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ABSTRACT The radical increase in the popularity of electric vehicles (EVs) has in turn increased the
number of associated problems. Long waiting times at charging stations are a major barrier to the widespread
adoption of EVs. Therefore, battery swapping stations (BSSs) are an efficient solution that considers short
waiting times and healthy recharging cycles for battery systems. Moreover, swapping stations have emerged
as a great opportunity not only for EVs, but also for power systems, with regulation services that can be
provided to the grid particularly for small networks, such as microgrid (MG) systems. In this study, the
optimum location and size that maximize the revenue of a swap station in an MG system are investigated.
To the best of our knowledge, this study is first to solve the placing and sizing problem in the MG from
the perspective of a BSS. The results indicate that bus 23 is the BSS’s optimal location and is crucial for
maximizing revenue and addressing issues like the provision of ancillary services in microgrid system.
Finally, the swap demand profile of the station serving electric bus public transportation systemwas obtained
using an analytical model based on public transportation data collected in Berlin, Germany.

INDEX TERMS Ancillary services, battery swapping station, electric bus, electric vehicle, microgrid,
optimal location.

I. INTRODUCTION
Growing awareness of the adverse effects of climate change
and efforts to reduce greenhouse emissions have increased
the popularity and reputation of electric vehicles (EVs). How-
ever, numerous problems, such as the high cost of battery
degradation are factors that deter potential EV customers [1].
The long charging time of EVs, particularly compared to
that of refueling vehicles with internal combustion engines,
is a problem hindering the prevalence of EVs [2], [3].
Although fast-charging stations present a feasible solution in
this regard, the degradation that occurs in batteries during fast

The associate editor coordinating the review of this manuscript and

approving it for publication was N. Prabaharan .

charging indicates that these stations cannot be considered as
the best solution [4]. In recent years, battery swapping sta-
tions (BSSs) have become increasingly desirable as reliable
solutions [5].

BSSs have the technological infrastructure that enable EV
owners to replace discharged batteries in under a minute.
By the virtue of saving time, unlike charging stations, BSSs
have the potential to compete with gasoline stations [6], [7].
The benefits provided by BSSs are not limited to EVs. With
the implementation of vehicle-to-grid (V2G) approaches,
BSSs provide various regulation services to the grid with
their battery stacks. In addition, the flexible planning of
battery charging times means that the BSS does not generate
extra stress on the grid during peak load periods and offers
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a cost-effective solution for both itself and the power sys-
tem [8]. The possibility of charging the batteries for a long
period instead of fast charging prevents a rapid decline in their
state of health. Thus, a high lifecycle number can be achieved.
Considering the limited number of materials required by
batteries, BSS is a greener solution than a charging station
in terms of sustainability [9], [10].

V2G technology is a promising solution for the ancillary
service needs of networks with a high renewable penetration.
However, the distributed and stochastic characteristics of
V2G systems make them difficult to control [11]. The BSS
makes the entire V2G organization manageable and simple
because it completely eliminates the aggregator required to
establish communication between EVs and grid operators.
Therefore, the BSS facilitates the provision of ancillary ser-
vices by centrally controlling several batteries.

Moreover, the responsibility of a BSS is great for small-
scale networks that depend on renewable energy, such as
microgrids (MGs). In such systems, it is extremely difficult
to provide voltage stability against fluctuations caused by
renewable-based generation and to achieve high service qual-
ity [12], [13]. In such a case, the contribution of the BSS
for satisfying the demand facilitates the adaptation of MG
systems.

A. LITERATURE REVIEW
The majority of studies on BSSs are based on various
approaches developed for cost optimization of charging oper-
ations. An optimization model for BSS was presented in
one of the first studies on BSS [6]. The authors considered
the swap demand uncertainty and day-ahead planning to
model the optimization problem. An optimization problem
was solved in [14] to minimize the BSS operation cost.
A model that analyzes the battery swap behavior of EV own-
ers based on a real survey study and proposes an appropriate
optimum charging mode is given in [15]. The authors of [16]
presented an operational strategy for a prosumer BSS that
considered service availability and self-consumption of pho-
tovoltaic (PV) power. In [17] and [9], the optimum charging
schedule of BSS serving electric buses (EBs) was examined.
In addition, [18] aims to minimize the total single-day cost
of a battery swapping station serving EBs by considering
the demand response. In another study [19], the effect of
replacing charging stations with BSS on the power system
is examined in a 32-bus system.

