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Abstract: In this paper, we consider existence criteria of three positive solutions of three-point boundary value problems
for p -Laplacian dynamic equations on time scales. To show our main results, we apply the well-known Leggett–Williams
fixed point theorem. Moreover, we present some results for the existence of single and multiple positive solutions for
boundary value problems on time scales, by applying fixed point theorems in cones. The conditions we used in the
paper are different from those in [Dogan A. On the existence of positive solutions for the one-dimensional p -Laplacian
boundary value problems on time scales. Dynam Syst Appl 2015; 24: 295-304].
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1. Introduction
The investigation of dynamic equations on time scales goes back to its discoverer Stefan Hilger [19], and it is
a new field of theoretical research in mathematics. In recent years, the boundary value problems (BVPs) for
dynamic equations on time scales have been noticeably studied [1–7, 11–14, 17, 18, 24–30]. The topic is inspired
by the conception that dynamic equations on time scales can establish connections between continuous and
discontinuous mathematics. Additionally, the work of time scales has contributed to many significant practices,
e.g., in the work of insect population models, stock market, heat transfer, wound healing, and prevalent models
[10, 20, 23].

In [2], Anderson studied the existence of one positive solution of the following dynamic equation on time
scales:

u∆∇(t) + a(t)f(u(t)) = 0, t ∈ (0, T )T,

u(0) = 0, αu(η) = u(T ),

where a ∈ Cld(0, T ) is nonnegative, f : [0,∞) → [0,∞) is continuous, η ∈ (0, ρ(T )), and 0 < α < T/η.

He found some results for the existence of one positive solution of the above problem constructing the limits
f0 = limu→0+

f(u)
u and f∞ = limu→∞

f(u)
u .

In [4], Anderson et al. studied the following BVP on time scales

(ϕp(u
∆(t)))∇ + c(t)f(u(t)) = 0, t ∈ (a, b)T,
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u(a)−B0u
∆(ν) = 0, , u∆(b) = 0,

where ν ∈ (a, b)T, f ∈ Cld([0,+∞), [0,+∞)), c ∈ Cld([a, b], [0,+∞)) , and Kmx ≤ B0(x) ≤ KMx for some
positive constants Km,KM . By using a fixed-point theorem of cone expansion and compression of functional
type, they established the existence result for at least one positive solution.

In [13], Dogan investigated the following p -Laplacian BVP on time scales

(ϕp(u
∆(t)))∇ + a(t)f(t, u(t), u∆(t)) = 0, t ∈ [0, T ]T,

u(0)−B0(u
∆(0)) = 0, u∆(T ) = 0,

where ϕp(u) = |u|p−2u, for p > 1. We proved the existence of triple positive solutions for the one-dimensional
p -Laplacian BVP by using the Leggett–Williams fixed-point theorem.The appealing significance in our paper
is that the nonlinear term f is included with first-order derivative precisely.

In [17], by using a double-fixed point theorem due to Avery et al. [8], He studied the existence of at least
two positive solutions for p -Laplacian three-point BVP:

(ϕp(u
∆(t)))∇ + a(t)f(u(t)) = 0, t ∈ [0, T ]T,

satisfying the boundary conditions

u(0)−B0(u
∆(η)) = 0, u∆(T ) = 0,

or
u∆(0) = 0, u(T ) +B1(u

∆(η)) = 0,

where η ∈ (0, ρ(T ))T.

In [29], Sun et al. studied the eigenvalue problem of the one-dimensional p -Laplacian three-point BVP

(ϕp(u
∆(t)))∇ + λh(t)f(u(t)) = 0, t ∈ (0, T )T,

u(0)− βu∆(0) = γu∆(η), u∆(T ) = 0.

They established some adequate assumptions for the nonexistence and existence of at least one or two positive
solutions by using the Krasnosel’skii’s fixed-point theorem in a cone.

In this paper, we study the following BVPs:

(1) We discuss the existence of at least three positive solutions to the following p -Laplacian BVP on time scales

(ϕp(u
∆(t)))∇ + w(t)f(u(t)) = 0, t ∈ [0, T ]T, (1.1)

u(0)− α1u
∆(0) = α2u

∆(ξ), u∆(T ) = 0, (1.2)

where ϕp(u) is p -Laplacian operator, i.e., ϕp(u) = |u|p−2u, for p > 1, with (ϕp)
−1 = ϕq and 1/p+1/q = 1.

For general basic ideas and background about dynamic equations on time scales we refer the reader to
[9, 10, 15].
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(2) We examine the existence of one and many positive solutions to the three-point BVP on time scales

u∆∇(t) + w(t)f(t, u(t)) = 0, t ∈ (0, T )T, (1.3)

u(0)− α1u
∆(0) = α2u

∆(ξ), u∆(T ) = 0, (1.4)

where α1, α2 ≥ 0, ξ ∈ (0, ρ(T )).

Motivated by the work described above, in this paper, we deal with the existence of positive solutions to
BVPs (1.1),(1.2) and (1.3),(1.4). Our purpose in this work is to apply the fixed point theorem in cones. Our
conceptions are analogous to those used in [13], but a little different. By applying Leggett–Williams fixed-point
theorem, we have achieved novel results that are different from the earlier results. To the best of our knowledge,
no one has investigated the existence of positive solutions to BVPs (1.1),(1.2) and (1.3),(1.4).

2. Preliminaries
Definition 2.1 Let E be a real Banach space. A nonempty, closed, convex set P ⊂ E is known as a cone if
it satisfies the two assumptions:

(i) u ∈ P, λ ≥ 0 implies λu ∈ P ;

(ii) u ∈ P, −u ∈ P implies u = 0.

