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Abstract

Mesenchymal stem cells (MSCs) are stromal cells which have multi-lineage

differentiation and self-renewal potentials. Accurate estimation of total

number of senescent cells in MSCs is crucial for clinical applications. Tradi-

tional manual cell counting using an optical bright-field microscope is time-

consuming and needs an expert operator. In this study, the senescence cells

were segmented and counted automatically by deep learning algorithms.

However, well-performing deep learning algorithms require large numbers

of labeled datasets. The manual labeling is time consuming and needs an

expert. This makes deep learning-based automated counting process imprac-

tically expensive. To address this challenge, self-supervised learning based

approach was implemented. The approach incorporates representation level

contrastive learning component into the instance segmentation algorithm

for efficient senescent cell segmentation with limited labeled data. Test

results showed that the proposed model improves mean average precision

and mean average recall of downstream segmentation task by 8.3% and 3.4%

compared to original segmentation model.
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1 | INTRODUCTION

Mesenchymal stem cells (MSCs) are adult stem cells that
have a significant power of self-renewal and multi-
differentiation. MSCs originate from a variety of sources,
including cord blood, amniotic fluid, bone marrow, and
adipose tissue; their extensive availability is a consider-
able trait for therapeutic and research purposes.1 They

are used in a variety of clinical applications, including
regenerative medicine, immunological diseases, and can-
cer treatment.2 MSCs exert their therapeutic effects
largely through their differentiation capacity into multi-
ple cell lineages and paracrine actions. MSCs gradually
lose their potential therapeutic value with aging and cel-
lular senescence. Cellular senescence is a complex state
in which irreversible cell cycle arrest will limit their
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ability to proliferate, as well as their ability to regenerate
and homing capacity.3,4 In addition, the senescence of
the MSCs changes their secretions profile. Senescence-
associated secretory phenotype (SASP) is a multicompo-
nent phenotype released in large amounts by senescent
MSCs that comprises pro-inflammatory chemicals,
immune-modulators, and growth factors.5–7 The secre-
tions of these factors can cause adverse effects, such as
damaging healthy tissues with inflammatory effects and
inhibiting DNA repair.8 Therefore, understanding the
aging process of MSC is crucial for clinical applications.

Considering MSCs in clinical applications, it is crucial
to detect and quantify senescent MSC in the population.
One of the common techniques for the detection of cellu-
lar senescence is the beta-galactosidase assay (β-Gal), yet
it has several drawbacks. Since assay outputs are evalu-
ated visually, cell confluency, serum depletion, and oper-
ator bias can result in false positives, while some
senescent cells may not show β-Gal activity, resulting in
false negatives.9 Besides, these cells must be manufac-
tured and used in clinical settings in accordance with
Good Manufacturing Practices (GMP). GMP require-
ments necessitate the organization of qualified staff, spe-
cialized and controlled equipment, and multiple quality
controls.10 The current protocols, such as β-Gal, to iden-
tify senescent cells are not easily adaptable to the GMP
pipeline and are time-consuming considering the process.
However, as previously stated, the appropriate use of
MSCs for clinical applications demands the inspection
of senescent cells prior to clinical use.

Senescent cells change their morphology, so image
processing could read the visual cues emerging in the cell
images to differentiate and count senescent cells. In the
literature, image-based machine learning methods,11,12

and conventional image processing techniques13,14 were
applied for various types of cell analysis. In addition, cell
debris quantification to measure cellular apoptosis in
bright-field microscopy images were achieved by using
image processing techniques in Fiji open-source soft-
ware.15 However, the majority of those techniques
depend on the use of extensive amount of labeled cell
images. One prominent example of data hungry machine
learning (ML) method is deep learning (DL) techniques
which are promising for identification and quantification
tasks. Kusumoto et al.16 applied label-free senescent anal-
ysis for endothelial cells using DL. Since MSCs had
unique cell shapes, there is no available image-based
analysis method for the estimation of senescent cells.

Deep learning algorithms are widely applied for clas-
sification, segmentation, and object detection in medical
images.17 In Razzak et al.18 usage of deep learning archi-
tectures was broadly reviewed. Hematological images

were segmented into five leukocyte classes by SegNet,
U-Net, and VGG-Net convolutional neural network
architectures and results were compared.19 Deep learning
architectures were also implemented for cellular image
analysis and details are extensively reviewed in Moen
et al.20 Microscopic cell images were segmented by using
convolutional neural networks (CNN).21–24 In micros-
copy images, cell abnormalities were segmented by classi-
cal LeNet architecture.25 Two fully convolutional
regression networks were developed and compared on
fluorescent microscopy cell images for both detection and
quantification in Xie et al.26 Pre-trained single cell
segmentation-based U-Net architectures were implemen-
ted on ImageJ software for non-machine-learning
experts. The plugin allows users to analyze their data
either on local computer or on cloud services.27 Basic
U-Net architecture which is mainly used to segment 2D
biomedical images were modified to 3D to segment
nuclei in fluorescence microscopy images.28 Deep convo-
lutional auto-encoders were proposed to count micro-
scopic, stained cell images. However, DL techniques
require a large number of well-labeled data, and the data
labeling is time-consuming and requires an expert on
that field. To overcome a small number of labeled dataset
problems in DL, transfer learning techniques are com-
monly used. During the transfer learning, instead of
training network from end-to-end to get weights, the
weights of network are initialized by pre-trained network
weights. There are some models that have pre-trained
weights like Mask R-CNN, but those weights are
obtained by training the models on natural images which
is different than medical images. In addition, in Refs.,29,30