Reference [20] presented the optimal strategy of a MG and
BSS as two independent stakeholders with conflicting goals.
Reference [21] developed a bi-level optimization program
that maximizes the profit of the BSS at a low level and
reduces the cost of the MG at a high level. Another study [22]
presented a bi-level model, where a solution system that
optimizes the islanded MG at the upper level while reducing
the cost of the BSS at the lower level was executed. Reference
[23] proposed a Lyapunov optimization framework based on
queueing theory for a real-time energy management strategy
for a BSS-based MG. In addition, in [24], the operating

cost of the MG was minimized by utilizing the BSS for a
grid-connected MG with PV and wind turbines

Few studies have been conducted on the placement and siz-
ing of BSSs. Placement and sizing studies have mostly been
conducted for charging stations. Nevertheless, researchers
have benefited from these studies. Reference [25] solved the
charging station siting problem in a system that includes
renewable generation and storage assets. An optimum loca-
tion study involving a real case was completed in [25], and
detailed network constraints were considered in this study.
In addition, various studies on the placement of charging
stations in distribution networks can be found in the literature
[27], [28], [29], [30], [31]. Reference [32] is one of the
first studies conducted on the optimum placement problem of
BSSs. The authors determined the most suitable location and
size for BSS using the artificial bee colonymethod. The study
aimed to determine the location where the power loss for the
network is the lowest. In another study [33], the optimal siting
and sizing problem for a system with distributed generation
and BSS was solved. To date, only one study [34] has been
conducted that considered BSSs as a solution for the sitting
problem inMGs. The authors obtained optimumplacement of
the BSS in a microgrid system. However, the sitting problem
is solved only from the perspective of a microgrid. In addi-
tion, no swap demand analysis was performed for the BSS.
The study aimed at reducing the operational cost of MGs.
Finally, no previous study has addressed BSS placement
problems and economic analysis.

The literature on placement problems has primarily
focused on solving problems related to charging stations,
whereas the placement of BSS is a relatively new and under-
explored research area. Solving the placement problem of
BSS in various systems is crucial for ensuring the effective
integration of BSS with existing power systems. Therefore,
there is a need for more research in this area to address
the placement challenges of BSS and enhance its integration
with power systems, especially with small networks such
as MG. Details are given in Table 1. The existing literature
on the placement of BSS in MG has primarily focused on
assessing the overall benefits of such placements on the
MG or distribution network. However, there is a noticeable
research gap in investigating BSS placement in MG from
the perspective of the BSS itself. Specifically, the current
literature has not adequately investigated the effects of the
unique features of BSS on the optimal placement within the
MG to enhance BSS’s economic, operational efficiency, and
reliability. Therefore, there is a critical need to focus on the
BSS placement in MG from the BSS’s perspective to fill this
research gap and to improve the performance of BSS in the
MG.

B. CONTRIBUTION OF THE PAPER
In this study, the siting and sizing problems of the BSS in a
MG system are solved. The main contributions of this study
are as follows:
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TABLE 1. Comparison of related studies.

1) This is the first work to address the optimum placement
of BSSs in a MG from the perspective of the BSS. The
authors prioritize revenue maximization of the BSS.
Accordingly, the income to be obtained from swap
operations and regulation service capacity maximiza-
tion is considered, along with the location problem.
Case studies were conducted on aMG system operating
in a grid-connected system.

2) The placement problem is combined with an economic
analysis, such as the return on investment (ROI). There-
fore, the results are discussed in terms of techno-
economic projection.

3) The paper formulates an optimization problem that
considers multiple factors that impact the performance
of the system, including constraints related to both the
BSS and battery level, in addition to constraints related
to optimal power flow (OPF). This comprehensive opti-
mization approach ensures a better understanding of the
performance of the system.

C. ORGANIZATION OF THE PAPER
The remainder of this paper is organized as follows. Section II
describes the MG and BSS organization. Section III presents
the problem formulation, which includes the swap demand
and an optimization model. The solution methodology is pre-
sented in Section IV. In Section V, the results are presented
to the reader. Finally, Section VI concludes the paper.

II. MICROGRID AND BSS
This section provides information about the MG and BSS
used in the study. Specifically, the assets and operations of
these systems are explained.

