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Abstract
Oleanolic acid (OA) and its derivatives are widely found in diverse plants and
are naturally effective pentacyclic triterpenoid compounds with broad
prophylactic and therapeutic roles in various diseases such as ulcerative colitis,
multiple sclerosis, metabolic disorders, diabetes, hepatitis and different cancers.
This review assembles and presents the latest in vivo reports on the impacts of
OA and OA derivatives from various plant sources and the biological
mechanisms of OA activities. Thus, this review presents sufficient data proposing
that OA and its derivatives are potential alternative and complementary
therapies for the treatment and management of several diseases.

Key words: Oleanolic acid; Prophylactic; Anti-inflammatory; Anti-diabetics;
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Core tip: Oleanolic acid (OA) is plentiful in many fruits and vegetables. Studies have
shown that OA and its derivatives exert promising pharmacological actions including
anti-inflammatory, neuroprotective, hepatoprotective, anti-osteoporotic and anti-
diabetics at low doses. However, it is not a “cure-all” drug or drug candidate and could
exert adverse effects at high doses, particularly its derivatives. In addition, information
elucidating the drug-drug/drug-herb interactions associated with OA and its derivatives
is inadequate. Nevertheless, there is a reasonable amount of literature, as fully explored
in this review that OA and its derivatives have crucial prophylactic and therapeutic
potential for diseases including ulcerative colitis, diabetes and cardiovascular diseases.
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INTRODUCTION
Oleanolic acid (OA: 3β-hydroxyolean-12-en-28- oic acid, Figure 1) is a biologically
active natural pentacyclic triterpenoid compound that is present in over 2000 plant
species,  as  well  as  numerous  food  and  medicinal  plants[1].  The  compound  is
particularly common in the Oleaceae family, among which olive (Olea europaea), the
plant species after which the compound was entitled, is still the primary supply of
mercantile OA.

OA is plentiful in apple skin, papaya fruit, persimmon fruit and leaf, plum, loquat,
soybeans, filamentous fungi (Table 1)[2-4].  Several medicinal herbs such as ginseng
contain OA as one of the active ingredients. The concentrations of OA are often as
high as 1% in olive fruit, apple skin, ginseng, papaya fruit and dark plums[5]. It is not
solely  present  as  a  free  compound but  also  occurs  as  an  aglycone precursor  for
triterpenoid saponins, in which it is bonded to one or more sugar chains[1,5].  As a
triterpenoid,  OA belongs  to  an  oversized cluster  of  structurally  diverse  natural
products, including sterols, steroids, and triterpenoid saponins[6].

The artificial modification of OA on its three ‘‘reactive’’ regions; the C3-OH, the
C12=C13 double bond, and the C28-COOH, has led to a series of new synthetic oleanane
triterpenoids[7-9].  Compared to  OA,  some of  these  compounds showed increased
biological activity such as anti-inflammatory and hepatoprotective activities. One
such compound with increased biological activity is 2-cyano-3,12-dioxooleana-1,9(11)-
dien-28-oic acid (CDDO) or its C-28 methyl ester (CDDO-Me; Figure 2)[1,7,10,11].

PHARMACOLOGY
OA  and  its  derivatives  have  plenty  of  useful  effects;  including  remarkable
antioxidant,  anti-inflammatory,  antiviral,  and  anti-diabetic  effects.  They  are
efficacious against proliferation in tumour-bearing mice, such as breast cancer.

Anti-inflammatory effects
Inflammatory processes are characterised by extreme reactive oxygen species (ROS)
levels and are related to many pathological conditions, including ulcerative colitis,
AD, PD and cancer[12-14]. Table 2 summarises the recent studies investigating the in vivo
anti-inflammatory effects and related mechanisms of action of OA and its natural or
synthetic derivatives[14-26]. A proposed potential strategy is to examine the roles of OA
and its derivatives in preventing inflammatory responses involving the nuclear factor
erythroid-2-related factor 2 (NRF-2) and nuclear factor-κB (NF-κB) pathways[15,27]

(Figure 3).
OA significantly inhibited DSS-induced colitis, as verified by the inhibition of Th17

cells and the downregulation of the expression of interleukin (IL)-1, NF-ĸB, MAPK
and RORγt in the colon, whilst the FOXP3 and IL-10 expression, macroscopic score,
colon shortening, and myeloperoxidase activity increased. Thus, OA prevents and
relieves  inflammatory  diseases  such  as  colitis[14].  Similarly,  a  multifunctional
semisynthetic  OA-derivative,  i.e.,  CDDO-Me  prevented  the  high-fat  diet  (i.e.,
modelling obesity)-induced chronic low-grade inflammation in the rodent colon. It
reduced the  expression  of  F4/80,  CD11c,  COX-2,  IL-6,  KI67,  NF-B,  and tumour
necrosis factor (TNF)-α but increased CD206 and IL-10, showing an anti-inflammatory
mechanism [16].  Likewise,  another  synthetic  OA  derivative  1-[2-cyano-3-,12-
dioxooleana-1,9(11)-dien-28- oyl] imidazole (CDDO-Im) inhibited IL-6 and IL-17 and
relieved DSS-induced colitis  in mice.  CDDO-Im also notably inhibited the signal
transducer and activator of transcription-3 activation. Thus, OA and its derivatives
have  a  unique  anti-inflammatory  potential  as  pharmacological  therapies  for
inflammatory bowel disease[14,17].

Acetylated and methylated derivatives of OA isolated from Syzygium aromaticum L.
generated a better anti-inflammatory response in models of inflammation in male
Wistar rats than did OA[18,19]. Another natural OA derivative isolated from the leaves
of Costus igneus  showed anti-inflammatory action in a carrageenan-provoked rat
model. This derivative inhibited inflammation-associated enzyme activities such as
COX, LOX, MPO and NOS[20]. Maslinic acid and 3-epi-maslinic acid were assessed for
their capacity to repress inflammatory gene expression in a mouse model of 12-O-
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Figure 1

Figure 1  Chemical structure and properties of oleanolic acid.

tetradecanoylphorbol-13  acetic  acid  (TDPAA)-induced  skin  inflammation.  All
examined compounds had the capacity to repress the expression of at least one or
more inflammatory genes provoked by TDPAA in mouse skin, which were more
effective  than  the  OA[21].  These  results  suggest  that  OA  could  be  a  potential
prophylactic  and  therapeutic  agent  for  the  treatment  of  induced  inflammatory
responses[22-29].

Neuroprotective effects
Considering the pervasiveness of ageing-related diseases, studies investigating the
neuroprotective impacts of natural compounds and their derivatives have become
popular during recent years. The signalling pathways engaged with neuroprotection
are  the  focus  of  studies  their  mechanism  of  the  activity  and  intervene  in  their
pleiotropic prophylactic action against neuronal harm. In the present review, the
molecular mechanisms of the neuroprotection provided by OA and its derivatives are
revised. By acting upon various systems simultaneously, OA is the highlight as a
promising multi-targeting operator.

Several studies have shown that OA possesses neuroprotective effects (Table 3)[30-41].
The prophylactic role of OA and its derivatives has been examined using different in
vivo  models of hydroxydopamine-induced neurodegeneration, Aβ25-35 injection-
induced memory deficit in Alzheimer’s disease models, Parkinsonian rat models,
stem cell differentiation, and brain slice model of neurodegeneration and ischemic
stroke (Table 3 and Figure 4).

OA amazingly  advanced the  migration  and proliferation  of  neural  stem cells
(NSCs). Differentiation included the increased expression of MAP-2, neuron-explicit
marker tubulin-bIII and Mash1, while the astrocyte-explicit marker glial fibrillary
acidic  protein  and  Nestin  diminished  significantly.  Moreover,  both  the
phosphorylation of  GSK-3β at  Ser9  and β-catenin expression were promoted by
OA[42-44]. In a DNA microarray investigation, OA was found to differentially controlled
183  genes,  and  87  of  which  were  anticipated  to  share  typical  NKX-2.5  binding
sequences[42].  These outcomes demonstrated that OA is a viable inducer of NSCs
differentiation  into  neurons  via  NKX-2.5  related  components  to  some  extent.
Additionally,  OA and its  derivatives  induce  neural  differentiation  and synapse
plasticity  through  a  pathway  involving  histone  deacetylase  (HDAC)  5
phosphorylation[45].  These results strongly suggest that OA might be a significant
therapeutic for the treatment of neurodegenerative diseases under normal conditions
or in response to tissue damage.