it is shown that transfer learning from in-domain data
improves performance compared to transfer learning
from out-domain data. Since the original Mask R-CNN31

is pre-trained on natural images, we aimed to use Mask
R-CNN which is pre-trained on medical images. Never-
theless, even with transfer learning the number of
required labeled samples is well high over the practical
limits of the expert teams.

Therefore, to alleviate the problem of large number of
labeled data requirement, we have resorted to self-
supervised learning32 on microscopic unlabeled cell
images. As a result, this increased the mean average pre-
cision metric of Mask R-CNN based segmentation task.
In this study, we showed that even if a small number of
unlabeled images are available, self-supervised learning
(SSL) on the in-domain dataset and fine-tuning for down-
stream labeled dataset training exceeds performance of
the conventional instance segmentation algorithm. The
main contributions of the proposed approach are con-
cluded as follows.
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1. Automated segmentation and counting of senescent
cells: The study introduces a deep learning-based algo-
rithm for the automated segmentation and counting
of senescent cells in MSCs. This addresses the limita-
tions of traditional manual cell counting methods,
which are time-consuming and require expert
operators.

2. Improvement by employing SSL: The proposed SSL-
based approach demonstrates improved performance
compared to the original segmentation model. The
empirical test results show an increase in mean aver-
age precision (mAP) and mean average recall (mAR)
of the downstream segmentation task by 8.3% and
3.4%, respectively.

3. Pre-training with unlabeled data: The proposed study
demonstrates that leveraging a small number of unla-
beled datasets during the SSL phase significantly
enhances the performance of the downstream instance
segmentation task on microscopy cell images.

4. Senescent cell quantification: The study demonstrates
that SSL can be adopted to quantification task along-
side the segmentation.

2 | RELATED WORK

Phase-contrast microscopy senescent cell images were iden-
tified by using morphology-based CNN architectures and
then trained CNN architecture was used as a quantitative
senescence score for the state of endothelial cells.16 In Yan
et al.,34 to overcome large number of labeled dataset issue
for DL techniques, unlabeled histopathology images were
analyzed by deep learning based self-supervised contrastive
learning method. Cellular senescence in cell culture was
predicted by nuclear morphology based neural network.35

Mask R-CNN is the conventional instance segmentation
algorithm that is trained on natural images, and it is also
applied to biomedical cell images. In Johnson,36 Mask
R-CNN was applied on microscopic images of cell nuclei.
Instead of training the network end-to-end from the start,
the weights are initialized with pre-trained MSCOCO33

dataset weights. Average mask intersection over union
(IoU) was reported as 70.54%. Pre-trained on natural images
Mask R-CNN was used as instance segmentation in hema-
toxylin and eosin stained (H&E) microscopy cell nuclei
images and average mask IoU was reported as 45.02% on
the fivefold validation dataset.37 Overlapping cells were seg-
mented by Mask R-CNN based methods.38 Infected and
uninfected red blood-stained cell images segmentation was
achieved by conventional Mask R-CNN by initializing
weights from pre-trained model which is trained on the
COCO dataset.39

3 | MATERIALS

For this study, 342 cell cultured images were used which
was obtained by color camera and 10X objective (Leica
DMI1, Germany). The size of the images was
2592 � 1944 pixels. Single image contains multiple young
and senescence cells.

Proposed algorithms were developed with Python
open-source libraries Keras 2.2.5 and Tensorflow 1.15.0.

3.1 | Mesenchymal stem cell culture

Adipose tissue-derived MSCs were obtained from the
American Type Culture Collection (ATCC PCS-500-011).
MSCs were grown in DMEM supplied with 10% FBS
(Fetal Bovine Serum), 100 U/mL penicillin-streptomycin,
4 mM L-glutamine, and 5 ng/mL bFGF at 37�C in 5%
CO2 environment.

3.2 | Senescence induction

Senescence of the MSCs was induced by the addition of
300 μM H2O2 in phosphate buffered saline (PBS) for
30 min. Then, cells were washed three times with PBS
and left in a complete growth medium.

3.3 | Microscopy

Visualization of the senescent and young stem cells is
achieved after fixation of the cells. The cells were fixed
for practical reasons to be able to collect large number of
images, however, the method could be applied without
fixation and staining of the cells. MSCs were washed with
PBS three times. Then, cells were incubated in a 10 mL
fixative solution (0.2% glutaraldehyde in PBS) for 15 min.
Cells were washed with PBS to clean up the remaining
glutaraldehyde. Fixed cells were stored with the addition
of 50% glycerol.

