 94.03 94.45 0.9415 0.9414 

AUC: Area Under Curve 

As seen in table 5.14, as the CNN Backbone, DenseNet-169 outperformed ResNet-

50. Better results were obtained with the DenseNet-169 architecture in both excluding and 

including metadata in terms of the vanishing gradient issue that deep neural networks 

frequently experience is reduced with DenseNet-169. In order to improve information 

transmission and solve the problem of vanishing gradients, the dense connection enables 

gradients to flow straight to prior layers. 

5.11.3 The Squeeze-and-Excitation (SE) ResNeXt_50_32x4d 

The ResNet and ResNeXt designs, which have already shown good performance in 

image classification tasks, serve as the foundation for the ResNeXt_50_32x4d architecture. 

The ability of the model to recognize intricate patterns and relationships within the data is 

further improved with the inclusion of the SE module. The network can learn more expressive 

representations and attain improved accuracy because of this expanded capacity. 

Table 5.15 Comparison results of ResNet-50 and Se_Resnext50_32x4d models  

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 8: ResNet-50 without metadata  93.85 94.23 0.9396 0.9381 

Step 9: ResNet-50 with metadata 93.96 94.33 0.9408 0.9400 

Step 10e: Se_Resnext50_32x4d  

without metadata 

94.07 94.40 0.9419 0.9397 

Step 10f: Se_Resnext50_32x4d  

with metadata 

94.14 94.40 0.9425 0.9427 

AUC: Area Under Curve 

As seen in table 5.15, as the CNN Backbone, Se_Resnext50_32x4d outperformed 

ResNet-50. In addition to the Se_Resnext50_32x4d architecture achieving better results in 
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both excluding and including metadata, the ResNeXt_50_32x4d design includes the SE 

module which adaptively recalibrates the feature maps and provides a channel attention 

mechanism giving it a custom focus ability by learning the relationships by channel and 

allows the network to focus on more informative features by giving more weight to relevant 

channels. This attention mechanism improves performance by increasing the discrimination 

capacity of the network. 

5.11.4 ResNeSt-50 

The Nested Residual Blocks concept is introduced in ResNeSt-50, which takes 

advantage of the dependencies between several feature groups to improve representation 

learning. These layered blocks allow the model to leverage multi-scale features and gather 

more fine-grained information, which improves performance. 

Table 5.16 Comparison results of ResNet-50 and ResNeSt-50 models 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 8: ResNet-50 without metadata  93.85 94.23 0.9396 0.9381 

Step 9: ResNet-50 with metadata 93.96 94.33 0.9408 0.9400 

Step 10g: ResNeSt-50 without metadata 93.94 94.36 0.9408 0.9390 

Step 10h: ResNeSt-50 with metadata 94.18 94.52 0.9429 0.9415 

AUC: Area Under Curve 

As seen in table 5.16, as the CNN Backbone, ResNeSt-50 outperformed ResNet-50. 

In addition to the ResNeSt-50 architecture achieving better results in both excluding and 

including metadata, ResNeSt-50 uses the Split-Attention Mechanism, which separates the 

input channels into various groups and computes attention across them. The network's 

representational strength is increased by this mechanism's ability to allow the model to focus 

only on educational channels. The split-attention method enables the model to capture a 

wider variety of distinguishing features. 

5.11.5 EfficientNet-B3 

A compound scaling technique is used by EfficientNet-B3 to scale the network's 

depth, width and resolution equally. In comparison to other architectures, this method 

improves accuracy with fewer parameters by striking a compromise between model size and 
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performance. The model is able to perform at the cutting edge thanks to the compound scaling 

technique, which guarantees effective resource use. 

Table 5.17 Comparison results of ResNet-50 and EfficientNet-B3 models 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 8: ResNet-50 without metadata  93.85 94.23 0.9396 0.9381 

Step 9: ResNet-50 with metadata 93.96 94.33 0.9408 0.9400 

Step 10i: EfficientNet-B3 without metadata 93.25 93.86 0.9340 0.9326 

Step 10j: EfficientNet-B3 with metadata 93.47 94.03 0.9361 0.9374 

AUC: Area Under Curve 

 

As seen in table 5.17, as the CNN Backbone, EfficientNet-B3 performed worse than 

ResNet-50. While the performance comparison between the two architectures is dependent 

on specific tasks and datasets, some considerations can be made to explain why ResNet-50 

might perform better in this scenario. ResNet-50 has 50 layers, but EfficientNet-B3 has less 

layers, making it a deeper network. A deeper network may occasionally be able to catch more 

intricate patterns and features, which would improve representation learning. For some tasks, 

the greater depth of ResNet-50 makes it possible to capture more hierarchical and abstract 

representations. 