A. MICROGRID ASSETS
MG systems provide a suitable environment for the utiliza-
tion of renewable energy resources (RERs) owing to their

easily controllable small size. However, owing to the stochas-
tic nature of RERs, MG systems cause unpredictable cir-
cumstances [35]. Therefore, the use of RERs with differ-
ent characteristics may create cases in which they address
each other’s deficiencies. In this study, PV and wind sources
were included in the microgrid system. Although PV and
wind power are low-emission and viable solutions in terms
of sustainability, a MG system in islanding mode requires
more additional sources. In this study, the MG continued
its operations in islanding mode without any problems since
thermal distributed generators (DGs) that assist RERs were
added to the system. The responsibilities of these generators
are critical, particularly to satisfy reactive loads.

B. BSS ORGANIZATION
As an innovative solution, the BSS provides a battery swap
service to EVs at a fee. For the BSS to offer these services, the
EV design should be compatible with the replaceable battery.
Once the energy stored in a battery drops below a certain
state-of-charge (SoC) level, EVs can replace their batteries
with fully charged batteries at the station. The discharged
batteries are centrally controlled by the BSS and recharged at
specified time intervals. Fully charged batteries are prepared
for swap operations or regulation services to be provided to
the grid according to the decision mechanism of the BSS. The
BSS operations in this study are based on three assumptions.
(1) Only fully charged batteries can be included in swap or
regulation operations, and the BSS can provide both services
in the same timeframe. (2) In the model, the time required for
the swap process is neglected and the batteries are charged for
the demand in the next period. (3) The battery capacity of the
BSS was fixed, and the charging and discharging processes
of the batteries were performed with constant power.

The relationship of the BSS with the power grid creates
opportunities for both parties. With the aid of the regulation
services it provides, the BSS increases its revenue, reinforces
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FIGURE 1. BSS operation and its interaction with the power grid.

the network, and tolerates the disadvantages generated during
the charging schedule. It monitors the control signals of the
grid operator and the swap demand plan of the EBs through-
out the day, so that the operation runs smoothly. Figure 1
illustrates the BSS operation and its interaction with the
power grid.

BSS has the following options for increasing revenue:
The BSS satisfies the demand for swap operations without
any problems. In addition, the BSS charges its batteries at
low electricity prices and profits from regulation services
by selling energy to the MG when prices are high. These
two methods are critical elements that determine the profit
maximization of a BSS.

III. PROBLEM FORMULATION
The problem formulation consists of two steps. In the first
stage, the EB consumption model is introduced. In the second
stage, an optimization model for profit maximization of the
BSS is presented.

A. BATTERY SWAP DEMAND MODEL
In this section, themodel developed for calculating the battery
swap demand that the BSS must satisfy is presented. Note
again that the BSS serves EBs operating in Berlin public
transport services. The calculations were based on actual
data.

To obtain the swap demand, the energy consumed by
each EB during the trip from one terminus to the other was
calculated. First, the energy consumed by each EB between
two consecutive stops is obtained using a detailed analytical
method. Subsequently, the battery swap demand profile that
the BSS needs to satisfy in a 24-hour period is attained using
the data on the number of stops on each bus line and the
number of trips they complete daily.

In this section, we describe how to model the energy con-
sumed by EBs during their duty periods. A detailed energy
demand model was used to evaluate the consumed energy
‘‘terminus-to-terminus’’ in a bus route by calculating the
energy consumption between two consecutive bus stops. The
energy consumption model between two consecutive bus
stops mapped in this section is based on a prevalent longi-
tudinal dynamics model [9], [36], [37].

The tractive force Ftr is given by the following equation:

Ftr = Fdrag + Froll + Fclimb + Finertia (1)

The term Fdrag = Kdν2 states the aerodynamic drag force,
where Kd = 0.5ρCdA. The density of air is expressed
by ρ with units of kg/m3. The term Cd denotes the drag
coefficient, A indicates the frontal area of the vehicle in
m2, and ν refers to the speed of the vehicle in m/s. The
expression Froll = Mgfcos(α) represents the rolling friction,
and f indicates the rolling resistance coefficient. The equation
Fclimb = Mgsin(α) represents the grade force.M denotes the
mass of the vehicle in kilograms, g denotes the acceleration
due to gravity (9.81 m/s2), and α symbolizes the gradient of
the road. The force of inertia is given by Finertia = δMa,
which is the result of changes in the stored kinetic energy
owing to acceleration and deceleration. The expression a is
the acceleration of the vehicle, and δ corresponds to a factor
that models the inertia of the rotating components in the
drivetrain.