4 | METHOD

4.1 | Instance segmentation

In this section, implementation of a conventional Com-
puter Vision method segmenting the microscopic medical
images is explained. The method's performance is further
improved with the employment of SSL. It is explained in
the next section.
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Mask R-CNN is an instance segmentation network
which was developed on top of Faster R-CNN. In an
image, Mask R-CNN network classifies each pixel into a
fixed set of categories (senescent cell, young cell, or
background in our case), and at the same time the net-
work precisely segments each instance. A general view
of the proposed architecture and its output generated
from our own dataset is given in Figure 1. It has two
stages; the first stage consists of a backbone network
(ResNet-101, VGG, Inception …) for feature extraction
and region proposal network. The second stage consists
of returning confidence, bounding boxes, and binary
masks based on region of interests. The first stage takes
an input image and proposes bounding boxes of the can-
didate objects. During the second stage, a fully con-
nected network classifies the proposed regions. The
proposed region might be in an arbitrary size, but the
fully connected classifier layer requires a fixed size
image. To have the same size, the network uses RoIA-
lign methods. The output of RoIAlign layer goes to mask
head layer, and the layer generates mask for each RoI
with the predicted classes.31

In our approach, the bright-field microscopy images
were trained then senescent and young cells were seg-
mented. To be able to calculate density of each senes-
cence and young cells number of objects is needed,
instance segmentation Mask-RCNN algorithm was used
rather than other semantic segmentation algorithms.

ResNet-101 and feature pyramid network (FPN) were
used as the backbone. Matterport Inc. released under an
MIT License implementation40 which is based on Keras41

and Tensorflow42 libraries was used. Instead of training
the network end-to-end from start, transfer learning
approach was applied, and model weights were initial-
ized by pre-trained MSCOCO dataset weights.

During the training, two approaches are implemen-
ted. The first approach is just training the network head
layers, and the second approach is training all layers of
the network. During the training data augmentation is
applied to the training dataset. Dataset is expended with
vertical and horizontal flipping, rotation, scaling, and
adding blur augmentations.

4.2 | The proposed approach

Training deep learning networks on medical images
needs vast amount of high-quality labeled data, and data
labeling is a cumbersome process because it is time-
consuming and needs an expert in medical field to label
images correctly. Therefore, transfer learning is a popular
remedy for the problem. With this approach, a model is
pre-trained on labeled large natural image dataset (like
ImageNet), and then learned generic representation is
fine-tuned to medical dataset. Transfer learning from the
same domain can improve the performance of the net-
works.30,43 However, it still needs a large amount of
labeled dataset which is a major problem in medical
images requiring manual labeling by experts.

On natural images recognition tasks, recently another
popular technique which is called self-supervised con-
trastive pre-training has drawn attention in the litera-
ture.44 Despite the success of self-supervised contrastive
learning on natural images,32,45 application in senescent
cell analysis is limited and needs more exploration. Self-
supervised training technique is appealing because it
allows pre-training with unlabeled domain-specific
images to learn more pertinent features to that domain.46

Since we have a limited number of annotated dataset,
on our unlabeled dataset we apply SSL approach by only

FIGURE 1 General view of Mask R-CNN architecture used on our dataset. Left to right; input image, architecture of network and

output image. It takes an input image and returns output image with mask of each instance and their bounding boxes.
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training ResNet-101 network, which is the backbone net-
work of Mask R-CNN.

Our self-supervised and instance segmentation work-
flow is given in Figure 2. Our pre-training includes two
approaches: (1) training the network end-to-end from the
start, (2) initializing the weights from ImageNet47 and
then training the network. Later, we used this pre-trained
backbone network weights in Mask R-CNN architecture
as initialization for downstream supervised training task
on the labeled data. We wanted to increase the perfor-
mance of Mask R-CNN by self-supervised pre-training on
unlabeled medical images then fine-tuning on labeled
data. We compared the results of both supervised pre-
training on natural images and fine-tuning on labeled
medical dataset, and self-supervised pre-training on in-
domain medical images and fine-tuning on labeled medi-
cal dataset approaches.

As self-supervised pre-training there are various
methods called SimCLR,32 MoCo,48 context restora-
tion.49 These methods are applied to medical
images.46,49,50 For our problem, we use SimCLR SSL
algorithm which is a state-of-art method. It takes an
image and by using basic augmentations (random crop-
ping, random color distortion, and Gaussian Blur) it
generates two transformed images. Method learns gen-
eral representations by maximizing agreements between
the same image transformations and minimizing agree-
ments between different image transformations. We use

sayakpaul/SimCLR-in-TensorFlow-251 implementations
of SimCLR. As augmentation for SimCLR we use ran-
dom flip, color distortion with strength 1.

In literature, it is stated that CNNs show high potential
for identification task for biological data and cell images.16

In Heckenbach et al.,35 U-Net semantic segmentation
architecture was used to segment nuclei of senescence
cells. Also, in another study, breast cancer risk was associ-
ated with cellular senescence and senescence cells were
segmented by basic U-Net architecture.52 In addition, per-
formance comparison of state-of-art cell nuclei segmenta-
tion was achieved by U-Net and DeepLabV3+ CNN
architectures. In our study, to compare proposed methods
with other segmentation techniques we implemented
U-Net and DeepLabV3 CNN architectures.