5.11.6 TResNet-L 

The TResNet-L architecture is made up of residual blocks, each of which has two 

convolutional layers and a residual link. The network can discover long-range relationships 

thanks to the residual connections. 

Table 5.18 Comparison results of ResNet-50 and TResNet-L models  

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 8: ResNet-50 without metadata  93.85 94.23 0.9396 0.9381 

Step 9: ResNet-50 with metadata 93.96 94.33 0.9408 0.9400 

Step 10k: TResNet-L without metadata 94.08 94.52 0.9410 0.9398 

Step 10l: TResNet-L with metadata 94.01 94.44 0.9412 0.9427 

AUC: Area Under Curve 
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As seen in table 5.18, as the CNN Backbone, TResNet-L outperformed ResNet-50. 

In addition to the TResNet-L architecture achieving better results in both excluding and 

including metadata, both in terms of training and inference time, TResNet-L is effective. This 

is because it makes use of residual connections, which let it understand long-range 

dependencies without needing a lot of parameters. 

5.11.7 ConvNeXt-tiny 

ConvNeXt-tiny is based on the Transformer architecture, an extremely potent neural 

network design. ConvNeXt-tiny has successfully modified the Transformer architecture for 

computer vision tasks. The Transformer design has been proven to be particularly effective 

at natural language processing tasks. 

Table 5.19 Comparison results of ResNet-50 and ConvNeXt-tiny models  

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 8: ResNet-50 without metadata  93.85 94.23 0.9396 0.9381 

Step 9: ResNet-50 with metadata 93.96 94.33 0.9408 0.9400 

Step 10m: ConvNeXt-tiny without metadata 94.24 94.66 0.9432 0.9452 

Step 10n: ConvNeXt-tiny with metadata 94.51 94.90 0.9459 0.9479 

AUC: Area Under Curve 

 

As seen in table 5.19, as the CNN Backbone, ConvNeXt-tiny outperformed ResNet-

50. In addition to the ConvNeXt-tiny architecture achieving better results in both excluding 

and including metadata, It is highly effective, using less processing power and memory than 

other well-known CNN architectures and it is reasonably easy to deploy. 
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5.11.8 Select CNN Models 

In this section, 8 CNN models with metadata and without metadata were 

experimented. As a result of the collective results of all models, the average of the 

performance metrics of the models, including and excluding the metadata, is given in the 

table below, sorted according to the AUC value and ordered from the highest to the lowest. 

is given in Table 5.20.  

Table 5.20 Comparasion results of the average metrics of all CNN models  

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 10i,j: EfficientNet-B3 93.36 93.95 0.9351 0.9350 

Step 10: ResNet-50  93.91 94.28 0.9402 0.9391 

Step 10a,b: ResNet-101  93.97 94.36 0.9408 0.9399 

Step 10c,d: DenseNet-169 93.97 94.40 0.9409 0.9399 

Step 10g,h: ResNeSt-50 94.06 94.44 0.9419 0.9403 

Step 10e,f: Se_ResNeXt50_32x4d 94.11 94.40 0.9422 0.9412 

Step 10k,l: TResNet-L 94.05 94.48 0.9411 0.9413 

Step 10m,n: ConvNeXt-tiny 94.38 94.83 0.9446 0.9466 

AUC: Area Under Curve 

 

As a result of the ranking made according to the results, 6 models with the highest 

average AUC value from 8 models were selected to be used together in ensemble methods. 
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5.12 Ensemble Models 

In the previous section, comparative performance results were obtained with many 

different models and the results of 8 different cnn models with and without metadata 

combined were compared and 6 different cnn models with high average AUC metric were 

selected. In this section, comparative accuracy results are given by using different ensemble 

methods in order to obtain better results by combining the predictions of these independent 

CNN models together. First of all, soft voting method was used with including or excluding 

metadata of 6 different cnn models and then hard voting and lastly optimal weighted voting 

from voting ensemble methods, which are also among the stacking ensemble methods 

principles were used.  

 

 

 

Figure 5.24 Stacked ensemble 

As seen in figure 5.24, stacked ensemble is an ensemble learning method that 

combines the predictions of multiple individual models, called base models or learners, to 
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make final predictions. This ensemble entail utilizing a model to figure out how to combine 

model predictions most effectively.  