Animals treated with 6-hydroxydopamine (HDA) showed functional deficiency in
a forelimb use asymmetry test and had less dopamine in the striatum, these effects
were improved with OA treatment 7-d pre-injury and 1-d post-injury. In addition,
pre-  or  post-injury  OA  treated  rats  recovered  from  HDA-caused  membrane
depolarisation,  indicating that  that  pre-administration of  OA protects  dopamine
neurons from the toxic effects of HDA[31,32]. Similarly, OA exerted neuroprotective
effects  on  HDA-induced  PD  in  rats  by  alleviating  microglial  activation[46,47].  In
addition,  OA  derivatives  displayed  neuroprotective  actions  by  repressing  the
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Table 1  The oleanolic acid contents of some fruits[2-4]

Fruit Content

Apple skin 0.96 mg/dry skin

Apples 16-28 µg/dm

Bilberries whole fruit 1679.2-2029.6 µg/dm

Grapes peel 176.2 µg/g dw

Jujube pulp 360 ± 10.7 µg/g dw

Lemon 0.62 ± 0.01 µg/dm

Loquat skin 1.46 mg/dry skin

Mandarin 1.05 ± 0.04 µg/dm

Olives pulp 27-29 µg/g fw

Olives skin 3094-4356 µg/g fw

Peach skin 1.49 mg/dry skin

Pear skin 1,25 mg/dry skin

Pears 164.3-3066.6 µg/g fw

Pears pulp 34.0-156.0 µg/g fw

Persimmon flesh 17.2 µg/g dw

Persimmon peel 367.7 µg/g dw

Pomegranate 1.12 - 26.96 µg/dm

Quince skin 0,25 mg/dry skin

S. adenocaulon 12.7 ± 0.2 µg/dm

expression of α-synuclein and the generation of ROS provoked by rotenone treatment.
Additionally, an autophagy biomarker i.e., microtubule-associated protein 1A/1B-
light chain 3 (LC3II), was increased significantly. These results suggest that OA and
its derivatives could be a new class of prophylactic or therapeutic compounds for PD
therapy[48].

OA injection during the last 14 d of fluoride treatment considerably recuperated the
fluoride-induced  brain  injury  by  modulating  brain  metabolism.  The  beneficial
neuroprotective impacts of OA in ischemic brain injury suppressed glial activities that
promote  neurotoxicity  while  raising  glial  activities  that  promote  neuronal
survival[30,33,47].

The pretreatment of rats with OA before the induction of cortical hypoxia by cobalt
chloride injection produced a decreased neuronal degeneration and glial activation
and improved brain injury[30]. Moreover, OA mitigated the neuronal degeneration and
synaptic changes produced by Aβ25-35 in an AD model. OA treatment significantly
increased the expression levels of brain-derived neurotrophic factor (BDNF), CaMKII,
cAMP response  element-binding  (CREB)  NMDAR2B,  PKC and TRKB in  an  AD
model. Thus, the ameliorative effect of OA was displayed as to maintain synaptic
plasticity of the hippocampus in the Aβ-induced memory loss of AD rats[34].

Furthermore, it  was reported that OA significantly hinders the Aβ23-35  induced
differentiation of NSCs into astrocyte by down-regulating the JAK/STAT signalling
pathway through increasing NGN1 expression. These outcomes suggest that OA
might impede the progress of AD[44].  Finally, OA confers specific neuroprotection
against amyloid precursor protein and TAU-induced neurodegeneration and ischemic
injury modelled by oxygen-glucose deprivation in organotypic brain slice models[35].

OA mitigated the memory deficits in a cholinergic blockade-induced cognitive
deficit mouse model. A single injection of OA significantly improved the latency in a
passive avoidance learning assay, spontaneous alternation behaviour in the Y-maze
and the exploration time on the novel object recognition assay. These behavioural
results implied that OA reverses the cognitive impairment caused by scopolamine. At
the  molecular  level,  it  was  revealed  that  OA  intensified  CREB  protein  and
extracellular-signal-regulated  kinase  1/2  (ERK1/2)  phosphorylation  and BDNF
expression in the hippocampus[36]. Similarly, augmented ERK/2, CREB and BNDF
phosphorylation  which  was  associated  with  the  upregulation  of  miR-132  was
reported for the antidepressant-like effect of OA. Yi et al[37] showed that a 3 wk of OA
treatment in a chronic unpredictable mild stress model attenuated anhedonic and
anxiogenic  behaviours.  All  these  studies  confirm  that  OA  might  be  a  potential
therapeutic means for the treatment of cognitive deficits and depression.

OA  treatment  inhibited  the  development  of  experimental  autoimmune
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Figure 2

Figure 2  Structures of 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid and its C-28 methyl ester. CDDO: 2-cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid;
CDDO-Me: C-28 methyl ester of CDDO.

encephalomyelitis  (EAE)  in  mice  by  reducing  the  activation  of  microglial  cells,
protecting blood-brain barrier  (BBB) integrity,  and preventing the infiltration of
inflammatory cells into the CNS[26,49-51]. EAE mice treated with OA exhibited decreased
levels of TNF-α and cytokines in CNS tissue without toxicity[52-56]. Similar results were
also observed with a natural derivative isolated from caper[57]. OA and its derivatives
improved neuroinflammation by suppressing the secretion of  pro-inflammatory
cytokines CCL-5, CXCL-9, CXCL-10, IL-6, IL-1β, NF-κB and TNF-α[57-59]. Additionally,
the  expression  of  genes  involved  in  myelination/remyelination  was  increased
significantly. Therefore, these studies have shown that OA possesses neuroprotective
effects)[30-59].

Hepatoprotective effects
One of the most remarkable pharmacological impacts of OA and its derivatives is
hepatoprotection (Figure 5). OA protects against diverse range of hepatotoxic agents,
including metals,  alcohol,  bile acids, natural and synthetic toxins, drugs, viral or
microbial  agents  and  ischaemic  perturbations.  OA  and  its  derivatives  perform
important protective roles in the instigation of acute liver injury induced by alcohol,
carbon tetrachloride (CCl4), acetaminophen (APAP) and phalloidin (Table 4)[59-70].

The hepatoprotective eects of OA and its derivatives against CCl4-caused liver
injury involved decreasing the increased serum levels of alanine aminotransferase
(ALT),  lactic  dehydrogenase,  aspartate  aminotransferase  (AST)  and  hepatic
malondialdehyde  (MDA)  levels  and  increasing  SOD  and  GPX  activities.  These
biochemical attenuations were further supported by histochemical analyses[61-63].

Esculentoside A (EsA) is an OA derivative that treatment attenuated CCl4- and
GalN/LPS-induced acute liver  damage in mice.  The prophylactic  impact  of  EsA
involved the inhibition of the inflammatory response such as IL-1β, IL-6 and TNF-α
and  oxidative  stress,  and  the  underlying  mechanism  included  the  peroxisome
proliferator-activated receptor (PPAR)-γ, NF-κB and ERK signalling pathways[63]. EsA
also exhibited protective eects against APAP, which is known to account for overdose
toxicity for the majority of acute liver failure cases. EsA treatment attenuated APAP-
induced serum AST and ALT levels and stimulated NRF-2 activation and glutathione
(GSH) production. Additionally, it significantly increased the phosphorylation of
AMP-activated protein kinase (AMPK) and serine/threonine kinase (Akt), as well as
glycogen synthase kinase-3 beta (GSK-3β) suggesting that EsA potentiates the NRF-2-
controlled survival process through the AMPK/AKT/GSK-3β pathway[71]. Similarly,
the induction of antioxidant defence and suppression of ER stress and inflammatory
responses by the NRF-2 battery as an OA-induced protection against phalloidin-
induced hepatotoxicity were reported[64]. OA reduced the liberation of inflammatory
agents and liver enzymes and prevented ConA-induced liver injury. OA treatment
decreased the phosphorylation of cJUN NH2-terminal kinase (JNK) and increased the
expression levels of PPAR-α[72]. Another NRF-2 mediated protective role of OA was
reported against LCA-induced hepatotoxicity and obstructive cholestasis, whereby
NRF-2-mediated  upregulation  of  multidrug  resistance-associated  proteins  was
possibly involved[65,66].