Note that every cone P ⊂ E induces an ordering in E presented by x ≤ y if and only if y − x ∈ P.

Definition 2.2 A map α is said to be a nonnegative continuous concave functional on a cone P of a real
Banach space E provided that α : P → [0,∞) is continuous and

α(tx+ (1− t)y) ≥ tα(x) + (1− t)α(y)

∀x, y ∈ P and t ∈ [0, 1].

Let r1, r2, r3 > 0 be constants. Note that

Pr3 = {u ∈ P : ∥u∥ < r3}, P (α, r1, r2) = {u ∈ P : α(u) ≥ r1, ∥u∥ ≤ r2}.

Finally, we end this section by recalling a preliminary theorem, the Leggett–Williams fixed-point theorem
[22], which we shall use to prove our existence results.

Theorem 2.3 Let F : P r3 → P r3 be a completely continuous map and ψ be a nonnegative continuous concave
functional on P such that ψ(u) ≤ ∥u∥, ∀u ∈ P r3 . Assume that there exist r1, r2, r4, with 0 < r4 < r1 < r2 ≤ r3

such that:

(A1) {u ∈ P (ψ, r1, r2) : ψ(u) > r1} ̸= ∅ and ψ(Fu) > r1 for all u ∈ P (ψ, r1, r2);

(A2) ∥Fu∥ < r4 for all u ∈ P r4 ;

(A3) ψ(Fu) > r1 for all u ∈ P (ψ, r1, r3) with ∥Fu∥ > r2.

Then F has at least three fixed points u1, u2, u3 satisfying

∥u1∥ < r4, r1 < ψ(u2), ∥u3∥ > r4, ψ(u3) < r1.
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3. Existence of positive solutions to BVP (1.1) and (1.2)

We will use the following assumptions in our main results:

(H1) f : R→ (0,+∞) is continuous;

(H2) w : T → (0,+∞) is left dense continuous ( i.e. w ∈ Cld(T, (0,+∞))), and does not vanish identically
on any closed subinterval of [0, T ]T, where Cld(T, (0,+∞)) denotes the set of all left dense continuous
functions from T to (0,+∞), min

t∈[0,T ]T
w(t) = ϕp(m1), max

t∈[0,T ]T
w(t) = ϕp(m2), and m1 < m2 ;

(H3) α1, α2 are nonnegative constants, ξ ∈ (0, ρ(T )).

Let u∆∇(t) ≤ 0, for t ∈ [0, T ]Tk∩Tk
. Then u is concave on [0, T ]T.

Let E = C∆
ld([0, T ]T, R) with the norm

∥u∥ = max
{
∥u∥⋆, ∥u∆∥⋆

}
,

where ∥u∥⋆ = sup
t∈[0,T ]T

|u(t)|, ∥u∆∥⋆ = sup
t∈[0,T ]Tk

|u∆(t)|; clearly E is Banach space. Choose the cone P ⊂ E

defined by

P =
{
u ∈ E : u is nonnegative, increasing and concave on [0, T ]T

}
.

Lemma 3.1 Suppose that (H3) is satisfied. If y ∈ Cld[0, T ]T, then the BVP

(ϕp(u
∆(t)))∇ + y(t) = 0, t ∈ [0, T ]T, (3.1)

u(0)− α1u
∆(0) = α2u

∆(ξ), u∆(T ) = 0, (3.2)

has the unique solution

u(t) =

∫ t

0

ϕq

(∫ T

s

y(τ)∇τ

)
∆s

+α1ϕq

(∫ T

0

y(τ)∇τ

)
+ α2ϕq

(∫ T

ξ

y(τ)∇τ

)
. (3.3)

Proof Integrating (3.1) from t to T and using the second condition of (3.2), one gets

u∆(t) = ϕq

(∫ T

t

y(τ)∇τ

)
. (3.4)

Integrating (3.4) from 0 to t, we find

u(t) = u(0) +

∫ t

0

ϕq

(∫ T

s

y(τ)∇τ

)
∆s. (3.5)
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Using the first condition of (3.2), we get

u(0)− α1ϕq

(∫ T

0

y(τ)∇τ

)
= α2ϕq

(∫ T

ξ

y(τ)∇τ

)
.

Hence,

u(0) = α1ϕq

(∫ T

0

y(τ)∇τ

)
+ α2ϕq

(∫ T

ξ

y(τ)∇τ

)
. (3.6)

Substituting (3.6) in (3.5), we find

u(t) =

∫ t

0

ϕq

(∫ T

s

y(τ)∇τ

)
∆s

+α1ϕq

(∫ T

0

y(τ)∇τ

)
+ α2ϕq

(∫ T

ξ

y(τ)∇τ

)
.

2

Lemma 3.2 Let α1, α2 ≥ 0. If y ∈ Cld[0, T ]T and y ≥ 0, then the unique solution u of BVP (3.1) and (3.2)
satisfies

u(t) ≥ 0 for t ∈ [0, T ]T.

Proof In view of Lemma 3.1, one has that

u(0) = α1ϕq

(∫ T

0

y(τ)∇τ

)
+ α2ϕq

(∫ T

ξ

y(τ)∇τ

)
≥ 0,

and

u(T ) =

∫ T

0

ϕq

(∫ T

s

y(τ)∇τ

)
∆s

+α1ϕq

(∫ T

0

y(τ)∇τ

)
+ α2ϕq

(∫ T

ξ

y(τ)∇τ

)
≥ 0.