5 | EXPERIMENTS AND RESULTS

5.1 | Dataset

We have a total of 342 microscopic images, each image
has a size of 2592�1944. The number of images and sizes
used for SSL and fine-tuning is given in Table 1. First,
14 high-resolution images were labeled by three medical
experts. Then, the labeled images were trained with origi-
nal Mask R-CNN by initializing weights from MSCOCO
dataset. Then, unlabeled 242 high-resolution images were

FIGURE 2 The proposed self-supervised instance segmentation on microscopic images workflow. It comprises of three steps. First,

applying Mask R-CNN on unlabeled high-resolution images to get single object patches. Second, unsupervised learning to learn general

representations of our microscopy image patches. Third, fine-tuning and training on labeled dataset, and then instance segmentation by

using Mask R-CNN architectures.
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used as test images. Since result of Mask R-CNN returns
output image with mask of each instance and their
bounding boxes, 242 test image results were used to
extract unlabeled single cell images. After this step, total
8719 unlabeled single object images were obtained for
self-supervised training. All 8719 images were resized to
224x224x3 to get the same size. Finally, to show perfor-
mance of the proposed methods, unused 86 high-
resolution images were also labeled by three medical
experts for supervised training and all results were shown
on these 100 labeled high-resolution images.

5.2 | Evaluation measures

To evaluate performance of Mask R-CNN on test dataset,
mAP and mAR were calculated. Precision is the value of
correctly predicted bounding boxes out of all bounding
boxes found in image based on an IoU threshold, which
is 0.5 for our case. While the mean of average precision
across all images in the dataset is called mAP, average
recall across all images in the dataset is called mAR.
mAP is calculated as follows:

mAP¼ 1
N

X

c � N

TPc

TPcþFPc
ð1Þ

mAR¼ 1
N

X

c � N

TPc

TPcþFNc
ð2Þ

where N represents number of classes, TP represents true
positives, FP represents false positives, FN represents
false negatives, and classes represent senescent cells or
young cells in our problem.

To measure quantification result of Mask R-CNN pre-
cision (PR), recall (RE) and dice similarity coefficient
(DSC) metric scores were calculated, and they are
described as follows:

PR¼ TP
TPþFP

ð3Þ

RE¼ TP
TPþFN

ð4Þ

DSC¼ 2TP
2TPþFPþFN

ð5Þ

In Equations (3)–(5), TP (true positive) represents the
correctly quantified young or senescent cells, FP (false
positive) represents the invalid quantified young or senes-
cent cells, FN (false negative) represents missed quanti-
fied young or senescent cells.

To show performance of the instance segmentation
algorithm, confusion matrix is used. TP is correctly pre-
dicted senescence cells, FP is number of incorrect predic-
tions, FN is missed predictions, and true negative (TN) is
correctly predicted young cells.

5.3 | Implementation details

5.3.1 | Mask R-CNN with transfer learning
from MSCOCO dataset

In the first part of the proposed approach, Mask R-CNN
weights were transferred from MSCOCO dataset that is
pre-trained on labeled natural images, and Mask R-CNN
was applied on our own labeled microscopic cell images.
Labeled 100 high-resolution images were randomly
divided into train, validation, and test dataset (50 images
for training, 20 images for validation, and 30 images for
testing). The labeled data were trained both with aug-
mentation and without augmentation. Effects of data
augmentation on our labeled dataset is given in Figure 3.
It can be seen that the data augmentation technique dra-
matically affects the model's performance by decreasing
validation loss.

While training, the initial parameters are set as fol-
lows: minimum confidence 0.9, steps per epoch
100, images per GPU 1, weight decay 0.0001, and learn-
ing rate 0.001. Maximum number of epoch was set to
100 and early stopping technique was used.53

After the training, the models were tested on the
labeled test dataset. The resulted image has seg-
mented objects masks, object labels with probability
values, and bounding box coordinates for each object.
The test images and their resulted images are given in
Figure 4.

TABLE 1 Number and properties of images used for self-supervised learning and fine-tuning.

Total number of images Image sizes Number of objects Labeled

Self-supervised learning Raw images 242 2592�1944 Multiple No

Self-supervised learning Patches 8719 224�224 1 No

Fine-tuning 100 2592�1944 Multiple Yes
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5.3.2 | Mask R-CNN with self-supervised
learning and fine-tuning