Alcoholic liver disease (ALD) is one of the main causes of death worldwide, and
oxidative stress was found to be an important factor in the pathogenesis of ALD
damage. OA plays an important role in preventing alcohol-induced oxidative injury
by decreasing the upregulation of serum AST, ALT and ATP levels while increasing
the reduced hepatic GSH level and SOD and CAT activity. The protective effect of OA
involved the uprising of anti-oxidative pathways such as NRF-2, HO-1, SOD-1 and
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Table 2 In vivo anti-inflammatory effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives
(2014-2020)

Disease
model/physiolo-
gy

Effect
Mechanism

Compound Dose Ref.
↑↑↑ ↓↓↓

Ulcerative colitis
(mice, DDS)

Anti-ulcerative
colitis restoring the
balance of
Th17/Treg cells and
inhibiting NF-κB
signaling

FOXP-3, IL-10, ZO-1,
Occludin, Claudin-1,
pJNK, pP38

MPO, Th17, RORγt,
IL-17, TNF-α, IL-1β,
MAPK, pIKB, pTAK,
pP65, iNOS, COX-2

OA 5-10 mg/kg·d, 3 d
after DSS

[14]

Experimental
mammary
carcinogenesis

Anti-inflammatory cP65, cIKB-α COX-2, HSP90, NF-
ĸB, npP65

OA-Xs 0.8-1.6 mg/kg·2 d, 2
wk before 16 wk
after DSS

[15]

Colonic
inflammation
(mice, HFD)

Prevent colon
inflammation

CD206, IL-10,
#goblet cells

NF-B, pNF-B, IL-6,
TNF-α, COX-2, KI67

OA-Xs (CDDO-Me) 10 mg/kg in
drinking water, 21
wk

[16]

Ulcerative colitis
(mice, DDS)

Anti-ulcerative
colitis, anti-
inflammatory via
inhibiting STAT3

- IL-17, STAT3 OA-Xs (CDDO-Im) 0.5-2 µmol/L
[17]

Anti-inflammation
and antinociception
(rats)

Anti-inflammatory,
anti-nociceptive

Pain latency Paw volume OA-Xn 40 mg/kg once
[18]

Anti-inflammation
(rats)

Membrane
stabilization

- Paw volume,
hemolysis

OA-Xs 20-40 µg
[19]

Anti-inflammation
(rats, hPMBCs)

Anti-inflammatory - COX-2, 5-LOX, NOS,
MPO, edema, IL-6,
NF-ĸB, PGE-2

OA-Xn 50 mg/kg, 100 µg
[20]

Anti-inflammation
(mouse skin)

anti-inflammatory
properties

- IL-1α, IL-1β, IL-6, IL-
23

OA-X 2 µmol
[21]

Allergic airway
inflammation (rats)

Anti-inflammatory
and
immunomodulatory

IL-6, IL-8 DTH, NO, IL-4, 5,
13, 17, TLR2, NF-ĸB
and TNF-α; sIgE,
COX-2, and 5-LOX

Fe-OA and Zn-OA 2 mg/kg
[22]

Anti-inflammation
and antinociception
(mice)

Analgesic action and
expressed strong
anti-inflammatory
activity

- IL-6 OA-Xs, OA-ASA 0.3-300.0 mg/kg,
p.o.

[23]

Lung injury (MLE-
12, NDMA)

Anti-inflammatory,
anti-oxidative stress
and anti-apoptotic
eects

SOD, GSH, SIRT-1,
NRF-2, BCL-2,

TNF-α, IL-6, IL-1β,
MDA, BAX, NF-ĸB,
NRLP-3, LDH, Ac-
P65, BAX/BCL-2

OA 10-20 mg/kg
[24]

Pulmonary
inflammation and
fibrosis (mice)

Anti-inflammatory
response and anti-
pulmonary fibrosis
in the lungs

NLRP3 IL-1β, IL-6, TNF-α,
TGF-β1, and
fibronectin, NRLP-3,
ASC, CASP-1

OA 0.001-1 mg/kg·d, 5 d
(nc)

[25]

Subarachnoid
haemorrhage (rats)

Alleviated SAH-
induced vasogenic
edema

VE-Cadherins, P120,
ZO-1, Occludin-

HO-1 OA 5-20 mg/kg
[26]

DDS: Diaminodiphenyl sulfone; NF-κB: Nuclear factor-κB; JNK: cJUN NH2-terminal kinase; IL: Interleukin; TNF-α: Tumor necrosis factor-α; OA: Oleanolic
acid; OA-Xn: Natural derivatives of oleanolic acid; OA-Xs: Synthetic derivatives of oleanolic acid; HFD: High-fat diet; CDDO: 2-cyano-3,12-dioxooleana-
1,9(11)-dien-28-oic acid; CDDO-Me: C-28 methyl ester of CDDO; CDDO-Im: COOD-imidazole; STAT3: Signal transducer and activator of transcription 3;
GSH: Glutathione; LDH: Lactic dehydrogenase; NRF-2: Nuclear factor erythroid-2-related factor 2.

GR expression and the suppression of pro-inflammatory cytokines, for instance, TNF-
α and IL-6[60]. One of the important enzymes in alcohol-instigated toxicity is CYP2E1,
which  produces  both  toxic  aldehydes  and  free  radicals  from  ethanol  and  is
suppressed by OA[73].

Non-alcoholic fatty liver disease (NAFLD) is another highly prevalent liver disease
involving disrupted metabolism. It was found that the neonatal administration of OA
exhibited hepatoprotective effects on the subsequent development of dietary fructose-
induced  NAFLD  in  adulthood,  as  evidenced  by  lower  NAFLD  scores  for
inflammation and steatosis and liver lipid content[74]. In addition, OA significantly
inhibited the transactivation of liver X receptor α and its target genes, resulting in the
selective decrease in hepatocellular lipid content, which is beneficial in the treatment
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Figure 3

Figure 3  Anti-inflammatory impacts of oleanolic acid and its derivatives, illustrating the molecular mechanisms. OA: Oleanolic acid; NF-κB: Nuclear factor-
κB; IL: Interleukin; TNF-α: Tumour necrosis factor-α; Akt: Serine/threonine kinase; GSH: Glutathione; LXR: Liver X receptor; NRF-2: Nuclear factor erythroid-2-related
factor 2.

of NAFLD[75]. In addition, OA enhanced the phosphorylation of AMPK in hepatocytes.
Similarly,  3-Acetyl-OA  (AOA)  exerted  a  protective  effect  on  hyperlipidemia  in
NAFLD rats via  AMPK-regulated pathways[67].  Thus, OA shows prophylactic and
therapeutic  effects  against  NAFLD complications  and shows great  promise  as  a
possible natural therapeutic agent for the treatment of liver diseases[60-70,76].

Anti-diabetic effects
Diabetes  is  a  complicated,  progressive  and  chronic  disorder  that  results  from
impaired insulin secretion or sensitivity. Type 2 diabetes (T2DM) is a common form of
diabetes that is described as hyperglycaemia resulting from either insulin resistance
or insufficient insulin secretion by pancreatic β-cells. Increasing evidence illustrates
that T2DM is correlated with obesity, as well as with the development of several
comorbidities, including cardiac, hepatic, and renal disorders. It is also consolidated
with different metabolic complications affecting organs such as the arteries, eyes,
kidney and nerves (Figure 6)[77-79].

Plant-derived OA alleviated hyperglycaemia  by  decreasing HBA-1c  and EPO
concentrations in streptozotocin (STZ)-induced diabetic rats. Furthermore, it notably
increased RBC count and other RBC indices, increased the antioxidant status of the
RBCs and decreased oxidative stress[80].  In addition, the anti-diabetic effect on the
insulin  signalling pathway in  the  skeletal  muscle  of  STZ-induced rats  was fully
elucidated. It was found that phosphorylated (p)-AKT and p-glycogen synthase (pGS)
expression was increased and that the activation of the insulin signalling pathway
was  enhanced  by  OA[81-83].  The  protective  effect  of  OA  is  also  associated  with
therapeutic memory, as evidenced by the maintenance of reduced glycaemic levels in
mice 4  wk after  the termination of  OA treatment.  This  therapeutic  memory was
associated with FOXO-1 acetylation[84].  Additionally, HDACs 4 and 5 and G6Pase
expressions  were  suppressed  while  histone  acetyltransferase  1  expression  was
increased,  suggesting  that  enzymes  involved  in  epigenetics  may  have  a  role  in
sustained glycaemic control in T2DM, particularly with OA treatment[84-86]. The anti-
diabetic action of OA is mediated in part through the reduction of ghrelin expression,
reduced  food  intake[87].  Furthermore,  OA  prevents  and  ameliorates  the  insulin
resistance induced by Aroclor 1254 treatment in mice.  It  notably suppressed the
Aroclor  1254-induced increase in  ROS,  oxidative agents,  and NADPH oxidase 4
(NOX-4)  expression while upregulating the decreased expressions of  glutamate-
cysteine ligase catalytic subunit (GC-LC), glutamate-cysteine ligase modifier (GC-LM)
GPX-1,  SOD-1 and SOD-2[88].  These effects  were suggested to be mediated by an
increase in PPAR-γ signalling through the upregulation of hepatocyte nuclear factor
1b[88].  These  results  strongly  indicate  the  prophylactic  effect  of  OA  on  insulin
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Table 3 In vivo neuroprotective effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives
(2014-2020)

Disease model/
physiology Effect

Mechanism
Compound Dose Ref.