If t ∈ (0, T )T, we have

u(t) =

∫ t

0

ϕq

(∫ T

s

y(τ)∇τ

)
∆s

+α1ϕq

(∫ T

0

y(τ)∇τ

)
+ α2ϕq

(∫ T

ξ

y(τ)∇τ

)
≥ 0.

Therefore, u(t) ≥ 0, t ∈ [0, T ]T. This completes the proof of the lemma. 2
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It is noted that u(t) is a solution of the problem (1.1) and (1.2) if and only if

u(t) =

∫ t

0

ϕq

(∫ T

s

w(τ)f(u(τ))∇τ

)
∆s

+α1ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)
+ α2ϕq

(∫ T

ξ

w(τ)f(u(τ))∇τ

)
.

Define a completely continuous integral operator A : E → E by

(Au)(t) =

∫ t

0

ϕq

(∫ T

s

w(τ)f(u(τ))∇τ

)
∆s

+α1ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)
+ α2ϕq

(∫ T

ξ

w(τ)f(u(τ))∇τ

)
.

2

Lemma 3.3 A : P → P.

Proof ∀u ∈ P,Au ∈ E and (Au)(t) ≥ 0, ∀t ∈ [0, T ]T. In fact

(Au)∆(t) = ϕq

(∫ T

t

w(τ)f(u(τ))∇τ

)
≥ 0.

Clearly, (Au)∆(t) is a continuous function, (Au)∆(t) ≥ 0, so (Au)(t) is increasing on [0, T ]T.

If t ∈ [0, T ]Tk∩Tk
, then (Au)∆∇(t) ≤ 0, which implies that Au is concave on [0, T ]T. Thus, Au ∈ P,

A : P → P. 2

Let υ ∈ T be fixed such that 0 < ξ < υ < T. Let ψ : P → [0,∞) be the nonnegative continuous concave
functional on P. We define

ψ(u) = min
t∈[ξ,υ]T

u(t), ∀u ∈ P.

For notational convenience, we denote λ1 and λ2 by

λ1 = (T + α1 + α2)ϕq

(∫ T

0

w(τ)∇τ

)
, λ2 = (υ + α1 + α2)ϕq

(∫ ξ

0

w(τ)∇τ

)
.

We are now ready to present growth conditions on f so that BVP (1.1) and (1.2) has at least three positive
solutions.

Theorem 3.4 Suppose that there exist nonnegative numbers r1, r2, r3, and r4 such that 0 < r4 < r1 ≤
m1(υ + α1 + α2)

m2(T + α1 + α2)
r2 < r2 ≤ r3 and assume that f satisfies the four assumptions:

(B1) f(u) < ϕp
(
r4/λ1

)
for u ∈ [0, r4];
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(B2) f(u) ≤ ϕp
(
r3/λ1

)
for u ∈ [0, r3];

(B3) f(u) > ϕp
(
r1/λ2

)
for u ∈ [r1, r2];

(B4) min
u∈[0,r3]

f(u)× ϕp(m2/m1)

∫ ξ

0

w(τ)∇τ ≥ max
u∈[0,r3]

f(u)×
∫ T

0

w(τ)∇τ.

Then BVP (1.1) and (1.2) has at least three positive solutions u1, u2 and u3 satisfying

∥u1∥ < r4, r1 < ψ(u2), ∥u3∥ > r4, ψ(u3) < r1.

Proof Firstly, we prove that if there exists a positive number R such that f(u) ≤ ϕp
(
R/λ1

)
for all 0 ≤ u ≤ R,

then APR ⊂ PR.

In fact, if u ∈ PR, then, according to Lemma 3.3, one has APR ⊂ P. Additionally, if ∀u ∈ PR,

0 ≤ u ≤ R, then one has that

|Au| =

∣∣∣∣∣
∫ t

0

ϕq

(∫ T

s

w(τ)f(u(τ))∇τ

)
∆s

+α1ϕq

(∫ T

s

w(τ)f(u(τ))∇τ

)
+ α2ϕq

(∫ T

ξ

w(τ)f(u(τ))∇τ

)∣∣∣∣∣
≤

∫ T

0

ϕq

(∫ T

s

w(τ)f(u(τ))∇τ

)
∆s+ α1ϕq

(∫ T

s

w(τ)f(u(τ))∇τ

)

+α2ϕq

(∫ T

ξ

w(τ)f(u(τ))∇τ

)

≤
∫ T

0

ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)
∆s+ α1ϕq

(∫ T

0

h(τ)f(u(τ))∇τ

)

+α2ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)

= (T + α1 + α2)ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)

≤ R

λ1
(T + α1 + α2)ϕq

(∫ T

0

w(τ)∇τ

)
= R,
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|(Au)∆| =

∣∣∣∣∣ϕq
(∫ T

t

w(τ)f(u(τ))∇τ

)∣∣∣∣∣
≤ ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)

≤ ϕq

(∫ T

0

w(τ)∇τ

)
R

λ1

=
R

(T + α1 + α2)

≤ R.

Thus, ∥Au∥ ≤ R, which implies that APR ⊂ PR.

Consequently, we have clarified that if (B1) and (B2) are satisfied, then AP r4 ⊂ Pr4 and AP r3 ⊂ P r3 .

Secondly, we show that {u ∈ P (ψ, r1, r2) : ψ(u) > r1} ̸= ∅ and ψ(Au) > r1 for u ∈ P (ψ, r1, r2).