If data on the number of in-vehicle passengers are avail-
able, the total mass of the vehicle can be assessed as M =

Mcurb + npaxmpax . Mcurb represents the curb weight of the
vehicle, npax is the number of passengers, andmpax the weight
of the passenger. The term Etr states the energy demand due
to the tractive force between two consecutive bus stops, which
is evaluated as follows:

Etr =

∫
η(Kdν (t)2 +Mgfcos(α)

+ Mgsin(α) + δMa(t))ν(t)dt (2)

The term η is an efficiency factor used for losses in the
inverter, motor, and drivetrain. When the vehicle brakes
(a (t) < 0), the tractive force has a negative value. During
braking, the EV stores kinetic energy via regenerative brak-
ing. Hence, η is determined separately, based on the sign of
the tractive force.

η =

{
1

ηtηPEηm
, Ftr (t) ≥ 0

rregηtηPEηm, Ftr (t) < 0
(3)

The term ηt represents the drivetrain and gearbox efficiency,
ηPE indicates the inverter efficiency, ηm denotes the motor
efficiency, and rreg refers to the regeneration factor.

To determine the energy consumption of the EB, a driving
profile between consecutive stops of the bus route should be
developed. Therefore, the method proposed in [37] was used
to create a driving profile. A trip between two consecutive
stops involves ηh + 1 phases of length D′

= D/(ηh + 1). The
term ηh represents the number of intermediate halts between
two bus stops, such as stops at traffic lights. The first section
begins with an constant acceleration a+ over distance d0,
followed by a constant coasting speed ν1 over distance d1 and
ends with constant deceleration a− over distance d2, yielding
the relation d0 + d1 + d2 = D′. Figure 2 illustrates the trip
profiles for two consecutive stops.

For simplicity, it is assumed that there is only one inter-
mediate halt point between two stops, that is, ηh = 1, and
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FIGURE 2. Trip profile between two consecutive stops [36].

that the coasting speed between the two stops is equal to
ν1 = 1.5νavg. The simplified velocity profile eliminates the
time component in (2). Thus, Etr is only subject to the known
parameters for each phase, given by

Etr = (ηh + 1)E ′
tr

= (ηh + 1)

× (E ′

tr,a(t)=a+
+ E ′

tr,a(t)=0 + E ′

tr,a(t)=a−
) (4)

E ′

tr,a(t)=a+
= ηd0(Mgfcos(α) +Mgsin(α)

+ Kda+d0 + δMa+) (5a)

E ′

tr,a(t)=0 = ηd1(Mgfcos(α) +Mgsin(α) + Kdν21 ) (5b)

E ′

tr,a(t)=a−
= ηd2(Mgfcos(α)

+ Mgsin(α) − Kda−d2 + δMa−) (5c)

d0 =
ν21

2a+

(6a)

d1 = D′
− (d0 + d2) = D′

−
ν21

2
(
1
a+

−
1
a−

) (6b)

d2 = D′
a+

a+ − a−

(6c)

The energy demand between consecutive bus stops (E triptotal) is
expressed as

E triptotal = Etr (7)

The terminus-to-terminus energy demand (E journeytotal ) is given
by the sum of the energy consumption of each individual stop-
to-stop trip, which is expressed as

E journeytotal =

∑
trip

E triptotal (8)

For ease of exposition, we tabulated the values of the param-
eters listed in this subsection in Table 2.

B. BSS MODEL
The BSS model was developed for profit maximization.
To increase revenue, the BSS must optimize its operation
schedule. In this study, the objective function was defined as

TABLE 2. Parameters in swap demand calculation of BSS.

mixed-integer programming. The objective function is given
in (9) and consists of three components. These components
include the income from swap operations, charging costs, and
regulation service income.

max F1 =

T∑
t=1

PB,dc,t λ −

T∑
t=1

PB,ch,t λ

+ ωswpCbat

T∑
t=1

NEB,t (9)

In the above equation, λ symbolizes the day-ahead electricity
prices for buying and selling electricity. Cbat denotes the
energy capacity required to fully charge the battery. NEB,t
indicates the number of EBs arriving at the station to swap in
period t. PB,dc,t denotes the power discharged for the regula-
tion services in time interval t . Similarly, PB,ch,t is the power
used to charge the batteries in time frame t . ωswp symbolizes
the battery swap price for EBs. T denotes the total number
of hours per day, and t indicates the scheduling timeframe in
hours.

The constraints of the objective function are created for
BSS and battery components.