↑↑↑ ↓↓↓

Focal brain hypoxia
(rats)

Neuroprotective,
IBI, decreased neural
damage suppressing
glial activities

S-100b, MAP-2 GFAP, NADP-
Diaphorase, iNOS

OA 6 mg/kg·d, 6 d
[30]

Parkinsonian
model (rats)

Prevents AIM, anti-
PD, ameliorated
dyskinesis

CAT Affected limbs,
AIMs, ROS

OA 100 mg/kg·2 d, 8 d
[31]

Neuro-
degeneration (rats,
hydroxydopamin)

Protects against
neurodegeneration

Cerabral doapamine,
contralateral limb
use

OA 100 mg/kg·2 d, 7 d
pre or post

[32]

Brain damage (rats,
fluoride)

Brain damage GSH, SOD, CAT,
GPX, GST, GR

sALT, sAST, LPO,
NO

OA 5 mg/kg·d, last 14 d,
[33]

Alzheimer’s
disease model (rats,
Aβ25-35)

Anti-alzheimer,
increased synaptic
plasticity, decreased
Aβ25-35 toxicity

NMDAR-2B, CREB CaMKII, PKC,
BDNF, TRK-B, Ca2+,

Latency time

OA 21.6 mg/kg
[34]

Rat coronal brain
slice

Neuroprotective,
anti-alzheimer,

BDNF APP (TAU) toxicity, OA-Xn
[35]

Cognitive
dysfunction (mice)

Ameliorates
cognitive
dysfunction

pERK-1,2; pCREB,
BNDF, TRK-B

- OA 0.625-5 mg/kg
[36]

Chronic
unpredictable mild
stress (mice)

Anti-deprassant pERK-1,2; pCREB,
BNDF, miR-132,
PSD-95, SYN-1

- OA 2.5-40 mg/kg·d
[37]

Cerabral IRI (mice,
PC12 cells)

Cerabral protection
and prevent IRI

Body weights, sTG,
pAMPK, pGSK-3β,
APN, Adipo-R1,
Adipo-R2, pLKB-1,
MAO

sGLU, sINS,
Neurological scores,
BAX/BCL2, MDA,
TNF-α, IL-6, CASP-
3,

OA-X (CHS) pretreatment 30,60,
120 mg/kg·d

[38]

Exprerimenal stress
(mice, corticoid)

Anti-depressant AKT/mTOR, BNDF SGK1, GR OA 10 mg/kg
[39]

Mice Anti-depressant - MAO-A OA 0.1 mL/10g
[40]

Mice Anti-depressant BNDF, sleep
duration

Behavioral tests,
MAO

OA 5-40 mg/kg
[41]

OA: Oleanolic acid; GFAP: Glial fibrillary acidic protein; APP: Amyloid precursor protein; AIM: Abnormal involuntary movements; CREB: cAMP response
element-binding; GSH: Glutathione; ERK: Extracellular-signal-regulated kinase; IRI: Ischemia-reperfusion injury; ALT: Alanine aminotransferase; AST:
Aspartate aminotransferase.

resistance and related metabolic dysfunctions (Table 5)[80,81,84,87-101].
OA derivatives  also  exhibit  significant  anti-diabetic  effects.  12,13  DihydroOA

methyl  ester  (DKS26)  reduced the  plasma levels  of  glucose,  glycosylated serum
protein, ALT and AST. DKS26 also alleviated the glucose tolerance and plasma lipid
profiles while raising plasma insulin levels  and glucagon like peptide 1 (GLP-1)
release, which was accompanied by increased levels of cAMP and phosphorylated
PKA. Thus, DKS26 is a hypoglycaemic therapeutic that augments the release and
expression  of  GLP-1  mediated  by  the  activation  of  the  cAMP/PKA  signalling
cascade[89,102]. Similarly, the natural OA derivative CHS isolated from the root bark of
Aralia  taibaiensis  exerted  an  anti-diabetic  effect  by  decreasing  blood  glucose,
triglyceride, free fatty acid and LDL-cholesterol levels in STZ/nicotinamide-induced
T2DM  rats  by  activating  AMPK [90].  One  new  OA  derivative,  2a,3b,23a,29a
tetrahydroxyolean-12(13)-en-28-oic acid, purified from Malva parviflora demonstrated
a similar  anti-diabetic  effect  on a  T2DM mice model[91].  Furthermore,  a  series  of
synthetic OA derivatives showed inhibitory activity on protein tyrosine phosphatase
1B, which is known to be involved in insulin resistance[103,104].

The long-term neonatal intake of OA significantly increased AMPK, adiponectin
and GLUT-4 expression while decreasing TNF-α and IL-6 in rats that were fed a high
fructose  diet,  suggesting  a  potential  treatment  for  the  long-term  prevention  of
metabolic diseases such as T2DM and obesity[92-94]. Additionally, a nanoformulation of
OA ecaciously mitigated the increased levels of NO and MDA and serum CAT and
SOD activities in rats fed a high fat and fructose diet[95]. Thus, OA is a remarkable

WJCC https://www.wjgnet.com May 26, 2020 Volume 8 Issue 10

Sen A. OA and derivatives as a therapeutic agent

1774



Figure 4

Figure 4  Molecular mechanism of the action of oleanolic acid and its derivatives on the nervous system. OA: Oleanolic acid; ALT: Alanine aminotransferase;
AST: Aspartate aminotransferase; IL: Interleukin; TNF-α: Tumour necrosis factor-α; GSH: Glutathione; STAT3: Signal transducer and activator of transcription 3.

prophylactic agent for the long term prevention of diabetes.
In addition to animal models, pre-diabetic human patients were randomised to

receive OA-enriched olive oil (equivalent dose, 30 mg OA/d) [intervention group
(IG)] or the same oil not enriched with OA [control group (CG)] and followed for the
incidence of new-onset of T2DM. The results showed that in total, 38 new T2DM onset
events occurred, 31 in the CG and 17 in the IG. Therefore, the intake of OA-enriched
olive oil reduced the risk of developing T2DM in pre-diabetic patients, suggesting that
OA can be used as a functional food and therapeutic for the prevention of T2DM[92-101].

Anti-osteoporotic effects
Osteoporosis is a persistent skeletal disorder characterised by bone microarchitectural
deterioration[105]. It has become a significant health issue within the elderly population
and has led to a considerable socioeconomic burden in society. Scientists are working
to develop new therapeutics to treat the development of the disease, and natural
products become widespread worldwide[106].

OA is shown to be an anti-osteoporotic natural product, as it increases bone density
and remodelling by regulating calcium and vitamin D metabolisms (Table 6 and
Figure 7)[107-116]. Rats fed OA-enriched diets had improved bone characteristics, higher
serum concentrations of 1,25(OH)2D3 and less endogenous calcium excretion than did
the control group resulting in higher calcium mass[108]. Furthermore, the density and
microarchitectural  characteristics  of  the  bones  were  significantly  improved,
1,25(OH)2D3  was increased,  the renal  expression of  CYP27B1 and increased,  and
urinary of Ca2+ excretion was increased in mature C57BL/6 ovariectomised (OVX)
mice[107]. In addition, OA significantly induced the mRNA and protein expression of
renal CYP27B1 while suppressing CYP24A1 in human proximal tubule HKC-8 cells,
suggesting that its effects were associated with calcium and vitamin D metabolism.
Additionally,  OA acetate promoted the development and reshaping of  bones by
properly modulating osteoblast, osteoclast and inflammatory activities with TGF-β
regulatory measures in an experimental periodontitis model in mice[109].

As demonstrated by the reversal of biochemical markers and bone density of the
lumbar and femur, the OA defends against the osteoporosis caused by prednisone[110].
In  a  glucocorticoid-induced  model  of  rat  osteoporosis,  a  total  of  25  possible
biomarkers were identified, and OA had a regulatory effect on 17 of these biomarkers
associated with some important metabolic pathways, for instance, linoleic acid, valine
and  isoleucine  metabolism,  phenylalanine,  tyrosine,  tryptophan,  cysteine  and
methionine biosynthesis[110].

OA also suppressed the osteoclastogenesis at the early stage and possibly at the late

WJCC https://www.wjgnet.com May 26, 2020 Volume 8 Issue 10

Sen A. OA and derivatives as a therapeutic agent

1775



Table 4 In vivo hepatoprotective effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives
(2014-2020)

Disease model/
physiology Effect

Mechanism
Compound Dosei Ref.

↑↑↑ ↓↓↓

Hepatic injury
(mice, EtOH)

Prevents ethanol
induced liver injury,
hepatoxicity

nNRF-2, HO-1,
SOD-1, CAT, GR,
hepatic GSH, ATP

sALT, sAST, CYP2E,
ADH, TNF-α, IL-6,
sTG, sLDH

OA 10 mg/kg·d, 30 d
[60]

Hepatic injury
(rats, CCl4)

Hepatoprotective SOD, GPX ALT, AST, LDH OA, OA-Xs 15 mg/kg
[61]

Hepatic fibrosis
(HSCs, HEPG2,
BEL-7402, LO-2;
mice, CCl4)

Hepatoprotection Apoptosis, Ca2+ MitMP, sALT, sAST OA-amino acids 20 mg/kg, IC50 > 50
µmol/L

[62]

Hepatic fibrosis
(rast, CCl4)

Anti-hepatic fibrosis - sALT, sAST, Liver
indices

OA-Xs 14-28 mg/kg·3 d, 9
wk

[63]

Hepatic injury
(mice)

Hepatoprotective NQO1 mKC, MIP-2, OATP-
1B2, GADD-45,
CHOP-10, sALT,
sMDA, pJNK, HO-1.