5.12.1 Soft Voting 

Soft voting is a technique used in stacked ensembles to combine the predictions of 

the underlying models by taking into consideration the probabilities or confidence scores 

assigned to each class label [127]. Soft voting selects the class with the highest average 

probability as the ensemble prediction by averaging the predicted probabilities across the 

base models. In this section, the performance of the models without metadata, followed by 

the performance results of the models with metadata combined and the performance results 

of the models with both conditions are given separately. 

Table 5.21 Comparison results of soft voting ensemble of selected CNN models without 

metadata  

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 10c: DenseNet-169 without metadata 93.91 94.34 0.9404 0.9384 

Step 10a: Resnet-101 without metadata  93.89 94.27 0.9400 0.9388 

Step 10g: ResNeSt-50 without metadata 93.94 94.36 0.9408 0.9390 

Step 10e: Se_ResNeXt50_32x4d  

without metadata 

94.07 94.40 0.9419 0.9397 

Step 10k: TResnet-L without metadata 94.08 94.52 0.9410 0.9398 

Step 10m: ConvNeXt-tiny without metadata 94.24 94.66 0.9432 0.9452 

Step 11a: Soft Voting Ensemble of Selected 

Models without metadata 

94.83 95.10 0.9481 0.9545 

AUC: Area Under Curve 

 

As seen in table 5.21, soft voting ensemble of selected models without metadata 

outperformed than previous experimented models. The highest 0.9452 AUC score achieved 

in Step 10m up to this stage has increased to 0.9545 AUC score in this step. 
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Table 5.22 Comparison results of soft voting ensemble of selected CNN models with 

metadata 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 10c: DenseNet-169 with metadata 94.03 94.45 0.9415 0.9414 

Step 10a: Resnet-101 with metadata  94.04 94.45 0.9416 0.9409 

Step 10g: ResNeST-50 with metadata 94.18 94.52 0.9429 0.9415 

Step 10e: Se_ResNeXt50_32x4d  

with metadata 

94.14 94.40 0.9425 0.9427 

Step 10k: TResnet-L with metadata 94.01 94.44 0.9412 0.9427 

Step 10m: ConvNeXt-tiny with metadata 94.51 94.90 0.9459 0.9479 

Step 11b: Soft Voting Ensemble of Selected 

Models with metadata 

94.92 95.12 0.9489 0.9555 

AUC: Area Under Curve 

 

As seen in table 5.22, soft voting ensemble of selected models with metadata 

outperformed than previous experimented models, but also gives better AUC score than 

without metadata version. The highest 0.9479 AUC score achieved in Step 10m up to this 

stage has increased to 0.9555 AUC score in this step. 

Table 5.23 Comparison results of soft voting ensemble of all selected CNN models 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 11a: Soft Voting Ensemble of Selected 

Models without metadata 

94.83 95.10 0.9481 0.9545 

Step 11b: Soft Voting Ensemble of Selected 

Models with metadata 

94.92 95.12 0.9489 0.9555 

Step 11c: Soft Voting Ensemble of Selected 

Models with and without metadata  

94.97 95.21 0.9495 0.9566 

AUC: Area Under Curve 

 

Finally, as seen in table 5.23, comparison of soft voting method and models included 

and excluded from metadata is given. By combining the models with and without metadata, 

the AUC value reached 0.9566, the highest score ever. 
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5.12.2 Hard Voting 

Hard voting is a technique used in stacked ensembles to combine the predictions of 

the basic models by casting a majority vote [127]. In hard voting, each base model prediction 

is treated as a single vote and the class label with the most votes is chosen as the ensemble 

prediction. The class label that appears most frequently among the predicted class labels from 

the base models is chosen as the ensemble prediction.  

Table 5.24 Comparison results of hard voting ensemble of all selected CNN models 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 11d: Hard Voting Ensemble of Selected 

Models without metadata 

94.66 95.05 0.9457 0.9549 

Step 11e: Hard Voting Ensemble of Selected 

Models with metadata 

94.84 95.20 0.9480 0.9554 

Step 11f: Hard Voting Ensemble of Selected 

Models with and without metadata  

94.88 95.24 0.9484 0.9567 

AUC: Area Under Curve 

 

Although there is not much difference between hard voting and soft voting, it is seen 

in the table 5.24 that the AUC metric increases from 0.9566 to 0.9567. These results help to 

prove the success of ensemble techniques. 