CB,t+1 = CB,t + ηB,ch PB,ch,t 1t −
PB,dc,t

ηB,dc
1t ∀t (10)

Equation (10) models the impact of charging, regulation,
and swap operations performed in period t on the available
capacity in period t+1.CB,t andCB,t+1 indicate the available
capacity of the BSS at time frames t and t + 1, respectively.
1t denotes the time duration. In addition, the charging and
discharging efficiencies are represented by ηB,ch and ηB,dc.

0 ≤ PB,ch,t ≤ PB,ch,max ∀t (11)

0 ≤ PB,dc,t ≤ PB,dc,max ∀t (12)
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Maintaining charge and discharge rates within a certain range
is crucial for power system stability and battery health. Equa-
tions (11) and (12) subject the BSS to this range. PB,ch,max
and PB,dc,max denote the charging and discharging limits,
respectively.

CB,min ≤ CB,t + ηB,chPB,ch,t −
PB,dc,t

ηB,dc
≤ CB,max (13)

The total capacity of the BSS must be within specified
limits. Equation (13) presents the constraint developed for
this case. CB,min and CB,max represent the minimum and
maximum capacities of BSS, respectively.

CB,min ≤
T∑
t=1

(ηB,chPB,ch,t −
PB,dc,t

ηB,dc
) + CB,0 ≤ CB,max

(14)

Equation (14) ensures that the BSS continues its activi-
ties within the determined capacity limits during the entire
scheduling period, considering the initial capacity of the BSS.
Moreover, CB,0 denotes the initial capacity of the BSS at the
beginning of the scheduling horizon.

DB,t+1 ≤ CB,t + ηB,chPB,ch,t −
PB,dc,t

ηB,dc
(15)

In addition, themain responsibility of the BSS is to keep swap
operations running smoothly. The remaining capacity after
the operation of the BSS at time t must meet the demand at
time t+1. Therefore, (15) secures this, andDB,t+1 represents
the next-hour swap demand.

0 ≤ PB,reg,t ≤ CB,t − DB,t+1 ∀t ∈ T reg (16)

Equation (16) ensures that the BSS does not exceed its avail-
able capacity and meets the demand of the next time period
while contributing to ancillary services. PB,reg,t symbolizes
the regulation capacity at time t . Treg indicates all the time
periods BSS allocates to regulation services.

Nbat,ful,t + Nbat,emp,t + Nbat,ch,t + Nbat,dc,t = Nbat ∀t
(17)

Equation (17) represents the total number of batteries in
the BSS. Nbat,ful,t and Nbat,emp,t indicate the number of
fully charged and fully discharged batteries in time frame t ,
respectively. Nbat,ch,t and Nbat,dc,t correspond to the number
of batteries being charged or discharged, respectively. Nbat
denotes the total number of batteries.

Nbat,ch,t ≤ Nbat,pos,max,N bat,dc,t ≤ Nbat,pos,max ∀t (18)

The number of batteries being charged or discharged did not
exceed the total battery chargers/dischargers in BSS. where
Nbat,pos,max states the total number of chargers/dischargers.

Cbat,t+1 = Cbat,t + (ηchPbat,ch,t −
Pbat,dc,t

ηdc
)1t ∀t (19)

The charge/discharge constraint of a battery according to the
time period is given in (10). Cbat,t+1 and Cbat,t indicate the
battery capacities at t+1 and t, respectively. Pbat,ch,t and

Pbat,dc,t represent the charging and discharging powers of
a battery in period t, respectively.

Cbat,min ≤ Cbat,t ≤ Cbat,max ∀t (20)

Cbat,min and Cbat,max denote the minimum and maximum
battery capacity, respectively.

IV. SOLUTION METHODOLOGY
In this study, the optimum location and size were investigated
for profit maximization of a BSS in a microgrid. This is
a power system planning problem and is closely related to
power system stability. Therefore, some limitations have been
considered for the power balance of the microgrid model,
such that the location where the BSS is placed does not cause
any problems during operation.

Vmin,i ≤ Vi,t ≤ Vmax,i ∀i, ∀t (21)

Equation (21) ensures that the voltage of each bus is within
the limits. Vmin,i and Vmax,i are the minimum and maximum
bus voltage levels allowed for bus i, respectively. Vi,t refers
to the voltage of the bus at t.

Pgrid,min ≤ Pgrid,t ≤ Pgrid,max ∀t (22)

The power supplied from the grid was constrained using (22).
Pgrid,max and Pgrid,min denote the maximum and minimum
values, respectively. Pgrid,t indicates the power purchased
from the grid at t.