OA 22.5 mg/kg·d, 3 d
[64]

Cholestasis
(HEPG2)

Obstructive
cholestasis

urinary BA, MRP-3,
MRP-4, MRP-2,
NRF-2

sBA, sBil, sAST,
sALT, sALP, nNRF-
2, BSEP,

OA 20 mg/kg, i.p, 1-50
µmol/L

[65]

Cholestasis (mice,
LCA)

Cholestasis MRP-2, MRP-3,
MRP-4, NRF-2

sALT, sALP, sAST,
tBA, tBIL, SULT-2A1

OA 5-20 µg/kg
[66]

Hepatic NAFLD
(rats, HFD)

Anti-NAFLD via
AMPK-related
pathways

HGF, ICAM, IGF-1,
IGFBP-3, IGFBP-5,
IGFBP-6, lipocalin-2,
MCP-1, M-CSF,
PREF-1, RAGE,
GLUT-2, LDLR,
pAMPK, pAKT,
pGSK-3β,

TC, TG, LDL-C OA-Xs 60 mg/kg·d, 4 wk
[67]

Hepatic IRI (mice) HO-1/Sesn2
signaling pathway

PI3K, HO-1, pAKT sAST, sALT OA 30 mg/kg·d, 7 d
[68]

Hepatic IRI (rat) Protects agaist
hepatic IRI

pPI3K, pAKT,
pGSK-3β

SALT, IL-1β OA 100 mg/kg·d, 7 d
before IRI

[69]

Hepatic IRI, (mice) Alleviate hepatic IRI BCL-2 apoptosis and
autophagy, ALT,
AST, CASP-3, CAPS-
9, BAX, Beclin 1,
LC3, TNF-α, HMG-
B1, TLR-4, pJNK

OA 30-60 mg/kg, 7 d
[70]

OA: Oleanolic acid; OA-Xs: Natural derivatives of oleanolic acid; IRI: Ischemia-reperfusion injury; NRF-2: Nuclear factor erythroid-2-related factor 2; ALT:
Alanine aminotransferase; AST: Aspartate aminotransferase; IL: Interleukin; TNF-α: Tumor necrosis factor-α; NAFLD: Non-alcoholic fatty liver disease;
HFD: High-fat diet; LDH: Lactic dehydrogenase; MRPs: Multidrug resistance-associated proteins; JNK: cJUN NH2-terminal kinase.

stages  in  bone marrow macrophages  (BMMs),  suggesting as  a  prophylactic  and
therapeutic agent for bone loss in postmenopausal women[111,112]. Mechanical studies
revealed that the key parameters inhibited by OA were the c-FOS and nuclear factor
of activated T-cells c1 (NFAT-c1), both in vitro RANKL-pretreated BMMs and in vivo
in  OPG-knockout  mice[111].  In  fact,  reproducible  results  demonstrated  that  OA
inhibited the functions of  the osteoclastic  genes,  including tartrate-resistant acid
phosphatase,  cathepsin  K,  and  matrix  metalloproteinase  9,  in  the  late  stage  of
osteoclastogenesis[111,113]. Interestingly, the inhibition of RANKL- induced osteoclastic
differentiation in BMMs with the OA acetate (OAA) derived from Vigna angularis
without cytotoxicity was also reported[114]. RANKL-induced osteoclastogenesis was
blocked by OAA through PLCγ2-Ca2+-NFAT-c1 signalling[113,114]. The findings suggest
that  OA  is  a  potential  drug  candidate  for  the  management  of  postmenopausal
osteoporosis and bone loss[107-116].

Anti-cancer effects
Cancer  is  surpassing  cardiovascular  diseases  as  the  leading  cause  of  death
worldwide[117]. Thus, the search for the compounds that selectively kill cancer cells
with a mild or no influence on healthy cells is still in progress. In this sense, OA and
its derivatives have been observed to exert many anti-cancer actions on various types
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Figure 5

Figure 5  Hepatoprotective effects of oleanolic acid and its natural and synthetic derivatives. OA: Oleanolic acid; IRI: Ischemia-reperfusion injury; NAFLD: Non-
alcoholic fatty liver disease; HCC: Hepatocellular carcinoma; HBV: Hepatitis B virus.

of tumours. Their molecular mechanisms of these substances are diverse, such as
inhibiting the proliferation of  cancer  cells,  preventing cancer  cell  migration and
invasion, restraining angiogenesis, and inducing autophagy and apoptosis. Although
a very large number of in vitro studies have been carried out showing the inhibition of
carcinogenesis, only a few in vivo studies have confirmed that OA and its derivatives
are promising anti-cancer agents (Table 7)[118-125]. Researchers introduced various R
groups, particularly at the C3 and C28 positions, to increase the anti-cancer potential of
OA[11,126,127]. Angiogenesis is one of the hallmarks of cancer and is targeted by OA[128-130].
Angiogenesis  is  an  essential  means  of  cancer  progression,  and  OA  treatment
significantly reduced the intratumoural microvessel density (MVD) in CRC mice and
inhibited tumour growth[131-133].  The anti-metastatic impact of novel synthetic OA
derivatives  might  have  resulted  from  the  downregulation  of  the  VEGF/
pFAK/pJNK/pERK/NF-κB cascade[132]. Therefore, OA inhibited the proliferation of
highly invasive cells and acted as a chemopreventive agent in cancer[8,11,118-126,134-137].

Other effects
Although studies have mainly focused on anti-inflammatory, neuroprotective, anti-
osteoporosis, anti-diabetes effects, OA and its derivatives are reported to possess
broad biological activities such as antibacterial, antioxidant, anti-hyperlipidaemic,
nephroprotective, cardiovascular protection, anti-infertility, and anti-obesity (Table
8)[29,116,138-178].

Since OA plays an important role in defending against pathogens in plants, it is
expected to possess antimicrobial,  antiviral,  antifungal  and antiparasitic  activity
against  a  wide  range  of  pathogens.  The  antibacterial  behaviour  of  OA  and  its
derivatives  was  tested  in  specific  bacterial  strains [179].  Further  mechanistic
investigations suggested that the antiparasitic effect of OA might have resulted from
its intearction with the sterol 14-α-demethylase (CYP51),  a therapeutic target for
leishmaniasis, which impairs the oxidant capacity of the parasite[138,139]. Importantly,
OA also has the ability to improve parasitemia and anaemia through infection as an
effective antimalarian agent[140].  The use of  an OA-pectin patch removed malaria
parasites and improved abnormal HCT values. In comparison, the analysis proved
that the levels of IL-6, IL-10 and TNF-a were decreased by day 12. The results indicate
that the OA-pectin patch released therapeutic OA doses to alleviate the cytokine
release and to ameliorate anaemia caused by malaria. Transdermally administered
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Figure 6

Figure 6  Some of the molecular mechanisms for the anti-diabetic impacts of oleanolic acid and its derivatives. OA: Oleanolic acid; PPAR: Peroxisome
proliferator-activated receptor; Akt: Serine/threonine kinase; AMPK: AMP-activated protein kinase.

OA can thus be a potent therapeutic agent for malaria and anaemia treatment[140]. OA
and its derivatives are reported to exhibit pathogenic antiviral activities against HIV,
hepatitis,  porcine epidemic diarrhoea virus and influenza virus[141,180-183].  OA was
shown to be a strong regulator of influenza haemagglutinin (HA). The conjugation of
glucose with OA revealed that the HA inhibitory activity of OA was significantly
increased with no obvious cytotoxic impact on the MDCK cells[180]. Similarly, another
OA derivative exhibited anti- HBsAg, anti-HBeAg, and anti-hepatitis B virus antigens
secretion activity in HepG2.2.15 cells with inhibitory effect on the viral replication rate
superior to that of lamivudine[141,182].

As oxidative stress under different chronic conditions is considered to be involved
in the pathogenic processes, the antioxidant impacts of OA have been investigated.
For instance, a decreased intracellular oxidative stress in acute myocardial infarction
(MI) was partly due to the protective function of OA[184]. OA has been reported to be a
potential therapeutic for oxidative stress by inhibiting NO and activating NRF2-ARE
signalling pathway[185]. It has also been found that OA exerts an anti-allergic effect in
allergic diseases such as allergic conjunctivitis and asthma, that is modulated through
the GATA-3 and RORγt pathways and through T-cell proliferation[142,143].  OA can,
therefore, provide a modern prophylactic approach for allergic diseases and potential
treatments.