Indeed, set u =
r1 + r2

2
, ∥u∥ =

r1 + r2
2

≤ r2 and ψ(u) > r1. Therefore, {u ∈ P (ψ, r1, r2) : ψ(u) > r1} ̸= ∅. In

addition, ∀u ∈ P (ψ, r1, r2), we get r1 ≤ u(t) ≤ r2, and for t ∈ [0, υ]T; from B3, we have

ψ(Au) = (Au)(υ)

=

∫ υ

0

ϕq

(∫ T

s

w(τ)f(u(τ))∇τ

)
∆s+ α1ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)

+α2ϕq

(∫ T

ξ

w(τ)f(u(τ))∇τ

)

≥
∫ υ

0

ϕq

(∫ ξ

0

w(τ)f(u(τ))∇τ

)
∆s+ α1ϕq

(∫ ξ

0

w(τ)f(u(τ))∇τ

)

+α2ϕq

(∫ ξ

0

w(τ)f(u(τ))∇τ

)

= (υ + α1 + α2)ϕq

(∫ ξ

0

w(τ)f(u(τ))∇τ

)

>
r1
λ2

(υ + α1 + α2)ϕq

(∫ ξ

0

w(τ)∇τ

)
= r1.

Hence, it implies that ψ(Au) > r1 for u ∈ P (ψ, r1, r2).

Lastly, we show that ψ(Au) > r1, for all u ∈ P (ψ, r1, r3) and ∥Au∥ > r2. If u ∈ P (ψ, r1, r3) and
∥Au∥ > r2, then 0 ≤ u(t) ≤ r3, t ∈ [0, T ]T and from condition B4, one has

ϕp

(m2

m1

)∫ ξ

0

w(τ)f(u(τ))∇τ ≥
∫ T

0

w(τ)f(u(τ))∇τ,
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which can be written as

∫ ξ

0

w(τ)f(u(τ))∇τ ≥
∫ T

0
w(τ)f(u(τ))∇τ

ϕp

(
m2

m1

) .

Therefore,

ψ(Au) = (Au)(υ)

=

∫ υ

0

ϕq

(∫ T

s

w(τ)f(u(τ))∇τ

)
∆s+ α1ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)

+α2ϕq

(∫ T

ξ

w(τ)f(u(τ))∇τ

)

≥
∫ υ

0

ϕq

(∫ ξ

0

w(τ)f(u(τ))∇τ

)
∆s+ α1ϕq

(∫ ξ

0

w(τ)f(u(τ))∇τ

)

+α2ϕq

(∫ ξ

0

w(τ)f(u(τ))∇τ

)

= (υ + α1 + α2)ϕq

(∫ ξ

0

w(τ)f(u(τ))∇τ

)

≥ (υ + α1 + α2)ϕq

∫ T

0
w(τ)f(u(τ))∇τ

ϕp

(
m2

m1

)


=
m1(υ + α1 + α2)

m2
ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)

=
m1(υ + α1 + α2)

m2(T + α1 + α2)
(T + α1 + α2)ϕq

(∫ T

0

w(τ)f(u(τ))∇τ

)

≥ m1(υ + α1 + α2)

m2(T + α1 + α2)
∥Au∥

>
m1(υ + α1 + α2)

m2(T + α1 + α2)
r2

≥ r1.

All the conditions of Theorem 2.1 hold. Hence BVP (1.1) and (1.2) has at least three positive solutions
u1, u2, and u3 satisfying

∥u1∥ < r4, r1 < ψ(u2), ∥u3∥ > r4, ψ(u3) < r1.

2

4. Existence of three positive solutions to BVP (1.3) and (1.4)

Throughout the paper, we assume that the following assumptions hold:
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(H1) f : (0, T )× [0,∞) → [0,∞) is continuous;

(H2) w : (0, T ) → [0,∞) is left dense continuous such that w(t0) > 0 for at least one t0 ∈ [ξ, T );

(H3) α1, α2 are nonnegative constants, ξ ∈ (0, ρ(T )).

Lemma 4.1 Let h ∈ Cld[0, T ]T. Then the BVP

u∆∇(t) + h(t) = 0, t ∈ (0, T )T, (4.1)

u(0)− α1u
∆(0) = α2u

∆(ξ), u∆(T ) = 0, (4.2)

has the unique solution

u(t) = −
∫ t

0

(t− τ)h(τ)∇τ + t

∫ T

0

h(τ)∇τ

+(α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ ξ

0

h(τ)∇τ. (4.3)

Proof By (4.1) we get

u(t) = −
∫ t

0

(t− τ)h(τ)∇τ + C1t+ C2.

By simple calculations, we can obtain

u(0) = C2, u∆(0) = C1,

u∆(ξ) = −
∫ ξ

0

h(τ)∇τ + C1, u∆(T ) = −
∫ T

0

h(τ)∇τ + C1.

Combining this with boundary conditions (4.2), we conclude that

C1 =

∫ T

0

h(τ)∇τ,

C2 = α1

∫ T

0

h(τ)∇τ − α2

∫ ξ

0

h(τ)∇τ + α2

∫ T

0

h(τ)∇τ.

Therefore, BVP (4.1) and (4.2) has a unique solution

u(t) = −
∫ t

0

(t− τ)h(τ)∇τ + t

∫ T

0

h(τ)∇τ

+(α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ ξ

0

h(τ)∇τ.