Pmin,j ≤ Pj,t ≤ Pmax,j ∀j, ∀t (23)

Qmin,j ≤ Qj,t ≤ Qmax,j ∀j, ∀t (24)

The active and reactive power output ranges of the thermal
DGs are limited by (23) and (24). Pmax,j and Qmax,j state the
maximum active and reactive power outputs, Pmin,j andQmin,j
represent the minimum active and reactive power outputs. j
indicates the index number for the thermal DG. Pj,t and Qj,t
represent the active and reactive power of the j-th thermal DG,
respectively.

0 ≤ Pw,t ≤ Pw,max ∀t (25)

0 ≤ Ppv,t ≤ Ppv,max ∀t (26)

Equations (25) and (26) constrain the wind and PV power
output, respectively. Pw,t indicates the power generated by
the wind power at time frame t, and Pw,max symbolizes the
maximum output. Ppv,t indicates the generated PV power in
period t and Ppv,max denotes the maximum level.

The problem-solving process is illustrated in Figure 3. The
solution steps are as follows:

Step 1: MG is modeled according to the constraints (21)–
(26).

Step 2: Define the initial parameters of the MG.
Step 3: BSS is modeled according to (9)–(20).
Step 4: Define the initial parameters of the BSS.
Step 5: BSS chooses a location.
Step 6: BSS determines a size.
Step 7: BSS optimizes charging–discharging schedule.
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FIGURE 3. Flowchart of the solution.

Step 8: Optimal power flow is executed.
Step 9: MG power requirement is calculated.
Step 10: BSS buys/sells energy to the MG.
Step 11: Revenue of the BSS is calculated.
Step 12: Have all BSS sizes been investigated? If not,

return to Step 6.
Step 13: Have all the MG buses been investigated? If not,

return to Step 5.
Step 14: Select the bus and size that maximizes the revenue

of the BSS.

V. RESULTS
To obtain the results of this study, an MGwas designed based
on the IEEE 33-bus system. The MG comprises 33 buses, 32
branches, 3 thermal DGs, PV units, 1 wind unit, and fixed
loads. The objective is to identify the optimal location of the
BSS that maximizes its revenue. Therefore, it is necessary
to choose a location that will minimize the cost of the BSS
charging operations and enable it to generate high income
from regulation services. The data of the IEEE 33-bus system
are provided in [38]. A single-line diagram of the MG is
illustrated in Figure 4. The location and size details of thermal
DGs, PVs, andwind power are shown in Table 3 and Figure 5,
respectively. Moreover, the load data is given in Figure 5. The
base voltage of the system is 12.66 kV, and the voltage range
of the buses is 0.9–1.1 pu.

To demonstrate the effectiveness of the energy consump-
tion model, the swap demand that the BSS must meet is cre-
ated using 50 EBs assumed to serve in public transportation
bus services (PTBS). The routes of EBs were different. They
were obtained using data from the PTBS in Berlin, Germany,
and the consumption model was tested with real data. The

FIGURE 4. MG single line diagram.

FIGURE 5. Data of demand, PV and wind generation [34].

TABLE 3. Capacity and location of units.

battery capacity of the EBwas 337 kWh [39]. The chargers in
the BSS were assumed to have a charging power of 150 kW.
The number of chargers in the BSS varies according to the
buses. Since the aim of BSS is to maximize its profit, these
data are given in the following sections according to each
bus. The scheduling horizon of the case study was 24 h, from
midnight to midnight, and the resolution was 1 h. At the
beginning of the scheduling horizon, all EBs begin to serve
with a full battery, whereas the BSS has zero energy capacity.
In addition, the EB swaps the battery when its SoC drops to
5–10%.

As stated in the previous sections, the optimization prob-
lem and optimum power flow were created and solved using
MATLAB and MATPOWER.

A. BATTERY SWAP DEMAND
The swap demand is computed using the consumption model
explained in Section III. The results are depicted in Figure 6.
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FIGURE 6. Daily battery swap demand for BSS.

The demand increases in the morning and evening hours at
stations serving EVs.

However, in this study, a different pattern appears in the
graph, as the BSS serves the EBs operating for the PTBS.
These results are in line with the authors’ expectations,
as each EB may have a different route, timetable, number
of stops, or trip duration. The EBs run for 24 h in a regular
operation plan. Therefore, the swap demand, which follows a
fluctuating profile throughout the day, stands out. The hourly
demand varies between 5.4 MW and 0 MW. The average
hourly swap demand is 3 MW. The EBs begin with a fully
charged battery at the start of the scheduling horizon. There
is no swap demand for the first 3 h. Subsequently, the demand
increases, and the highest demand occurs at 5 h. A pattern of
similar ups and downs was followed until 20 h. After 20 h,
a downward trend was observed in the swap demand. The
reason for this is the decrease in the number of EBs required
as a result of the sparseness of the PTBS at night. During
the day, the BSS receives over 300 swap demands from 50
different EBs, and a total of 71535 KW charging capacity is
generated from these batteries.