5.12.3 Optimal Weighted Voting 

In order to improve the performance of the ensemble as a whole, the approach of 

optimal weighted voting is employed when stacking ensembles to combine the predictions 

of many models in a weighted manner. This method aggregates the weighted predictions to 

get the final prediction, which indicates the relative relevance or competency of each model's 

prediction [128]. In order to identify the weights that maximize the ensemble's performance, 

the weights are chosen using optimization techniques. In this thesis, the prediction set of each 

model is multiplied by weights that add up to 1 and have 0.05 slice intervals between 0 and 

1 and as a result, performance metrics are calculated again over these weights for the final 

prediction set. The aim here is to find the most optimal weight of the models. 
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Table 5.25 Comparison results of optimal weighted voting ensemble of all selected CNN 

models 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Step 11g: Optimal Weighted Voting Ensemble 

of Selected Models without metadata 

94.92 95.26 0.9491 0.9553 

Step 11h: Optimal Weighted Voting Ensemble 

of Selected Models with metadata 

95.01 95.34 0.9503 0.9564 

Step 11i:  Optimal Weighted Voting Ensemble 

of Selected Models with and without 

metadata  

95.06 95.38 0.9505 0.9577 

AUC: Area Under Curve 

 

 

At the same time, the mutually obtained classification report between metadata 

applied Step 10 model and Optimal Weighted Voting Ensemble of Selected Models with and 

without metadata applied model Step 11i is given in figure 5.25. 

 

   
 

Figure 5.25 Classification report for Step 10:metadata on the left, optimal weighted 

voting ensemble of selected models with and without metadata on the right 

At seen in figure 5.25, a significant increase was observed in almost every value. In 

particular, the melanoma weighted F1-Score increased from 0.66 to 0.71. This shows us that 

there is a more sensitive model that distinguishes and recognizes the melanoma class more. 
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Figure 5.26 Confusion matrix for Step 10:metadata, optimal weighted voting ensemble 

of selected models with and without metadata on the right 

At the same time, the mutually obtained confusion matrix between metadata applied 

Step 10 model and Optimal Weighted Voting Ensemble of Selected Models with and without 

metadata applied model Step 11i is given in figure 5.26. Again, a significant increase is 

observed in the part of the confusion matrix that is predicted as true negative of melanoma 

and this value is clearly seen to increase from 530 to 545. 
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5.13 Comparative Results from All Steps 

The comparison of all the results obtained up to this section is given in table 5.26. 

They are ranked according to process development. 

Table 5.26 Comparison results all models with evaluation progress on validation set 

Experimented Model  Precision (%) Recall (%) F1-Score AUC 

Base Model 92.41 94.13 0.9379 0.9290 

Step 1: Shades Of Gray 93.69 94.00 0.9380 0.9299 

Step 2: Deep Augmentations 93.72 94.18 0.9384 0.9336 

Step 3c: OneCycleLR-cos 94.00 94.46 0.9411 0.9350 

Step 4c: AdamW 94.04 94.39 0.9416 0.9369 

Step 5b: Binary Focal Loss 93.88 94.26 0.9401 0.9373 

Step 6: Vignetting Effect 93.83 94.32 0.9395 0.9379 

Step 7: Hair Noise 93.98 94.43 0.9408 0.9378 

Step 8:Vignetting Effect and Hair Noise 93.83 94.32 0.9395 0.9379 

Step 9: Metadata 93.96 94.33 0.9408 0.9400 

Step 10: ResNet-50 93.91 94.28 0.9402 0.9391 

Step 10a,b: ResNet-101  93.97 94.36 0.9408 0.9399 

Step 10c,d: DenseNet-169 93.97 94.40 0.9409 0.9399 

Step 10g,h: ResNeSt-50 94.06 94.44 0.9419 0.9403 

Step 10e,f: Se_ResNeXt50_32x4d 94.11 94.40 0.9422 0.9412 

Step 10k,l: TResNet-L 94.05 94.48 0.9411 0.9413 

Step 10m,n: ConvNeXt-tiny 94.38 94.83 0.9446 0.9466 

Step 11i: Optimal Weighted Voting Ensemble 

of Selected Models with and without 

metadata 

95.06 95.38 0.9505 0.9577 

AUC: Area Under Curve 

 

As can be seen in table 5.26, the accuracy of the developed models increases 

significantly. The AUC value, which was 0.9290 in the process that started with the base 

parameters, increased to 0.9577 as a result of many fine tunes and development processes. 