In this part, implementation of self-supervised
pre-training on unlabeled images is explained. For pre-
training task, ResNet-101 architecture followed by a non-
linear projection head were used. For pre-training two
different scenarios were evaluated: (1) start training unla-
beled images without initial weights, (2) start training
unlabeled images with ImageNet weights. Self-supervised
pre-training was completed with learning rate in {0.3, 0.1,
0.001, 0.0001}, batch size in {2, 4, 8, 16, 32, 64, 256}, and

epoch in {50, 100, 150, 200, 250}. The best pre-training
model was obtained with 256 batch size, 200 epoch, 0.1
learning rate, and 0.1 temp hyper-parameters. While pre-
training, the normalized temperature-scaled cross
entropy loss function (NT-Xent)32 was used which com-
putes the loss for positive pairs of two augmented images
and contrasts with the distance to negative pair. Let sim
(u,v) = uTv/jjujj jjvjj denote the cosine similarity
between two vectors u and v, and exp denote exponential
function Then the loss function for a positive pair of
examples (i, j) formally expressed as:

li,j ¼�log
exp sim zi,zj

� �
=τ

� �
P2N

k¼11 k ≠ i½ � exp sim zi,zj
� �

=τ
� �� � ð6Þ

where 1 k ≠ i½ � � 0,1f g is an indicator function evaluating
to 1 if k≠ i, and τ is temperature parameter.

While training with larger batch sizes, LARS
optimizer54 was used to stabilize training. The best pre-
training model was selected based on performance of net-
work on the downstream fine-tuning and training task
on labeled images.

After SSL on unlabeled data with ResNet-101 archi-
tecture, pre-trained ResNet-101 as backbone network
without the nonlinear projection head was used for Mask
R-CNN architecture in order to train and test
labeled dataset. During the fine-tuning, the same labeled
100 high-resolution images were used. Images were

FIGURE 4 Test image samples and their Mask R-CNN without self-supervised learning segmentation results. Row (A) shows test

images, and row (B) shows results of instance segmentation with masks, object labels, probability values, and bounding boxes.

FIGURE 3 Effect of data augmentation on our dataset. Blue

color indicates validation loss with augmentation, and red color

indicates validation loss without augmentation.
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randomly divided into training, validation, and test with
number 50, 20, and 30 respectively. While training, initial
parameters are set as follows: minimum confidence 0.9,
steps per epoch 100, images per gpu 1, weight decay
0.0001, and learning rate 0.001. The maximum number of
epoch was set to 800 and early stopping technique
was used.

5.4 | Experimental results

Result of Mask R-CNN with transfer learning from
MSCOCO dataset and transfer learning from SSL on in-
domain dataset is given in Table 2. Mean average preci-
sion and mean average recall values were calculated at
IoU threshold of 0.5 and IoU threshold of 0.5–0.95 range.
It can be seen that in-domain data SSL improves perfor-
mance of Mask R-CNN. The best result of fine-tuning
was obtained by SSL with batch size 256. It can be con-
cluded that SSL exploits larger batch sizes in spite of the
small number of unlabeled dataset. Since larger batch
sizes mean more diverse augmented version of an image,
the network can learn more domain-specific features.
The effect of SSL with different batch sizes and different
approaches when fine-tuning with labeled dataset is
given in Figure 5. The minimum loss was achieved on
SSL with batch size 256 and without weight initialization
while pre-training. In addition, even smaller batch size
pre-training on unlabeled in-domain dataset gives better
performance during fine-tuning compared to fine-tuning
from MSCOCO dataset weights.

Besides, from Table 2, it can be concluded that self-
supervised training end-to-end from start yields higher
mAP metric for IoU 0.5 and IoU for range 0.5–0.95 than
initializing self-supervised training weights from Ima-
geNet. SSL end-to-end from start increased mAP of Mask
R-CNN by %8.3 when IoU is 0.5, and %4.2 when IoU is in
range 0.5–0.95. In addition, SSL end-to-end from start

increased mAR of Mask R-CNN by %3.4 when IoU is 0.5,
and 4.1% when IoU is in the range of 0.5–0.95. To sum up,
it can be seen from Table 2 that, both SSL approaches
increased the evaluation metrics of original Mask R-CNN.

The self-supervised learning can learn finer details. In
the images, there are young cells, senescent cells, and
cells which just start aging and it is also taken as senes-
cent cells. While original Mask R-CNN learn just started
aging cells as young cell, SSL can learns those cells as
senescent and so segment them correctly. Moreover,
Mask R-CNN with SSL can detect more young cells cor-
rectly compared with original Mask R-CNN. In addition,
SSL can find cell boundaries better when there are

TABLE 2 Evaluation results of Mask R-CNN on our microscopy test images with fine-tuning from MSCOCO dataset and self-supervised

learning.

Backbone
Batch size
of SSL

SSL from
ImageNet
weights

SSL end-to-end
training from
start mAP0:5 mAR0:5 mAP0:5�0:95 mAR0:5�0:95

ResNet-101 + FPN 0.653 0.785 0.351 0.694

ResNet-101 + FPN 16 ✓ 0.683 0.790 0.341 0.697

ResNet-101 + FPN 32 ✓ 0.670 0.784 0.344 0.69

ResNet-101 + FPN 64 ✓ 0.670 0.792 0.331 0.648

ResNet-101 + FPN 256 ✓ 0.694 0.821 0.354 0.707

ResNet-101 + FPN 256 ✓ 0.736 0.819 0.393 0.735

Note: Maximum values for evaluation matrices were obtained by the proposed method and numbers are showed in bold.