B. OPTIMAL LOCATION OF BSS
In this study, the location that maximizes the revenue of a
BSS is investigated. To increase the income, the BSS opti-
mizes the charging–discharging schedule by considering the
variability of daily electricity costs. For successful optimiza-
tion, an upper limit must be set for the charging–discharging
power of the BSS. These values vary for each MG bus. The
maximum load that the BSS creates in each bus is examined
separately. These loads are the highest values that enable
the optimal power flow to operate without any problems.
To simplify the work, the extra load that the BSS can add
during peak load is calculated, which is considered as the
maximum charging power of the BSS for a time frame of 1 h.
This is crucial for the BSS to complete its charging operations
at minimum cost. The maximum charging power of the BSS
for each bus is shown in Figure 7.

The figure shows that the highest values are obtained for
the 1st and 2nd buses. This is because the system is connected
to the main grid via bus 1. The loads created here easily pro-

FIGURE 7. Maximum charging power of BSS for each bus in the MG
system.

FIGURE 8. Maximum amount of regulation provided by BSS at a
resolution of 1 h.

vide the energy required for consumption from the main grid
without causing voltage imbalances. Bus 2 is in a balanced
position, as it is located in the middle of the grid connection
on the first bus and the thermal DG on bus 3. Therefore, this
bus is expected to reach a charging power of 22 MW. Bus 3
easily responds to the high demand that may occur in this
bus with its thermal DG. From this point onwards, the values
decreased. To avoid creating an imbalance in the systemwhile
moving away from the grid, the maximum charging power
allowed by the optimal power flow decreases regularly until
bus 18, and in this bus, the level drops by 3.3 MW. Owing to
the connections of buses 19 and 23 with buses 2 and 3, high
levels can be reached again at these locations. Although the
thermal DG in bus 28 plays an active role in balancing the
nearby buses, the rating decreases to 3.3 MW in the last bus
of the system.

In Figure 8, the maximum amount of regulation provided
by the BSS at a resolution of 1 h in line with the demand from
the MG is shown. This is not the total regulation provided at
the end of the scheduling horizon, instead, only the highest
regulation amounts are observed in the 1 h period. These val-
ues are the regulation upper limits used to maximize revenue
by optimizing the daily operation of the BSS. Additionally,
the BSS provides regulation services with the same day-ahead
electricity prices as the grid and thermal DGs. There is not
as much difference between the buses, as observed in the
maximum charging power. The result of the optimal power
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FIGURE 9. Daily operational cost of optimized BSS’s for each bus.

flow demonstrates that the maximum values were achieved
at busbars 23 and 24. This provides a projection of the total
revenue that can be obtained from the provision of ancillary
services. However, for this, the BSS schedule must be opti-
mized, and each hour of the day must be carefully studied.
Since the charging power of buses 18, 30, 32, 32, and 33 is
low, they only have sufficient charging capacity to satisfy the
swap demand. Therefore, the regulation capacity was zero for
these buses.

The income from swap operations is considered to be equal
for all buses. The BSSmust satisfy the same swap demand for
each bus. The daily operational cost of the BSS is obtained
by subtracting the regulation income from the charging costs.
Figure 9 presents the daily operational cost of the optimized
charging and regulation operations of the BSS according
to the buses without considering swap income. The graph
clearly shows that the daily operating cost of the BSS is the
lowest on bus 23. Although the BSS placed on bus 23 does not
have the highest charging power, it can offer more regulation
services because of its locational advantage. This is crucial
for reducing operational costs. The daily operational cost of
the BSS on bus 23 was 2455 euros. The second lowest cost is
on bus 24, at 2563 euros. Buses 18, 30, 31, 32, and 33 have
the highest costs. Since these buses have low charging power,
they cannot allocate capacity for regulation services. Their
daily operational cost is approximately 3000 euros.

Revenue from regulation services is crucial for reducing
operational costs. Figure 10 presents the total regulation
capacity provided by the BSS over the course of the day.
As expected, the BSS placed on bus 23 is the location where
most energy is sold to the MG, with a regulation capacity of
12.82 MW.