Especially with the use of ensemble methods, the improvement process has been moved to a 

better point. 
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Figure 5.27 Classification report for base model on left, optimal weighted voting 

ensemble of selected models with and without metadata on the right 

 

      

Figure 5.28 Confusion matrix for base model on the left, optimal weighted voting 

ensemble of selected models with and without metadata on the right 

As can be seen in figure 5.27, thanks to the developed techniques, a significant 

increase was achieved in all metrics. For example, f1-score for the melanoma class increased 

from 0.63 to 0.71 and the recall value also increased from 0.57 to 0.63. In addition, as can be 

seen in figure 5.28, the number of correctly predicted samples for the melanoma class 

increased from 491 to 545. This proves that the developed techniques provide more accurate 

and precise accuracy on melanoma. 
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Chapter 6 

Discussions 

The 92% AUC achieved with the base model on the validation set for the first time 

has reached 95.77% success as a result of many technical and fine-tuning processes and 

ensemble strategies. Despite the fact that there are 2 classes and this is a binary class 

classification problem, the fact that there is a highly imbalance between the classes has 

emerged with the results obtained with the first base model, so the problem had to be 

evaluated from different aspects. The descriptions of the models representing each section 

and the average highest AUC scores from all folds obtained in these stages on validation sets 

are given in table 6.1.  

 

Dermatoscopic images are essential for classifying melanoma, but adding more 

clinical data can improve the models' precision and clinical applicability. It is clearly seen in 

table 6.1 is that metadata can make a serious contribution to improving accuracy. It is possible 

to gain a thorough image of the disease through the integration of patient age, gender and 

anatomic site characteristics leading to individualized diagnosis and treatment planning.  

Ensemble approaches, which combine predictions from various CNN models, can increase 

classification accuracy while lowering the danger of overfitting. Ensemble model strategies 

have also been used to capitalize on the advantages of individiual models. 

 

Until this section, the performance of the models was always based on the results 

obtained on the validation set. As explained before, the data was divided into 3 parts and 15% 

was the test set. Thanks to the performance results obtained on the validation set, fine tuning 

processes were carried out and how and by which methods better models were achieved step 

by step were explained in the previous sections. In order to see the generalization 
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performance of the model at this stage, the performance of the models on the test set, which 

was never seen during the training process, is given in table 6.1. 

Table 6.1 Comparison results all models with evaluation progress on validation and test 

set 

Experimented Model  
AUC  

On Validation Set 

AUC 

On Test Set 

Base Model 0.9290 0.9241 

Step 1: Shades Of Gray 0.9299 0.9243 

Step 2: Deep Augmentations 0.9336 0.9320 

Step 3c: OneCycleLR-cos 0.9350 0.9323 

Step 4c: AdamW 0.9369 0.9330 

Step 5b: Binary Focal Loss 0.9373 0.9358 

Step 6: Vignetting Effect 0.9379 0.9368 

Step 7: Hair Noise 0.9378 0.9372 

Step 8:Vignetting Effect and Hair Noise 0.9379 0.9386 

Step 9: Metadata 0.9400 0.9403 

Step 10: ResNet-50 0.9391 0.9393 

Step 10a,b: ResNet-101  0.9399 0.9402 

Step 10c,d: DenseNet-169 0.9399 0.9394 

Step 10g,h: ResNeSt-50 0.9403 0.9410 

Step 10e,f: Se_ResNeXt50_32x4d 0.9412 0.9396 

Step 10k,l: TResNet-L 0.9413 0.9402 

Step 10m,n: ConvNeXt-tiny 0.9466 0.9467 

Step 11i: Optimal Weighted Voting Ensemble of Selected 

Models with and without metadata 

0.9577 0.9575 

AUC: Area Under Curve 

As can be seen from table 6.1, it is seen that the models developed with the proposed 

methods have received a significant improvement on both the validation set and the test set. 