FIGURE 5 Training loss results on labeled dataset. Self-

supervised learning (SSL) batch 16 indicates ImageNet initialized

SSL with batch size 16 while pre-training, SSL batch 256 indicates

ImageNet initialized SSL with batch size 256 while pre-training,

SSL batch 256 end-to-end indicates SSL without any weights

initialization in the proposed method. SSL improves instance

segmentation performance.
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overlapping cells. Segmentation results on test image is
shown in Figure 6. It can be concluded that SSL signifi-
cantly improves Mask R-CNN segmentation result by
detecting the cells more accurately and quantifying the
number of cells more accurately.

Moreover, the per-class performance of the original
model and the proposed model is shown in Table 3.
While the proposed method increased mAP for both
senescence and young cells, increased mAR for senes-
cence cells and decreased mAR for young cells.

The study compares the segmentation results of Mask
R-CNN, the proposed method, U-Net, and DeepLabV3 on
test dataset, as shown in Table 4. The proposed method
has the highest mean average precision and recall. Dee-
pLabv3 does not perform well on our dataset. U-Net
shows a comparable performance with original Mask
R-CNN, but it falls short to segment young cells.

The total number of young and senescent cells in
ground truth images, correctly found number of young
and senescent cells in original Mask R-CNN, and the pro-
posed method are given in Table 5. It can be seen from
Table 5 that Mask R-CNN with SSL method finds more
correct number of cells than original Mask R-CNN for
both young and senescent cells.

To find TP, FP and FN, TN values, the quantitative
results of instance segmentation algorithm were

compared with manual counting of the experts. If an
object in a high-resolution image is correctly classified by
instance segmentation algorithm, it is counted as true
positive. If it is not classified correctly, it is counted as a
false negative. If an object is not found by algorithm, it is
counted as missed detection (false negative). Confusion
matric results are given in Tables 6 and 7 for the original
and proposed models. Table 8 gives overall quantitative
results of performance metrics for the proposed approach
in microscopic cell images. It can be seen that Mask
R-CNN with SSL is the highest performing method of all
in all assessment metrics. Mask R-CNN with SSL
increases mean precision, recall, dice similarity coeffi-
cient by 5.04%, 6.71%, and 5.98%, respectively.

6 | CONCLUSION AND
DISCUSSION

The proposed study is aimed to develop an automated
method to segment senescent and young cells in cell cul-
tured microscopy images to estimate cellular senescence
density while only limited number of labeled training

FIGURE 6 Test image result with self-supervised learning (SSL) and without SSL.

TABLE 3 Per-class performance of mask R-CNN and proposed

method with IoU = 0.5.

Mask RCNN Mask RCNN + SSL

Class mAP mAR mAP mAR

Senescent cell 0.742 0.832 0.819 0.928

Young cell 0.559 0.738 0.650 0.710

TABLE 4 Comparison of convolutional neural network

segmentation models on our dataset.

Model Backbone mAP0:5 mAR0:5

DeepLabV3 ResNet-101 0.216 0.33

U-NET __ 0.648 0.508

Mask RCNN ResNet-101 0.653 0.785

Mask RCNN + SSL ResNet-101 0.736 0.819

Note: The proposed method yields the best results for mAP and mAR metrics
and the results are shown in bold.
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samples are available. When the number of labeled data-
set is limited, one approach is to use conventional image
augmentation techniques.55 To increase the number of
labeled training dataset, image augmentation techniques,
such as flipping, rotation, scaling, and adding blur, were
applied during training. This approach increased the
mAP performance of original Mask R-CNN from 0.585 to
0.653 on our test dataset. Therefore, we used data aug-
mentation throughout the proposed work. Another
approach is semi-supervised methods.56–58 In Papandreou
et al.,57 it is stated that SSL performance is the highest
when combining labeled data with large number of
weakly annotated data. Since we do not have weakly
annotated data, we did not use semi-supervised tech-
niques. Another approach is to use transfer learning
method which initializes network with pre-trained
weights.55

When the labeled samples in training phase are
scarce and the pre-training samples are from a different
domain (natural images), the transfer learning methods
fall short in microscopic image segmentation. This study
showed that using transfer learning from the same
domain thanks to incorporating SSL approach increased
the performance of the model. Without cell staining,
Mask R-CNN instance segmentation algorithm without

SSL achieved 0.65 mAP and 0.78 mAR on test images
with 0.5 IoU threshold. Mask R-CNN with SSL pre-
training achieved 0.736 mAP and 0.819 mAR on test
images with 0.5 IoU threshold, and 0.393 mAP and 0.735
mAR on test images with IoU threshold in range 0.5–
0.95. These results show that benefiting from in-domain
data SSL improved the performance of the instance seg-
mentation algorithm. In addition, all performance met-
rics of quantification results are above 85% and for some
images they are 100% as maximum. It means that the
proposed method can guide experts about density of
senescence cells in a given image.