Since  cardiovascular  diseases  are  among the  leading  causes  of  mortality  and
morbidity  worldwide,  the  prophylactic  and  therapeutic  effects  of  OA  on
cardiovascular  disease have been observed.  OA and OA derivative therapy also
mitigated the high-fat diet mediated atherosclerosis in quail and ox-LDL provoked
cytotoxicity  in  HUVECs  by  modulating  LOX-1,  through  a  decrease  in  NADPH
oxidase and an increase in HO-1 and NRF2 expression[144,145,186]. A detailed study used
three  different  animal  models,  including  rabbits  that  mimicked  atherosclerosis,
C57BL/6J mice and low-density lipoprotein receptor knockout (LDLR−/−) mice, were
applied to study the effect of OA on atherosclerosis[146]. All the models revealed that
OA retarded the development of atherosclerosis by influencing serum lipid levels,
lipid accumulation in the liver and intimal thickening of the artery, which involve
genes in lipid metabolism: PPAR-γ, AdipoR1, and AdipoR2. Similarly, the protective
effects  of  OA  and  its  derivatives  on  diabetes-induced  cardiomyopathy  and
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Table 5 In vivo antidiabetic effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives (2014-
2020)

Disease model/
physiology Effect

Mechanism
Compound Dose Ref.

↑↑↑ ↓↓↓

STZ-induced
diabetic rat

STZ ind diabetes RBC, SOT, GPX sGLU, HBA-1c, EPO,
MDA

OA 80 mg/kg, twice, 5
wk

[80]

STZ-induced
T2DM rats

Antidiabetic p-AKT pGS, GP OA 80 mg/kg, 14 d
[81]

T2DM mice Glycemic control pFOXO-1, AcFOXO-
1, HAT-1, pHDAC-
1, pAKT, pGSK-3β

sGLU, G6Pase,
HDAC5/4, pAMPK,
pSIRT-1, PEPCK,
SCD-1,SREBP-1c

OA 100 mg/kg·d, 4 wk
[84]

STZ-induced
T2DM rats

Antidiabetic - sGLU, sGhrelin, OA-Xn 80 mg/kg·2 d, 5 wk
[87]

Aroclor 1254-
treated mice

OA-stimulated
HNF-1b-
endogenous
antioxidant activity,
protects against
adioposity

SOD1, SOD2, GC-
LC, GC-LM, GPX-1
CAT, HNF-1b,
GLUT-4

ROS, oxidant
products, NOX-4,
PPAR-γ,
Adionopectin, AGP-
AT2, αP2, CD36

OA 50 mg/kg, 1 h before
Aroclor 1254
treatment every 3 d
for 10 wk

[88]

STZ-induced and
db/db diabetic
mouse models;
NCI-H716

Antidiabetic and
hepatoprotective
effects

GLP-1, pPKA, sINS sGSP, sALT, sAST,
sGLU, sFBG, sTG,
sHDL-C

OA, OA-Xs 100 mg/kg·d
[89]

STZ-nicotinamide-
induced type 2
diabetes in mice;
C2C12 cells

Anti-diabetic pAMPK, GLUT4,
CPT1

sGLU, sLDL-C,
sFFA, ACC, pPKB

OA-Xn (CHS) 25-200 mg/kg·d, 14
d; 0.1-10 µg/mL

[90]

STZ-nicotinamide-
induced type 2
diabetes in mice

Against diabetes
induced
hiperlipidemia and
hypergylcemis

HK, G6Pase, GK,
GSH, sHDL-C, SOD,
CAT, GPX

SALP, sAST, sALT,
sTC, sTG, LDL, IL-6,
TNF-α

OA-Xn 20 mg/kg
[91]

HF diet-induced
metabolic
dysfunctions (rats)

Strategic
intervention for the
long-term
prevention of
metabolic diseases
such as T2D and
obesity via AMP-
Activated Protein
Kinase patway

AMPK, GLUT-4,
CPT-1, AdipoR1,
AdipoR2,

TNF-α, IL-6, MCP-1,
VEGF

OA 60 mg/kg, 14 d
[92]

HF diet-induced
metabolic
dysfunctions (rats)

Potentially protects
against the
development of
fructose-induced
metabolic
dysfunction

GLUT-4, GLUT-5
NRF-1, CPT-1,
ALDO-B, FFAs

ACC-1, FAS OA 60 mg/kg, 7 d
[93]

HFF diet-induced
metabolic
dysfunctions (rats)

Protected against the
development of
health outcomes
associated with
fructose

terminal body mass,
visceral fat mass,
epididymal fat

sINS OA 60 mg/kg, 7 d
[94]

HFF diet-induced
metabolic
dysfunctions

Nano-OA was able
to attenuate HFF
diet-induced lipid
accumulation in the
liver

CAT, SOD MDA, NO Nano-OA 25 mg/kg·2 d, wk
[95]

T2DM in
prediabetic patients
(Human)

Prevention of type 2
diabetes in
prediabetic patients

- sGLU, T2DM
incidence

OA 30 mg/kg
[96]

α-glucosidase
inhibition

α-glucosidase
inhibition, decreased
blood glucose

- α-glucosidase OA-Xs 0.330.98 µmol/L
[97]

db/dc T2DM mice Anti-diabetic GS, pPI3K, pAKT,
pAMPK, pACC

sLDL, sTG, sTC, GP,
PGC1a, PEPCK1,
GLUT-2, G6Pase,
pmTOR, PCREB,
sGLU, sINS

OA + Metmorfin 250 mg/kg·d, 28 d
[98]
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Diet-induced pre-
diabetic rat model

Prevent the onset of
CVDs during pre-
diabetes stage

- TGs, LDL-C, IL-6,
TNF-α, CRP, MAP,
hearts weights

OA 80 mg/kg·3 d, 12 wk
[99]

Diet-induced pre-
diabetic rat model

Anti-diabetic - Body weights,
sGhrelin, HBA-1c,
sGLU, sINS, muscle
Glycogen

OA 80 mg/kg·3 d, 12 wk
[100]

MetS Protects against
fructose-induced
oxidative damage;
against MetS

GPX, SOD, CAT,
GSH

OA 60 mg/kg
[101]

OA: Oleanolic acid; OA-Xn: Natural derivatives of oleanolic acid; OA-Xs: Synthetic derivatives of oleanolic acid; STZ: Streptozotocin; HAT-1: Histone
acetyltransferase 1; FFA: Free fatty acid; CVDs: Cardiovascular diseases; PGC-1b: Peroxisome proliferator-activated receptor-g coactivator-1b; NRF-1:
Nuclear factor erythroid-2-related factor 1; HNF: Hepatocyte nuclear factor; ALT: Alanine aminotransferase; AST: Aspartate aminotransferase; IL:
Interleukin; TNF-α: Tumor necrosis factor-α; PPAR: Peroxisome proliferator-activated receptor; T2DM: Type 2 diabetes; MetS: metabolic syndrome; GSH:
Glutathione.

cardiomyocytes  injuries  were  reported  to  involve  anti-oxidative  and  anti-
inflammatory  mechanisms,  PPARγ,  and  NLRP3  inflammasome  signalling
pathways[147,148,187,188].  Furthermore,  the  antihypertensive  effects  of  OA  synthetic
derivatives  are  attributed  to  a  decrease  in  vascular  resistance  with  no  negative
inotropic effect  on the heart[149].  OA could ameliorate hyperlipidaemia in animal
models by modulating CACNA1B, FCN, STEAP3, AMPH, and NR6A expression
levels[150].  In addition, OA significantly decreased the hepatic expression levels of
peroxisome proliferator-activated receptor-g coactivator-1b and the serum levels of
triglycerides, total cholesterol, and LDL cholesterol[151]. Additionally, a semisynthetic
OA derivative at C3 position was designed and synthesised to demonstrate farnesoid
X receptor modulatory activity in regulating HDL and LDL levels and was found to
be more effective[189].

OA  was  demonstrated  to  increase  the  fertility  of  mice  involving  reversible
contraception in male mice by increasing the permeability of the germinal epithelium
via reconstitution of the paracellular junctions between adjacent Sertoli cells[152]. In
addition, OA efficiently restored testicular function by alleviating germ cell DNA
damage and apoptosis through the inactivation of the NF-κB, P53 and P38 cascades
and differentiating mouse ESCs into germ cells[153,154].