The AUC value, which was 0.9241 on the test set in the process that started with the basic 

parameters, increased to 0.9575 as a result of many fine-tuning and development processes 

on the validation set. This proves that the generalization performance and abilities of the 

developed models are good and that the process specific to the problem has been successful.  
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Chapter 7 

Conclusions and Future Prospects 

7.1 Conclusions 

With the advent of machine learning and deep learning techniques, the field of 

melanoma classification has made considerable strides. These methods have shown 

tremendous promise in increasing the precision and effectiveness of melanoma diagnosis, 

which will improve patient outcomes. These systems are capable of distinguishing between 

non-melanoma and malignant skin diseases by thoroughly analyzing massive datasets of skin 

images and utilizing sophisticated algorithms. Convolutional neural networks, a type of deep 

learning model used in machine learning, have produced encouraging results in the 

classification of melanoma. These algorithms are capable of accurately making predictions 

and automatically extracting pertinent characteristics from skin images. Furthermore, the 

performance of these models can be improved even further by using extra approaches like 

data augmentation, transfer learning and ensemble methods.  

 

It is crucial to remember that these models should only be used as decision support 

tools and not as a substitute for qualified medical professionals. To guarantee the 

dependability and safety of these models in actual clinical settings, extensive examination 

and clinical validation are required. For increasing the precision and effectiveness of 

diagnosis, the combination of machine learning and deep learning techniques in melanoma 

classification shows tremendous promise. Further breakthroughs in melanoma classification 

and eventually better patient outcomes depend on ongoing research and development in this 

area as well as cooperation between clinicians and machine learning professionals. 
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7.2 Societal Impact and Contribution to Global 

Sustainability 

Early identification is essential to enhancing patient outcomes in the fatal skin disease 

melanoma. To improve the treatment of patients, melanoma diagnosis must be accurate and 

made quickly. Machine learning models can help with early detection, prompt interventions, 

improved treatment planning and perhaps even save lives by correctly recognizing and 

classifying melanoma lesions. Even for expert dermatologists, melanoma diagnosis can be 

difficult and arbitrary. Machine learning models offer a systematic and objective method for 

classifying melanoma, lowering diagnostic variability and enhancing consistency among 

various healthcare organizations and areas.  

 

Access to dermatology clinics or specialized dermatologists is scarce in many areas. 

By enabling access to precise and automated diagnosis in underserved areas, rural locales or 

regions with a shortage of healthcare professionals, machine learning models for melanoma 

classification can help close this gap. Machine learning algorithms for melanoma 

classification can be implemented into these platforms as telemedicine and mobile health 

apps become more and more prevalent. These models can be used on portable devices, 

making it possible for non-specialists to test for melanoma, such as general practitioners or 

healthcare professionals in far-off locations. This enables users to check skin lesions on 

themselves and obtain preliminary risk evaluations, encouraging them to seek medical 

assistance when necessary and fostering self-awareness.  

 

As decision support tools, machine learning models can help dermatologists in their 

clinical work. These models can examine enormous datasets and offer extra insights to 

support dermatologists' decision-making on diagnosis and treatment, enhancing workflow 

effectiveness and lightening the load on medical professionals.  

 

Healthcare professionals can optimize resource allocation, lower the need for 

unneeded biopsies and procedures and give high-risk patients priority for additional testing 
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by utilizing machine learning models for melanoma classification. By reducing medical 

expenses, saving money and enhancing the effectiveness of the entire healthcare system, this 

strategy supports sustainable healthcare. These models can assist dermatologists in making 

more informed judgments and avoiding needless invasive treatments, which will lessen 

patient discomfort and healthcare expenses by offering a non-invasive and precise method of 

determining lesion malignancy. 

7.3 Future Prospects 

Although deep learning models have performed remarkably well at classifying 

melanoma, their decision-making procedures sometimes lack transparency. Research efforts 

are concentrated on creating interpretable and explainable deep learning models that can give 

medical professionals confidence in the model's judgment and insights into the characteristics 

and patterns used for classification. 

 

It is essential to ensure the transferability and generalization of melanoma 

classification models across various populations and geographical areas because they are 

frequently trained and assessed on particular datasets. Future studies should concentrate on 

creating models that are flexible and effective across a range of groups, taking into account 

differences in skin tones, ethnicities and environmental factors. 

 

Dermatologists can examine skin lesions in a three-dimensional virtual environment 

with the use of Virtual Reality (VR) and Augmented Reality (AR) technologies when 

melanoma classification is integrated with them. This could increase personnel's education 

and training while also improving diagnostic accuracy. Melanoma classification algorithms 

are continuously improved as a result of programs like the International Skin Imaging 

Collaboration (ISIC) and the exchange of annotated datasets, which encourage collaborative 

study, algorithm development and benchmarking. Thus, improving melanoma classification 

will depend heavily on collaboration between scientists, physicians, data scientists and as 

this is achieved, more precise systems may exist. 
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