Considering the promising and widespread use of
MSCs, and the importance of detecting senescent cells in
clinical practice, using the DL technique and automati-
cally counting senescence cells, which can be easily
adapted to GMP, is quite advantageous over time-
consuming manual methods. A simple user interface can
be developed to help experts to use the proposed study
during senescence cell counting. Thanks to the assistance
of interface, the expert can automatically segment senes-
cent cells and calculate their total number by simply pro-
viding the microscopy image during their decisions about
cellular senescence. The user interface will be designed
to find and display senescence and young cells in the
given image by running the DL model in the
background.

We completed the first draft of the interface. Some
screenshots of the interface are given in Supplementary
Figure 1. To improve our model and user-interface it is
needed to collect more dataset. Currently, we have col-
lected data from a single research center. Later, we will
need to collect data from different research centers. The
developed method does not find all senescence and
young cells 100% accurately, but it gives more than 85%
precision and recall. In addition, the model and interface
can determine whether there are more senescence cells
or young cells in the given image.

Our dataset contains similar cell cultured microscopy
images, as a result DL model makes an error and under-
performs for other types of microscopy cell images. To
overcome this problem, we will increase the diversity of
the training dataset both in pre-training phase and

TABLE 5 Comparison of the methods by total number of correctly found cells.

Ground truth Prediction by Mask R-CNN Prediction by SSL + Mask R-CNN

Senescent Young Senescent Young Senescent Young

Total number of cells 334 339 277 239 304 262

Correct detection ratio (%) 83% 71% 91% 77%

False negative ratio (%) 17% 29% 9% 23%

TABLE 6 Confusion matrix results when Mask R-CNN + data

augmentation is used.

Ground truth

Senescence/pcs Young/pcs

Predicted Senescence 277 (TP) 56 (FP)

Young 69 (FN) 239 (TN)

TABLE 7 Confusion matrice results when Mask R-CNN

+ data augmentation + SSL is used.

Ground truth

Senescence/pcs Young/pcs

Predicted Senescence 304 (TP) 39 (FP)

Young 47 (FN) 262 (TN)
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during the training process. In this way, we will obtain a
more general model and user interface that can detect
cellular senescence in images of other cell types.

AUTHOR CONTRIBUTIONS
F.Ç., K.T., and K.I. developed the image analysis algo-
rithms, D.B and S.A.G. prepared the cells and recorded
the images. F.Ç. prepared the figures and tables. All
authors reviewed the manuscript.

ACKNOWLEDGMENTS
The authors acknowledge Burak Acar and Servet Özcan
for helping with cell cultures.

FUNDING INFORMATION
This research was not funded by any public or private
entity.

CONFLICT OF INTEREST STATEMENT
The authors declare no conflicts of interest.

DATA AVAILABILITY STATEMENT
The data that support the findings of this study are avail-
able from the corresponding author upon reasonable
request.

ORCID
Fatma Çelebi https://orcid.org/0000-0003-3157-6806
Kutay Icoz https://orcid.org/0000-0002-0947-6166

REFERENCES
1. Zhuang WZ, Lin YH, Su LJ, et al. Mesenchymal stem/stromal

cell-based therapy: mechanism, systemic safety and biodistri-
bution for precision clinical applications. J Biomed Sci. 2021;
28(1):28. doi:10.1186/S12929-021-00725-7

2. Wei X, Yang X, Han ZP, Qu FF, Shao L, Shi YF. Mesenchymal
stem cells: a new trend for cell therapy. Acta Pharmacol Sin.
2013;34(6):747-754. doi:10.1038/aps.2013.50

3. Alves-Paiva RM, Nascimento S, de Oliveira D, et al. Senescence
state in mesenchymal stem cells at low passages: implications
in clinical use. Front Cell Dev Biol. 2022;10:858996. doi:10.3389/
fcell.2022.858996

4. Liu J, Ding Y, Liu Z, Liang X. Senescence in mesenchymal
stem cells: functional alterations, molecular mechanisms, and
rejuvenation strategies. Front Cell Dev Biol. 2020;8:258. doi:10.
3389/FCELL.2020.00258/BIBTEX

5. Wiley CD, Campisi J. The metabolic roots of senescence: mech-
anisms and opportunities for intervention. Nat Metab. 2021;
3(10):1290-1301. doi:10.1038/s42255-021-00483-8

6. Basisty N, Kale A, Jeon OH, et al. A proteomic atlas of
senescence-associated secretomes for aging biomarker develop-
ment. PLoS Biol. 2020;18(1):e3000599. doi:10.1371/JOURNAL.
PBIO.3000599

7. Özcan S, Alessio N, Acar MB, et al. Unbiased analysis of senes-
cence associated secretory phenotype (SASP) to identify com-
mon components following different genotoxic stresses. Aging
(Albany NY). 2016;8(7):1316-1329. doi:10.18632/AGING.100971

8. Galderisi U, Helmbold H, Squillaro T, et al. In vitro senescence
of rat mesenchymal stem cells is accompanied by downregula-
tion of stemness-related and DNA damage repair genes. Stem
Cells Dev. 2009;18(7):1033-1042.