In Figure 11, the optimum charging–discharging schedule
of the BSS on bus 23 is shown. The figure shows that the
BSS charges with maximum charging power (13 MW) at low
prices and allocates high price periods for regulation services
to reduce operational costs. In this process, the BSS contin-
ues the swap operations without any problems. Regulation
services present an important opportunity for reducing the
operational costs of BSS. Based on the results given, there is
a difference of more than 500 euros in daily costs between
the buses where the regulation service can and cannot be
provided. However, the main source of income for the BSS is

FIGURE 10. Total regulation capacity provided by BSS for a 24 h period.

FIGURE 11. Optimum charging-discharging schedule of BSS on bus 23.

FIGURE 12. Daily profit of BSS on all buses including the income from
swap operations.

battery swap operations. According to [40], EV users pay $23
for swapping a 70 kWh battery. This means that $114 should
be paid to swap the 337 kWh battery. The BSS completes
212 swap operations during the day. Therefore, the daily
income of the BSS from swap operations is 24168 EUR.
Since the same swap demand is met for each bus, this amount
is accepted for all buses.

Figure 12 shows the daily profit that the BSS obtains on all
buses when the income from swap operations is added. The
daily profit of the BSS on bus 23 increases to 21713 euros.
The average profit earned for all buses is 21400 euros. The
difference between the buses with the lowest and highest
profit is 536 euros. When this difference is considered on an
annual basis, it creates a difference of approximately 200k
euros. In a ten-year operational period, the amount reached a
difference of approximately 2 million euros. This shows that
location selection is an important element of BSS investment.
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FIGURE 13. ROI values of all buses for 1-year period.

FIGURE 14. Daily operational cost of MG for each bus.

At this point, it seems appropriate to conduct an investment
analysis of the BSS. For this analysis, the return on investment
(ROI) is a simple and effective method. The ROI formula is
given as follows:

ROI =
Net Return on Investment

Cost of Investment
x 100% (27)

An example ROI calculation is performed for the BSS
on bus 23. To calculate the ROI, investment costs must be
obtained. Reference [41] states the investment cost for a swap
station with 50 charging units was $15.7million. In this study,
the BSS on bus 23 has 86 chargers. This shows that the
investment cost is $27 million. The example ROI calculation
is performed on bus 23 for a one-year operational period. The
annual profit of bus 23 is $8,76million. As a result, the ROI at
the end of the one-year period is -67.56%. The ROI values of
all the buses for the one-year period are shown in Figure 13.
The ROI values of the buses that cannot allocate capacity for
regulation are significantly high, as shown in Figure 13. This
is because few chargers maintain a very low investment cost.

Upon determining the daily profit and location of the BSS,
the operational costs of the MG were calculated, as shown
in Figure 14. There is an inverse proportion between the
profitability ratio of the BSS and the daily operational cost
of the MG. The highest MG operational cost occurred in
bus 23. Since bus 23 is the location where the MG requires
the most regulation, following the addition of BSS, this
caused an increase in the cost of bus 23. Bus 32, which is
one of the buses where regulation services are not provided
by the BSS, has the lowest MG operational cost. The dif-
ference between the highest and lowest MG daily costs is
2553 euros.

VI. CONCLUSION
The BSS concept offers several innovative opportunities for
EVs and power systems. Since BSSs have high charging and
discharging potential, planning studies on BSS are crucial
for many parties. In this study, a methodology is developed
to determine the optimal location and size of a BSS to
maximize the profit in the microgrid system. The problem
has been investigated by considering the energy consump-
tion characteristics of the vehicles with real data. Using an
analytics-based model, the swap demand of a BSS serving
EBs operating for the PTBS in Berlin is calculated. In the
next step, the optimal charging–discharging schedule of the
BSS is obtained for different locations and sizes in the 33-bus
microgrid. The optimization problem is carefully formulated
by incorporating constraints related to both the BSS and
battery level, in addition to constraints related to OPF. The
resulting formulation ensures a comprehensive optimization
approach that takes into account multiple factors that impact
the performance of the system. As a result of the optimized
24-hour operation, the location and size at which the BSS
attained maximum profit are obtained. In addition, the ROI
values of the investment are given over the daily income
generated by the BSS from the swap operations and regu-
lation services. It ensures that the decision-making strategy
obtained is supported by economic analysis, and the results
of the study are evaluated in terms of techno-economics.
Finally, the data used in this study were obtained from Berlin,
Germany.
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