The  nephroprotective  activity  of  OA  against  oxidative  stress-induced  renal
inflammation,  renal  fibrosis,  drug-induced  nephropathy  and renal  injuries  was
revealed with in vivo studies[155,156,190,191]. The beneficial effects of OA on renal fibrosis
include reducing renal oxidative stress, increasing the nuclear translocation of NRF2,
and mediating EMT in renal tubular epithelium[155,190].  Similarly, the activation of
NRF2/HO-1 signalling with CDDO-Me treatment in chronic cyclosporine-induced
kidney injury and renal ischemia-reperfusion injury revealed beneficial effects[191,157].
Furthermore, an acetylate OA derivative reduced RORγT development and prevented
SLE pathogenesis in lupus nephritis caused by pristane, suggesting the possible use of
OA as an SLE therapy[158]. These results support the nephroprotective, antibacterial,
antioxidant, anti-hyperlipidaemic, cardiovascular protection, anti-infertility, and anti-
obesity effects of OA and its derivatives[138-191].

Adverse effects
Increasingly, the adverse effects of the application of herbs used as an ACT are of
global concern. In this sense, the paradoxical toxic effects of OA at higher doses and
during long-term use have been suggested, as evidenced by liver injury characterised
by cholestasis[5]. Not only OA but also other OA derivatives, in particular CDDO-Im
and CDDO-Me, exhibit  this paradoxical hepatotoxicity.  Because of these adverse
effects, phase-3 clinical trials with CDDO-Me were terminated[192]. Although the toxic
potential  of  OA  and  OA-type  triterpenoids  was  first  observed  in  primary  rat
hepatocyte cultures, the major concern comes from in vivo studies[192-194]. Although OA
is relatively non-toxic, it was shown that repeated oral OA administration produced
cholestatic liver injuries in mice, illustrating the hepatotoxic potential of a presumed
hepatoprotective compound[1,195,196].

In addition, interactions with phase I and phase II drug-metabolising enzymes such
as cytochrome P450 (CYP450) and UDP-glucuronosyl- transferases (UGTs) or with the
transcriptional inducers of these enzymes might cause adverse reactions. It has been
demonstrated  that  OA  alters  pregnane  X  receptor  and  constitutive  androstane
receptor promoter activities, which regulate the catalytic activities of CYP3A4 and
CYP2B6[197]. Additionally, the week inhibition of CYP3A4, UGT1A3 and UGT1A4 and
solute  carrier  transporters  activities  were  reported[198-200].  Therefore,  information
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Table 6 In vivo anti-osteoporotic and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives (2014-2020)

Disease model/
physiology Effect

Mechanism
Compound Dose Ref.

↑↑↑ ↓↓↓

OVX-mice Increased bone
mineral density

1,25(OH)2D3, renal
CYP27B1

Urinary Ca
excretion, CYP24A1

OA 50 or 100 mg/kg·d, 6
wk

[107]

OVX-mice Better bone density 1,25(OH)2D3 Decreased urinary
excreation of Ca

OA 0.67 g/kg in diet, 6
wk

[108]

Glucocorticoid-
induced
osteoporosis (rats)

Bone protection Bone density of
lumbar and femur
were reversed,
osteocalcin, sCa2+

- OA 9 mg/kg, 14 d
[110]

Bone marrow
macrophage (mice)

Inhibit
osteoclastogen-esis

- c-FOS, NFAT-c1,
TRAP, CTSK,MMP-9

OA 10 mg/kg·2 d, 12wk
[111]

OVX- mice Inhibit
osteoclastogen-esis

- NFAT-c1, c-FOS,
MMP-9, CTSK,
TRAP, CAR-2

OA 10 mg/kg·2 d,3 mo
[113]

Cartilage
degeneration in
osteoarthritis (rats)

Anti-cartilage
damage

Collagen II MMP-3, MMP-1,
MMP-13, ADAMTS-
4, -5,

OA 1-100 µmol/L, 50-
100 µmol/L/rat
single

[115]

Experimental
periodontitis (mice)

Bone formation and
remodeling through
proper modulation
of osteoblast and
osteoclast

BMP-2,6,7; AXIN-2,
β-CAT, LEFT,
TWIST

IL-6, OA-Xs 2µL (50 ng/µL)/d,
1-3 wk

[116]

OVX: Ovariectomised; OA: Oleanolic acid; TRAP: Tartrate-resistant acid phosphatase; CTSK: Cathepsin K; MMP: Matrix metalloproteinase; CAR:
Constitutive androstane receptor; IL: Interleukin.

elucidating  the  drug-drug/drug-herb  interactions  associated  with  OA  and  its
derivatives is essential to prevent these adverse reactions.

CONCLUSION
This review has presented multiple confirmations of the attenuation and amelioration
of various diseases by applying either OA derived from plants or its synthetic and
natural  derivatives  from  in  vivo  investigations.  OA  and  its  derivatives  have
demonstrated  diverse  molecular  mechanisms  of  action.  However,  it  should  be
emphasised that there are no confirmations of that OA itself is a candidate for clinical
trials since significant efforts have been made to synthesise OA derivatives with less
toxic, more potent and bioavailable forms. Nevertheless, there is a reasonable amount
of literature, as this literature fully explored in this review. OA and its derivatives
have  crucial  prophylactic  and  therapeutic  potential  as  an  alternative  and
complementary  therapies  for  diseases  including  ulcerative  colitis,  diabetes,
cardiovascular diseases.
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Table 7 In vivo anticancer effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives (2014-
2020)

Disease model/
physiology Effect

Mechanism Compound Dose/IC50 /Ki. Ref.

↑↑↑ ↓↓↓

Liver, lung and
prostate cancer

Inhibits proliferation
and induces
apoptosis

cPARP-1, pAKT, NF-κB,
pmTOR

OA-Xs 7.5 mg/kg·d; d
[118]

PC3 prostate Inhibits proliferation
and induces
apoptosis

HIF-1a, NAC-1 SENP-1 OA-Xn 10 mg/kg·d; 20d
[119]

Colorectal cancer
mouse xenograft
model

Induce apoptosis BAX, P21, P53 BCL-2, CYC-D1,
CDK-4, AKT p70S6K
and MAPK

OA 16 mg/kg·d, 16d
[120]

Gastric cancer Induce autophagy pAMPK pmTOR, pPI3K,
AKT, pERK1/2, P38,
pmTOR

OA 100 mg/kg·d; 7d
[121]

Kras G12D/+ ;Pdx-
1-Cre (KC)
pancreactic cancer

Inhibits infiltration IL-6, CCL-2, VEGF,
G-CSF

CDDO-imidazolide 25 or 100 mg/kg
diet, 4 or 8 wk

[122]

Lung carcinoma Inhibits proliferation miR122, HNF-1a,
HNF-3b, HNF-4a,
HNF-6

CCNG-1, MEF-2D OA 40, 120 mg/kg·d; 4
wk

[123]

Ovarian and
endometrial cancer

Inhibition of
profiferation

PARP, BCL-2,
CASP-8,-3, -7.

OA-Xs 10-40 mg/kg·d; 21 d
[124]

Prostate cancer Cell cycle arrest AKT/mTOR, pAKT,
pmTOR

OA-Xs 8.5-17 mg/kg·d; 21 d
[125]

NF-κB: Nuclear factor-κB; OA: Oleanolic acid; OA-Xn: Natural derivatives of oleanolic acid; OA-Xs: Synthetic derivatives of oleanolic acid; CDDO: 2-
cyano-3,12-dioxooleana-1,9(11)-dien-28-oic acid; HNF: Hepatocyte nuclear factor; ERK: Extracellular-signal-regulated kinase.

Table 8 In vivo miscellaneous effects and related mechanisms of action of oleanolic acid and its natural and synthetic derivatives (2014-
2020)

Disease model/
physiology Effect

Mechanism
Compound Dose/IC50 /Ki. Ref.