We can easily see that BVP u∆∇(t) = 0, u(0) − α1u
∆(0) = α2u

∆(ξ), u∆(T ) = 0 has only the trivial
solution. As a result, u in (4.3) is the unique solution of BVP (4.1) and (4.2). 2
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Lemma 4.2 Let α1, α2 ≥ 0. If h ∈ Cld[0, T ]T and h ≥ 0, then the unique solution u of BVP (4.1) and (4.2)
satisfies

u(t) ≥ 0 for t ∈ [0, T ]T.

Proof In view of Lemma 4.1, one has that

u(0) = (α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ ξ

0

h(τ)∇τ

≥ (α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ T

0

h(τ)∇τ

= α1

∫ T

0

h(τ)∇τ ≥ 0

and

u(T ) = −
∫ T

0

(T − τ)h(τ)∇τ + T

∫ T

0

h(τ)∇τ

+(α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ ξ

0

h(τ)∇τ

=

∫ T

0

τh(τ)∇τ + (α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ ξ

0

h(τ)∇τ

≥
∫ T

0

τh(τ)∇τ + (α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ T

0

h(τ)∇τ

=

∫ T

0

τh(τ)∇τ + α1

∫ T

0

h(τ)∇τ

=

∫ T

0

(τ + α1)h(τ)∇τ ≥ 0.

If t ∈ (0, T )T , we have

u(t) = −
∫ t

0

(t− τ)h(τ)∇τ + t

∫ T

0

h(τ)∇τ

+(α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ ξ

0

h(τ)∇τ

= −t
∫ t

0

h(τ)∇τ +
∫ t

0

τh(τ)∇τ + t

∫ T

0

h(τ)∇τ

+(α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ ξ

0

h(τ)∇τ

≥ −t
∫ T

0

h(τ)∇τ +
∫ t

0

τh(τ)∇τ + t

∫ T

0

h(τ)∇τ
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+(α1 + α2)

∫ T

0

h(τ)∇τ − α2

∫ T

0

h(τ)∇τ

=

∫ t

0

τh(τ)∇τ + α1

∫ T

0

h(τ)∇τ ≥ 0.

This shows that u(t) ≥ 0 for t ∈ [0, T ]T and completes the proof. 2

BVP (1.3) and (1.4) has a solution u = u(t) if and only if u is a fixed point of the operator equation

Su(t) = −
∫ t

0

(t− τ)w(τ)f(τ, u(τ))∇τ + t

∫ T

0

w(τ)f(τ, u(τ))∇τ

+(α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ − α2

∫ ξ

0

w(τ)f(τ, u(τ))∇τ. (4.4)

Lemma 4.3 Let 0 < ξ < T. If h ∈ Cld[0, T ]T and h ≥ 0, then the unique solution u of BVP (4.1) and (4.2)
satisfies inf

t∈[ξ,T ]T
u(t) ≥ γ∥u∥, where

γ =
ξ

T
, ∥u∥ = sup

t∈[0,T ]T

|u(t)|.

Proof Because 0 ≥ u∆∇(t) , we have that u∆(t) is nonincreasing. Accordingly, for t ∈ [0, T ]T , one can write

u(t)− u(0) =

∫ t

0

u∆(τ)∆τ ≥ tu∆(t),

u(T )− u(t) =

∫ T

t

u∆(τ)∆τ ≤ (T − t)u∆(t).

Solving the above inequalities, we obtain

u(t) ≥ tu(T ) + (T − t)u(0)

T
≥ t

T
u(T ) =

t

T
∥u∥.

Hence, it follows that

inf
t∈[ξ,T ]T

u(t) ≥ ξ

T
∥u∥.

Let B be the Banach space Cld[0, T ] with the sup norm. Describe a cone P in B by

P =
{
u ∈ B : u ≥ 0, inf

t∈[ξ,T ]T
u(t) ≥ γ∥u∥

}
,

where γ = ξ
T . Clearly, P is a cone in B. In addition, from Lemma 4.3, S(P) ⊂ P. We can easily see that

S : P → P is completely continuous. 2

Lemma 4.4 ([16, 21]) Let P be a cone in a Banach space B and D be an bounded open subset of B with
DP = D ∩ P ̸= ∅ and DP ̸= P. Let S : DP → P be a completely continuous map such that u ̸= Su for
u ∈ ∂DP . Let iP(S,DP) denote a fixed point index. Then the following results are satisfied.
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(i) If ∥Su∥ ≤ ∥u∥, u ∈ ∂DP , then iP(S,DP) = 1.

(ii) If there exists e1 ∈ P\{0} such that u ̸= Su+ λ1e1, u ∈ ∂DP , and λ1 > 0, then iP(S,DP) = 0.

(iii) Let U be open in B such that U ⊂ DP . If iP(S,DP) = 1 and iP(S,UP) = 0, then S has a fixed point
in DP\UP . The same result is satisfied if iP(S,DP) = 0 and iP(S,UP) = 1.

Let 0 < r1 < r2, and ψ be a nonnegative continuous concave functional on P. It can be denoted that the
convex sets are Pr1 , P(ψ, r1, r2) by Pr1 = {u ∈ P : ∥u∥ < r1} and P(ψ, r1, r2) = {u ∈ P : r1 ≤ ψ(u), ∥u∥ ≤ r2}.

Define

Ωρ =
{
u ∈ P : min

t∈[ξ,T ]T
u(t) < γρ

}
.

Lemma 4.5 ([21]) The set Ωρ has the following properties:

(a) Ωρ is open relative to P;

(b) Pγρ ⊂ Ωρ ⊂ Pρ;

(c) u ∈ ∂Ωρ if and only if min
t∈[ξ,T ]T

u(t) = γρ;

(d) If u ∈ ∂Ωρ, then γρ ≤ u(t) ≤ ρ for t ∈ [ξ, T ]T.

