
An ant colony optimisation algorithm for balancing two-sided U-type
assembly lines with sequence-dependent set-up times

YILMAZ DELICE1, EMEL KIZILKAYA AYDOĞAN2,*, İSMET SÖYLEMEZ3,4 and

UĞUR ÖZCAN4

1Department of Management and Organization, Develi Vocational College, Erciyes University,

38400 Develi, Kayseri, Turkey
2Department of Industrial Engineering, Erciyes University, 38039 Talas, Kayseri, Turkey
3Department of Industrial Engineering, Abdullah Gül University, 38080 Kocasinan, Kayseri, Turkey
4Department of Industrial Engineering, Gazi University, 06570 Maltepe, Ankara, Turkey

e-mail: ekaydogan@erciyes.edu.tr; emelkizilkaya@gmail.com

MS received 1 March 2018; revised 31 May 2018; accepted 16 June 2018

Abstract. Some practical arrangements in assembly lines necessitate set-up times between consecutive tasks.

To create more realistic models of operations, set-up times must be considered. In this study, a sequence-

dependent set-up times approach for two-sided u-type assembly line (TUAL) structures is proposed for the first

time. Previous studies on TUAL have not included set-up times in their analyses. Furthermore, an algorithm

based on the Ant Colony Optimization (ACO) algorithm, which is using a heuristic priority rule based procedure

has been proposed in order to solve this new approach. In this paper, we look at the sequence-dependent set-up

times between consecutive tasks and consecutive cycles, called the ‘‘forward set-up time’’ and the ‘‘backward

set-up time’’, respectively. Additionally, we examine the ‘‘crossover set-up time’’, which arises from a new

sequence of tasks in a crossover station. In order to model more realistic assembly line configurations, it is

necessary to include sequence-dependent set-up times when computing all of the operational times such as task

starting times and finishing times as well as the total workstation time. In this study, the proposed approach aims

to minimize the number of mated-stations as the primary objective and to minimize the number of total

workstations as a secondary objective. In order to evaluate the efficiency of the proposed algorithm, a com-

putational study is performed. As can be seen from the experimental results the proposed approach finds

promising results for all literature-test problems.

Keywords. Assembly line balancing; U-type assembly lines; two-sided assembly lines; sequence-dependent

set-up times; ant colony optimization; priority rules.

1. Introduction

An assembly line is a manufacturing system, in which a

number of indivisible work elements (tasks) are consecu-

tively performed on several productive units (stations)

which are connected by some kind of transportation system

such as a conveyor belt [1, 2]. Among the decision prob-

lems which arise in managing such systems, assembly line

balancing problem (ALBP) is important one in medium-

term production planning [3]. The first known formulation

of the ALBP has been proposed by Salveson [4–7]. An

ALBP is to obtain a feasible line balance which is defined

as the assignment of assembly operations to a set of

workstations in such a way that one or more objectives are

optimized, with respect to precedence constraints and some

specific restrictions of the assembly line system [6]. When

the design structure is considered, various classifications

can be made for the assembly lines based on the number of

models produced in the assembly line (single, multi or

mixed model), the flow type (U-type, straight), the nature of

task times (probabilistic, deterministic), and station struc-

ture (one-sided, two-sided or multi manned) [8].

According to Kim et al [9], two-sided assembly lines are

convenient to produce high-volume large-sized standard-

ized products, such as automobiles, trucks and buses.

According to Bartholdi [10], a two-sided assembly line has

more advantages than one-sided one, i.e., the reduction of

throughput time, the cost of tools and fixtures and number

of operators. Both left-side and right-side of the assembly

line are used in parallel in a two-sided assembly line, while

only one side of the line is used in a one-sided assembly

line [11]. Two-sided assembly lines have three different
*For correspondence

Sådhanå (2018) 43:199 � Indian Academy of Sciences

https://doi.org/10.1007/s12046-018-0969-9Sadhana(0123456789().,-volV)FT3](0123456789().,-volV)

http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-018-0969-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s12046-018-0969-9&domain=pdf
https://doi.org/10.1007/s12046-018-0969-9

task types, that is to say either type tasks may be operated at

either side, while Right or Left type ones are operated at one

side of the assembly line.

Miltenburg and Wijngaard [12] presented the U-line

balancing problem and Urban [13] developed the integer

programming formulation of the U-line balancing problem.

In U shaped lines the entrance and the exit stations of the

line are formed at the same position. For this reason,

operators are placed in the center of the U shape which

allows stations with crossovers. U-lines can also provide

several advantages over a straight assembly line. It is easier

to adapt the fluctuations of demand thanks to the flexibility

of increasing or decreasing the necessary number of

workers [14]. Communication and visibility between

operators are enhanced, and problem solving and the effort

of adjusting to the changes are simplified [15].