↑↑↑ ↓↓↓

Atherosclerosis Anti-atherosclerotic Ang1-7, ANG, NO,
eNOS

IL-1β, TNF-α, and
IL-6

OA 0-160 µmol/L
[29]

Immune
suppression

ZFP-459, FMO-2 OA-Xs
[116]

T. cruzi, L.
braziliensis, L.
infantum

Anti-protozoal - OA, OA-X 3.3-89 µmol/L
[138]

Leishmania species Anti-parasitic CYP51, ergosterol
synthesis

OA 30.4-68.7 µmol/L
[139]

P. berghei malaria Anti-malaria TNF-α, IL-6, IL-10,
hepcidin

OA 34 mg/kg, 5 d
[140]

HBV Anti-viral HBS-Ag, HBE-Ag,
HBV DNA
replication

OA-Xs 8.6-38.1
[141]

Allergic
conjunctivitis

Anti-allergic and
anti-inflammatory

IL-10 Allergen-specific
IgGs, sPLA2 -IIA,
Th2, RWP-T-Cell dif,
EOL-1 , IL-33, MCP-
1

OA 50 mg/kg·d, 5 d
after sens

[142]

Asthma Anti-asthmatic tBET, FOX-P3 IL-5, IL-13, IL-17,
OVA-IgE, GATA-3,
RORγt,

OA 2 or 20 mg/kg·2 d, 5
wk

[143]

Atherosclerosis Anti-artherosclerotic NRF-2, HO-1, SOX,
NO, CAT, GPX,
GSH, HDL

LOX, NADPH Ox,
LDL, TC, TG,
pGP91, pP67, pP7

OA 15-50 mg/kg·d, 3
wk; 5-20 µmol/L

[144]

Vascular injury Prevent endothelial
oxLDL effect

CASP, NO, pAKT,
peNOS,

OA-Xn 5 and 100 µmol/L
[145]
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Low-density
lipoprotein
receptor knockout
(LDLR −/− ) mice

Review
Atherosclerotic

AdipoR1, PPAR-γ AdipoR2, TC, LDL-
C

OA 25 mg/kg·d, 5 wk
[146]

Myocardial injury Cardioprotection,
hyperglycemia-
induced myocardial
injury

CASP-3/9, BAX,
pERK1/2, HOMER-
1α, ERK1/2, SIRT1

BCL-2, ROS OA-Xn 12.5-50 µmol/L
[147]

Carotid artery
injury

Proteccts diabetes
induced artery
injury

body weights, serum
NO

endothelin 1, IL-1β,
IL-6 , IL-18, NLRP-3,
CASP-1

OA 100 mg/kg·d, 6 wk
[148]

Vascular injury Hypotensive physiological data physiological data OA, OA-Xn 0.1-100 µmol/L
[149]

Hiperlipidemia Anti-hiperlipidemic 17 genes
(microarray),
CACNA-1B

TC, TG, HDLC, 4
genes

OA 3 tablets/d , 4 wk
[150]

Hiperlipidemia Anti-hiperlipidemic
likely via regulation
of the miR-98-
5p/PGC-1b axi

TC, TG, LDL, PGC-
1b

OA 20 mg/kg, 4 wk
[151]

Fertility Recovered fertility increasing the
permeability of the
germinal epithelium

OA 30 mg/kg
[152]

Fertility Infertility treatment OCT-4, GDF-9,
STRA-8, MVH, ZP-2,
ZP-3, ITG-α6, TP-2,

SCP-3, ZP-1, ITG-β1 OA 3 µg/mL
[153]

Fertility/Repro-
ductive function

Rejuvenates
testicular function

BCL-2 pNF-κB, IL-1β ,
COX-2 TNF-α,
H2AX, pP53, BAX,
P38

OA 5-25 mg/kg·d, 24 wk
[154]

Renal fibrosis Attenuates renal
fibrosis

NRF-2, HO, NQO-1,
BAX, HSP-70

BCL-2, OA N.R.
[155]

Nephropathy Prevent diabetic
nephropathy

sINS, SOD,
adiponectin

TG, BUN, Cr, TGF-β,
SMAD1/2

OA 100 mg/kg·d, 20 wk
[156]

Renal IRI anti-Renal IRI SOD, GPX, TT,
eNOS, NRF-2,
PPAR-γ, DDAHs

Cre, NGAL, TOS,
NO, ADMA, NF-κB,
ET-1

OA-Xs 20 mg/kg, 5 h before
IR

[157]

Nephritis
Lupus/SLE

Inhibition of Th17
dierentiation

Th17, IL-17A, serum
dsDNA, ROR-γt

OA-Xs 0-10 µmol/L, 50
mg/kg

[158]

MRSA Anti-microbial Microbe
concentration

OA-Xs 10-30 µg/mL
[159]

Circadian clock Mediates circadian
clock

CLOCK, ELO-VL3,
TUBB-2A CLDN-1,
BMA-1

AMY-2A5, USP-2,
PER-3,THRSP

OA 0.01% diet
[160]

Cisplatin induced
nephrotoxicity

Prevent
neprotoxicity

MAP-1A/AB, LC1 CASP-3/9, PARP
cleavage, ATG-5,
ERK1/2, STAT3,
NF-κB

OA 10-40 mg/kg
[161]

Dermatitis/TPA-
treated mouse ears

Inhibit dermatitis MPO, COX-2, iNOS,
TNF-a, IL-1β, pP65

OA-Xn 2, 5 or 10 µmol/L
[162]

Diabetes induced
cardiomyopathy

Prevent diabetic
induced
cardiomyopathy via
Nrf2

HO-1, SOD, NRF-2, Glycogen, MDA, p-
GS

OA 80 mg/kg·2 d, 14 d
[163]

Diabetic mesangial
cell injury

Diabetic renal
fibrosis

PI3K/AKT/mTOR Autophagy, PTEN, OA 10 µmol/L
[164]

Gut atrophy
/piglet model

Prevent gut atrophy TGR-5, FXR OA 50 mg/kg·d, 14 d
[165]

Immune
suppression

Immune
suppressive, anti-RA

IL-10 collagen specific
sIgG, CD4+ INF-γ,
IL-17α, IL-2-
/4/6/1β, TNF-α,
GM-CSF, MCP-1 ,
MMP-1/3

OA-Xs 1-10 mg/kg 18 times
between 28 and 53 d
after the initial
immunisation

[166]

Immune
suppression/gluco
corticoid resistance

Protecting DEX
induced GC
impairment

Apoptosis, GR
binding

GR-α OA+I 100 mg/kd·d, 21 d
[167]

Longevity DAF-16, SOD-3,
HSP-16.2 CTL-1

OA 0-600 µmol/L·2 d
[168]

Metal (MeHg)
toxicity

Mitigate low-dose
MeHg toxicity.

accumulation of
metals in organs

OA-Xs 40 µg/kg
[169]
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Muscle Atrophy Reduces denervation
induced muscle
atrophy

CNTF, JNK-2,
STAT3

OA-Xs 0.2-1 µmol/L
[170]

Muscle atrophy Anti-muscle atrophy mTORC-1/P70, S6K,
PAX-7, MYO-D,
Myogenin

FOXO-1, MURF-1,
Atrogi-n1

OA-Xs 1 µmol/L,  1-10
mg/kg

[171]

Myocarditis -
myocardial İnjury

EA myocarditis IL-10, IL-33 HW/BW, BPN, IK-
17, IL-6, TNF-α ,
Galectin

OA 50 mg/kg·d, 21 d or
65 d

[172]

Obesity Anti-obesity octanoylated ghrelin
production, PC-1/3,
PC-2

OA 20-40 mg/kg, 7 d
[173]

Obesity Improves gustatory
perception of lipids
and exerts protective
effects in obesity

CD36 blood insulin and
glucose, hepat,c TG,
IL-6

OA 0.005% (w/v) for 16
wk

[174]

Renal injury Prevent
nephropathy

nNRF-2/tNRF-2,
HO-1, KEAP-1, BAX

urinary 8-OHdG
and 8-iso-PGF-2 α,
BCL-2

OA N.R.
[175]

Renal IRI Anti-Renal IRI;
antioxidant, anti-
inflammatory, and
anti-apoptotic
activities

SOD, GPX, GSH,
CAT, IL-10, NRF-2,
GGLc

BUN, Cr, KIM-1,
LDH, MDA, IL-6,
INF-γ, MPO,

OA 12.5-50 mg/kg·d, 15
d

[176]

Sepsis Lung damage,
experimental sepsis

SOD, GPX, IL-6, IL-
10, KC

iNOS, NRF-2, OA 10 mg/kg
[177]

Vascular injury Prevent oxidative
stress induced cell
injury by with
AKT/eNOS
signaling pathway

NO, SOD, CAT,
CASP-3, FAS, FASL,
BCL-2

MDA, BAX OA
[178]

IL: Interleukin; TNF-α: Tumor necrosis factor-α; OA: Oleanolic acid; OA-Xn: Natural derivatives of oleanolic acid; OA-Xs: Synthetic derivatives of oleanolic
acid; LDH: Lactic dehydrogenase; ERK: Extracellular-signal-regulated kinase; IRI: Ischemia-reperfusion injury; NRF-2: Nuclear factor erythroid-2-related
factor 2; JNK: cJUN NH2-terminal kinase; FXR: Farnesoid X receptor; MMP: Matrix metalloproteinase; PGC-1b: Peroxisome proliferator-activated receptor-
g coactivator-1b; PPAR: Peroxisome proliferator-activated receptor; NF-κB: Nuclear factor-κB; STAT3: Signal transducer and activator of transcription 3;
GSH: Glutathione.

Figure 7

Figure 7  Anti-osteoporotic and bone protective effects of oleanolic acid and its derivatives, illustrating the molecular mechanisms. OA: Oleanolic acid;
PPAR: Peroxisome proliferator-activated receptor; CTSK: Cathepsin K; JNK: cJUN NH2-terminal kinase; MMP: Matrix metalloproteinase; NFAT-c1: Nuclear factor of
activated T-cells c1; TRAP: Tartrate-resistant acid phosphatase.
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