For convenience, we set
1

L1
= (T + α1 + α2)

∫ T

0

w(τ)∇τ, (4.5)

1

L2
= (ξ + α1 + α2)

∫ T

ξ

w(τ)∇τ. (4.6)

Also, for α ∈ {0+,∞}, we define

fα = lim
u→α

sup
{

max
t∈[0,T ]T

f(t, u)

u

}
,

fα = lim
u→α

inf
{

min
t∈[ξ,T ]T

f(t, u)

u

}
,

fργρ = min
{

min
t∈[ξ,T ]T

f(t, u)

ρ
: γρ ≤ u ≤ ρ

}
,

fρ0 = max
{

max
t∈[0,T ]T

f(t, u)

ρ
: 0 ≤ u ≤ ρ

}
.

Lemma 4.6 Assume that f holds the following assumptions

fρ0 ≤ L1 and u ̸= Su, for u ∈ ∂Pρ, (4.7)

then iP(S,Pρ) = 1.
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Proof If u ∈ ∂Pρ, then by (4.4), (4.7), and (4.5), we get

Su(t) = −
∫ t

0

(t− τ)w(τ)f(τ, u(τ))∇τ + t

∫ T

0

w(τ)f(τ, u(τ))∇τ

+(α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ − α2

∫ ξ

0

w(τ)f(τ, u(τ))∇τ

≤ t

∫ T

0

w(τ)f(τ, u(τ))∇τ + (α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ

≤ T

∫ T

0

w(τ)f(τ, u(τ))∇τ + (α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ

= (T + α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ

≤ L1ρ(T + α1 + α2)

∫ T

0

w(τ)∇τ = ρ = ∥u∥.

This implies that ∥Su∥ ≤ ∥u∥ for u ∈ ∂Pρ. Hence, it follows from condition (i) of Lemma 4.4 that iP(S,Pρ) = 1.
2

Lemma 4.7 Assume that f holds the following assumptions

fργρ ≥ γL2 and u ̸= Su, for u ∈ ∂Ωρ, (4.8)

then iP(S,Ωρ) = 0.

Proof If e1(t) ≡ 1 for t ∈ [0, T ]T; then e1 ∈ ∂P. One asserts that u ̸= Su + λ1e1 for u ∈ ∂Ωρ and λ1 > 0.

If this is not the case, then there exist u0 ∈ ∂Ωρ and λ0 > 0 such that u0 = Su0 + λ0e1. From (4.4), Lemma
4.5 (d), and condition (4.8), we get

Su0(ξ) = −
∫ ξ

0

(ξ − τ)w(τ)f(τ, u0(τ))∇τ + ξ

∫ T

0

w(τ)f(τ, u0(τ))∇τ

+(α1 + α2)

∫ T

0

w(τ)f(τ, u0(τ))∇τ − α2

∫ ξ

0

w(τ)f(τ, u0(τ))∇τ

= −
∫ ξ

0

(ξ − τ)w(τ)f(τ, u0(τ))∇τ + ξ

∫ ξ

0

w(τ)f(τ, u0(τ))∇τ

+ξ

∫ T

ξ

w(τ)f(τ, u0(τ))∇τ + (α1 + α2)

∫ ξ

0

w(τ)f(τ, u0(τ))∇τ

+(α1 + α2)

∫ T

ξ

w(τ)f(τ, u0(τ))∇τ − α2

∫ ξ

0

w(τ)f(τ, u0(τ))∇τ

=

∫ ξ

0

(τ + α1)w(τ)f(τ, u0(τ))∇τ +
∫ T

ξ

(ξ + α1 + α2)w(τ)f(τ, u0(τ))∇τ
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≥ (ξ + α1 + α2)

∫ T

ξ

w(τ)f(τ, u0(τ))∇τ

≥ γρL2(ξ + α1 + α2)

∫ T

ξ

w(τ)∇τ,

namely

Su0(ξ) ≥ γρL2(ξ + α1 + α2)

∫ T

ξ

w(τ)∇τ. (4.9)

In addition, in view of proof of Lemma 7 in [3], one has that

min
t∈[ξ,T ]T

Su0(t) = min{Su0(ξ), Su0(T )}. (4.10)

As a result, by (4.10), (4.9), and (4.6), we get for t ∈ [ξ, T ]T

u0(t) = Su0(t) + λ0e1(t) ≥ min
t∈[ξ,T ]T

Su0(t) + λ0

= min{Su0(ξ), Su0(T )}+ λ0 = Su0(ξ) + λ0

≥ γρL2(ξ + α1 + α2)

∫ T

ξ

w(τ)∇τ + λ0

≥ γρ+ λ0.

Therefore we conclude that γρ ≥ γρ+ λ0, which is a contradiction. Thus, by the condition (ii) of Lemma 4.4,
one has that iP(S,Ωρ) = 0. 2

Theorem 4.8 Suppose that one of the two assumptions is satisfied:

(B1) There exist ρ1, ρ2, ρ3 with 0 < ρ1 < γρ2, ρ2 < ρ3 such that

fρ1

0 ≤ L1 and fρ2
γρ2

≥ γL2 u ̸= Su for u ∈ ∂Ωρ2
, and fρ3

0 ≤ L1.

(B2) There exist ρ1, ρ2, ρ3 with 0 < ρ1 < ρ2 < γρ3 such that

fρ1
γρ1

≥ γL2 and fρ2

0 ≤ L1 u ̸= Su for u ∈ ∂Pρ2
, and fρ3

γρ3
≥ γL2.