9. Pötzel T, Stoyanov J. Autofluorescence is a reliable in vitro
marker of cellular senescence in human mesenchymal stromal
cells. Sci Rep. 2019;9(1):1-15. doi:10.1038/s41598-019-38546-2

10. Lechanteur C, Briquet A, Bettonville V, Baudoux E, Beguin Y.
Msc manufacturing for academic clinical trials: from a clinical-
grade to a full gmp-compliant process. Cells. 2021;10(6):1320.
doi:10.3390/cells10061320

11. Mualla F, Scholl S, Sommerfeldt B, Maier A, Hornegger J.
Automatic cell detection in bright-field microscope images
using sift, random forests, and hierarchical clustering. IEEE
Trans Med Imaging. 2013;32(12):2274-2286. doi:10.1109/TMI.
2013.2280380

12. Long X, Cleveland L, Lawrence Yao Y. Automatic detection of
unstained viable cells in bright field images using a support
vector machine with an improved training procedure. Comput
Biol Med. 2006;36(4):339-362. doi:10.1016/j.compbiomed.2004.
12.002

13. Uslu F, Icoz K, Tasdemir K, Do�gan RS, Yilmaz B.
Image-analysis based readout method for biochip: automated
quantification of immunomagnetic beads, micropads and
patient leukemia cell. Micron. 2020;133(January):102863. doi:
10.1016/j.micron.2020.102863

14. Uslu F, Icoz K, Tasdemir K, Yilmaz B. Automated quantifica-
tion of immunomagnetic beads and leukemia cells from optical
microscope images. Biomed Signal Process Control. 2019;49:
473-482. doi:10.1016/j.bspc.2019.01.002

15. Ölander M, Handin N, Artursson P. Image-based quantifica-
tion of cell debris as a measure of apoptosis. Anal Chem. 2019;
91(9):5548-5552. doi:10.1021/ACS.ANALCHEM.9B01243/SUPP
L_FILE/AC9B01243_SI_002.ZIP

16. Kusumoto D, Seki T, Sawada H, et al. Anti-senescent drug
screening by deep learning-based morphology senescence scor-
ing. Nat Commun. 2021;12(1):257. doi:10.1038/s41467-020-
20213-0

17. Hammad Saleem M, Khanchi S, Potgieter J, and Mahmood
Arif K, “Image-based plant disease identification by deep

TABLE 8 Quantitative results of performance assessment procedures (mean, [min, max]) for proposed approach on microscopy cell

images.

Precision % Recall % Dice similarity coefficient %

Mask R-CNN 83.36 [64.70, 94.11] 79.96 [59.57, 91.66] 81.10 [63.63, 96.96]

Mask R-CNN + SSL 88.40 [73.33, 100] 86.67 [59.57, 100] 87.08 [73.91, 100]

ÇELEBI ET AL. 11 of 13

 10981098, 2024, 2, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/im

a.23052 by A
bdullah G

ul U
niversity, W

iley O
nline L

ibrary on [13/03/2024]. See the T
erm

s and C
onditions (https://onlinelibrary.w

iley.com
/term

s-and-conditions) on W
iley O

nline L
ibrary for rules of use; O

A
 articles are governed by the applicable C

reative C
om

m
ons L

icense

https://orcid.org/0000-0003-3157-6806
https://orcid.org/0000-0003-3157-6806
https://orcid.org/0000-0002-0947-6166
https://orcid.org/0000-0002-0947-6166
info:doi/10.1186/S12929-021-00725-7
info:doi/10.1038/aps.2013.50
info:doi/10.3389/fcell.2022.858996
info:doi/10.3389/fcell.2022.858996
info:doi/10.3389/FCELL.2020.00258/BIBTEX
info:doi/10.3389/FCELL.2020.00258/BIBTEX
info:doi/10.1038/s42255-021-00483-8
info:doi/10.1371/JOURNAL.PBIO.3000599
info:doi/10.1371/JOURNAL.PBIO.3000599
info:doi/10.18632/AGING.100971
info:doi/10.1038/s41598-019-38546-2
info:doi/10.3390/cells10061320
info:doi/10.1109/TMI.2013.2280380
info:doi/10.1109/TMI.2013.2280380
info:doi/10.1016/j.compbiomed.2004.12.002
info:doi/10.1016/j.compbiomed.2004.12.002
info:doi/10.1016/j.micron.2020.102863
info:doi/10.1016/j.bspc.2019.01.002
info:doi/10.1021/ACS.ANALCHEM.9B01243/SUPPL_FILE/AC9B01243_SI_002.ZIP
info:doi/10.1021/ACS.ANALCHEM.9B01243/SUPPL_FILE/AC9B01243_SI_002.ZIP
info:doi/10.1038/s41467-020-20213-0
info:doi/10.1038/s41467-020-20213-0


learning meta-architectures,” Plants 2020, vol. 9, no. 11,
p. 1451, doi: 10.3390/PLANTS9111451

18. Razzak MI, Naz S, Zaib A. Deep learning for medical image
processing: overview, challenges and the future. Lect Notes
Comput Vis Biomech. 2018;26:323-350. doi:10.1007/978-3-319-
65981-7_12

19. Kadry S, Rajinikanth V, Taniar D, Damaševičius R,
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