Then BVP (1.3) and (1.4) has two positive solutions. In addition, if in (B1) fρ1

0 ≤ L1 is replaced by fρ1

0 < L1,

then BVP (1.3) and (1.4) has a third positive solution u3 ∈ Pρ1.

Proof Suppose that (B1) is satisfied. We verify that either S has a fixed point u1 in ∂Pρ1 or in Ωρ2\Pρ1 .

If u ̸= Su for u ∈ ∂Pρ1 ∪ ∂Pρ3 , in view of Lemmas 4.6 and 4.7, one has that iP(S,Pρ1) = 1, iP(S,Ωρ2) = 0,

and iP(S,Pρ3) = 1. From Lemma 4.5 (b) and ρ1 < γρ2, we get Pρ1 ⊂ Pγρ2 ⊂ Ωρ2 . By the assumption (iii) of
Lemma 4.4, one has that S has a fixed point u1 in Ωρ2\Pρ1 . Correspondingly, S has a fixed point in Pρ3\Ωρ2 .

The proof is analogous when (B2) is satisfied and it is omitted.This completes the proof of the theorem. 2

Note that we can generalize Theorem 4.1 to find several positive solutions and it is omitted.
As consequences of Theorem 4.1, one has the next corollary.
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Corollary 4.9 Suppose that there exists ρ > 0 such that one of the two assumptions is satisfied:

(C1) 0 ≤ f0 < L1, fργρ ≥ γL2, u ̸= Su for u ∈ ∂Ωρ, and 0 < f∞ < L1;

(C2) L2 < f0 ≤ ∞, fρ0 ≤ L1, u ̸= Su for u ∈ ∂Pρ, and L2 < f∞ ≤ ∞.

Then BVP (1.3) and (1.4) has two positive solutions.

Proof We prove that (C1) means (B1). We can easily see that 0 ≤ f0 < L1 means that there exists
ρ1 ∈ (0, γρ) such that fρ1

0 < L1. If m ∈ (f∞, L1), then there exists σ > ρ such that max
t∈[0,T ]T

f(t, u) ≤ mu for

u ∈ [σ,∞) because 0 ≤ f∞ < L1. If

r2 = max
{

max
t∈[0,T ]T

f(t, u) : 0 ≤ u ≤ σ
}
, ρ3 > max

{
ρ,

r2
L1 −m

}
,

one has
max

t∈[0,T ]T
f(t, u) ≤ mu+ r2 ≤ mρ3 + r2 < L1ρ3 for 0 ≤ u ≤ ρ3,

which implies that fρ3

0 < L1 and (B1) is satisfied. By a similar argument, (C2) implies (B2). 2

Theorem 4.10 Suppose that one of the two assumptions is satisfied:

(D1) There exist ρ1, ρ2 > 0 with ρ1 < γρ2 such that fρ1

0 ≤ L1 and fρ2
γρ2

≥ γL2.

(D2) There exist ρ1, ρ2 > 0 with ρ1 < ρ2 such that fρ1
γρ1

≥ γL2 and fρ2

0 ≤ L1.

Then BVP (1.3) and (1.4) has one positive solution.
As consequences of Theorem 4.2, one has the next corollary.

Corollary 4.11 Assume that one of the next conditions is satisfied:

(E1) 0 ≤ f0 < L1 and L2 < f∞ ≤ ∞;

(E2) 0 ≤ f∞ < L1 and L2 < f0 ≤ ∞.

Then BVP (1.3) and (1.4) has a positive solution.
Let ψ : P → [0,∞) be the nonnegative continuous concave functional on P . One interprets

ψ(u) = min
t∈[ξ,T ]T

u(t), u ∈ P.

It can be noted that ψ(u) ≤ ∥u∥, for u ∈ P. If L1, L2 are the same as in (4.5) and (4.6), then one finds the
next result.

Theorem 4.12 Assume that there exist constants r⋆1 and r⋆4 with 0 < r⋆4 < r⋆1 such that the following
assumptions hold:

(F1) f(t, u) < r⋆4L1 for t ∈ [0, T ]T, 0 ≤ u ≤ r⋆4 ;
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(F2) f(t, u) ≥ r⋆1L2 for t ∈ [ξ, T ]T, r⋆1 ≤ u ≤ r⋆1/γ;

(F3) One of the following assumptions is satisfied;

(a) lim
u→∞

max
t∈[0,T ]T

f(t, u)

u
< L1;

(b) There exists a number r⋆3 > r⋆1/γ such that f(t, u) < r⋆3L1 for t ∈ [0, T ]T and 0 ≤ u ≤ r⋆3 .

Then BVP (1.3) and (1.4) has at least three positive solutions.

Proof From the description of operator S and its features, it is sufficient to clarify that the assumptions of
Theorem 2.1 are satisfied.

Let r⋆2 = r⋆1/γ. Firstly, we verify that if (a) is satisfied, then there exists a number k⋆ > r⋆2 such that

S : Pk⋆ → Pk⋆ . If lim
u→∞

max
t∈[0,T ]T

f(t, u)

u
< L1; then there exist σ > 0 and δ < L1 such that if u > σ, then

max
t∈[0,T ]T

f(t, u)/u ≤ δ. It implies f(t, u) ≤ δu for t ∈ [0, T ]T and u > σ. Let λ1 = max
{
f(t, u) : t ∈ [0, T ]T, 0 ≤

u ≤ σ
}
. Then we have

f(t, u) ≤ δu+ λ1, (4.11)

for all t ∈ [0, T ]T, u ≥ 0. We take

k⋆ > max
{
r⋆2 ,

λ1
L1 − δ

}
. (4.12)

If u ∈ P⋆
k , then by (4.4), (4.11), and (4.12), we find

∥Su∥ = max
t∈[0,T ]

{
−
∫ t

0

(t− τ)w(τ)f(τ, u(τ))∇τ + t

∫ T

0

w(τ)f(τ, u(τ))∇τ

+(α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ − α2

∫ ξ

0

w(τ)f(τ, u(τ))∇τ

}

≤ max
t∈[0,T ]

{
t

∫ T

0

w(τ)f(τ, u(τ))∇τ + (α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ

}

= T

∫ T

0

w(τ)f(τ, u(τ))∇τ + (α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ

= (T + α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ

≤ (T + α1 + α2)

∫ T

0

w(τ)(δu(τ) + λ1)∇τ

≤ (T + α1 + α2)(δ∥u∥+ λ1)

∫ T

0

w(τ)∇τ

=
δk⋆ + λ1

L1
< k⋆.
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Next, we will prove that if there exists a positive number r3 such that f(t, u) < r3L1 for t ∈ [0, T ]T, 0 ≤ u ≤ r3,

then S : Pr3 → Pr3 . Assume that u ∈ Pr3 , then one has

∥Su∥ ≤ max
t∈[0,T ]

{
t

∫ T

0

w(τ)f(τ, u(τ))∇τ + (α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ

}

= T

∫ T

0

w(τ)f(τ, u(τ))∇τ + (α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ

= (T + α1 + α2)

∫ T

0

w(τ)f(τ, u(τ))∇τ

< r3L1(T + α1 + α2)

∫ T

0

w(τ)∇τ = r3.

Consequently, one has proved that if either (a) or (b) is satisfied, then there exists a number r⋆3 with
r⋆3 > r⋆2 and S : Pr⋆3

→ Pr⋆3
. It is also noted that from (F1) we get S : Pr⋆4

→ Pr⋆4
.

Now, we prove that {u ∈ P(ψ, r⋆1 , r
⋆
2) : ψ(u) > r⋆1} ̸= ∅, and ψ(Su) > r⋆1 for all u ∈ P(ψ, r⋆1 , r

⋆
2).

Indeed

u =
r⋆1 + r⋆2

2
∈ {u ∈ P(ψ, r⋆1 , r

⋆
2) : ψ(u) > r⋆1}.

For u ∈ P(ψ, r⋆1 , r
⋆
2), we get r⋆1 ≤ min

t∈[ξ,T ]T
u(t) ≤ u(t) ≤ r⋆2 for all t ∈ [ξ, T ]T. Then, from (F2), we find that

ψ(Su) = min
t∈[ξ,T ]

Su(t) = min{Su(ξ), Su(T )} = Su(ξ)

≥ (ξ + α1 + α2)

∫ T

ξ

w(τ)f(τ, u(τ))∇τ

≥ r⋆1L2(ξ + α1 + α2)

∫ T

ξ

w(τ)∇τ = r⋆1 .

Lastly, we claim that if u ∈ P(ψ, r⋆1 , r
⋆
3) and ∥Su∥ > r⋆2 , then ψ(Su) > r⋆1 .

Assume u ∈ P(ψ, r⋆1 , r
⋆
3) and ∥Su∥ > r⋆2 , then

ψ(Su) = min
t∈[ξ,T ]T

Su(t) ≥ γ∥Su∥ > γr⋆2 = r⋆1 .

All the conditions of Theorem 2.1 are satisfied. Thus, BVP (1.3) and (1.4) has at least three positive
solutions u1, u2, u3 satisfying

∥u1∥ < r⋆4 , r⋆1 < min
t∈[ξ,T ]T

u2(t), ∥u3∥ > r⋆4 with min
t∈[ξ,T ]T

u3(t) < r⋆1 .

This completes the proof of the theorem. 2

By Theorem 4.3, we notice that, when the conditions (F1),(F2), (b) of (F3) are enforced suitably on f,

one can set up the existence of a random odd number of positive solutions of BVP (1.3) and (1.4).
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Theorem 4.13 If there exist constants

0 < r⋆41 < r⋆11 <
r⋆11
γ

< r⋆42 < r⋆12 <
r⋆12
γ

< r⋆43 < · · · < r⋆4n , n ∈ N,

such that the two assumptions are satisfied:

(G1) f(t, u) < r⋆4iL1 for t ∈ [0, T ]T, u ∈ [0, r⋆4i ];

(G2) f(t, u) ≥ r⋆1iL2 for t ∈ [ξ, T ]T, u ∈ [r⋆1i , r
⋆
1i/γ].

Then, BVP (1.3) and (1.4) has at least 2n− 1 positive solutions.

Proof Let n = 1, then it is instant by assumption (G1) that S : Pr⋆41
→ Pr⋆41

⊂ Pr⋆41
, which implies that

S has at least one fixed point u1 ∈ Pr⋆41
by the Schauder fixed-point theorem. Let n = 2, then it is obvious

that Theorem 4.3 is satisfied (r31 = r⋆42). It now follows that BVP (1.3) and (1.4) has at least three positive
solutions u1, u2, u3 such that

∥u1∥ < r⋆41 , r⋆11 < min
t∈[ξ,T ]T

u2(t), ∥u3∥ > r⋆41 with min
t∈[ξ,T ]T

u3(t) < r⋆11 .

Following this procedure, one can conclude the proof by induction. 2
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