There are limited studies on two-sided U-type assembly

line balancing problem (TUALBP) in the literature. TUAL

is a new assembly line structure that combines the advan-

tages of both types of lines as underlined in Yegül et al

[16], Ağpak et al [17] and Delice et al [18] and is devel-

oped for the production of large-sized products such as cars

and trucks. A two sided assembly line model, in which one

side of it arranged in U shape is presented by Yegül et al

[16]. Ağpak et al [17] proposed a bi-objective 0-1 integer

programming model for solving the TUALBP. Delice et al

[18] developed a modified PSO algorithm to solve the

TUALBP. Delice et al [19] developed a stochastic

TUALBP and developed a genetic algorithm approach to

solve it. Nevertheless, none of these studies on TUALBP

has included sequence-dependent set-up times in their

analyses. For this reason, the resulting models do not fully

reflect the real life conditions.

Assembly line applications may require several practical

arrangements, which may cause the set-up times depending

on the sequence of consecutive tasks to be assigned to the

same station.

In order to achieve more realistic assembly line struc-

tures, both the inter-station balancing and the intra-station

scheduling of tasks must be considered simultaneously

[20]. Balancing and scheduling tasks in assembly lines with

sequence-dependent set-up times was first defined by

Andrés et al [20]. They called the problem as the general

assembly line balancing problem with setups (GALBPS).

They solved simultaneously the inner-station balancing and

the intra-station scheduling of tasks problems existence of

sequence-dependent set-up times with low cycle times, and

they designed eight different heuristic rules and a GRASP

algorithm. Scholl et al [21] defined the concept of

sequence-dependent task time increments and they formu-

lated several versions of a mixed-integer program for

sequence-dependent assembly line balancing problems.

Martino and Pastor [22] proposed heuristic procedures,

based on priority rules, for solving GALBPS, with set-ups.

Özcan and Toklu [23] proposed a mixed integer program to

sequence-dependent two-sided assembly lines, and they

presented a heuristic approach (2-COMSOAL/S) to solve

large-sized problems. Nazarian et al [24] presents mathe-

matical models of manufacturing line design with the

consideration of product change related inter-task times in

evaluating station times for multi-model production. An

optimization model is developed using mixed integer pro-

gramming to minimize manufacturing line cost. Seyed-

Alagheband et al [25] addressed the GALBPS of type-II.

They proposed a mathematical model and a novel simu-

lated annealing algorithm to solve it. Yolmeh and Kianfar

[26] considered the set-up assembly line balancing and

scheduling problem, involved task assignment and

scheduling. They suggested a hybrid genetic algorithm that

uses dynamic programming. Hamta et al [27] simultane-

ously considered minimizing the cycle time, minimizing

the total equipment cost and minimizing the smoothness

index objectives when task operation time is between the

lower and upper bounds and sequence-dependent set-up

times exist between the tasks. Akpinar et al [28] proposed a

hybrid algorithm which executes ant colony optimization in

combination with genetic algorithm for the mixed-model

assembly line balancing problem with sequence-dependent

set-up times. Scholl et al [29] modified the problem pro-

posed by Andrés et al [20], more realistically, and gave a

new and more compact mathematical model formulation

and developed effective heuristic solution procedures.

Akpinar and Baykasoğlu [30] considered mixed-model

assembly line balancing problem with set-ups and devel-

oped a mixed-integer linear mathematical programming

model. Akpinar and Baykasoğlu [31] considered a mixed-

model assembly line balancing problem with sequence-

dependent set-up times between tasks and developed a new

multiple colony bees algorithm. Also, they proposed a

neighbourhood approach based on the task selection strat-

egy of the ACO. Esmaeilbeigi et al [32] present three new

formulations for the set-up assembly line balancing and

scheduling problem. Şahin and Kellegöz [33] was first

defined the U-line balancing with sequence-dependent set-

up times. They proposed a mathematical formulation, a

simulated annealing approach and a genetic algorithm. The

aim of their study is minimizing the cycle time for a given

number of workstations. In their study, both forward set-

ups and backward set-ups are considered, but crossover set-

ups are not taken into account. Akpinar et al [34] describes

an exact algorithm based on Benders decomposition to

solve both simple and mixed-model assembly line balanc-

ing problems with sequence-dependent set-up times.

To the best of the authors’ knowledge, there is no pub-

lished study dealing with sequence-dependent set-up times

on two-sided assembly lines with a layout in the form of U.

For this purpose, in this study, two-sided U-type assembly

line balancing problem with sequence-dependent set-up

times (TUALBPS) is characterised in detail. In TUALBPS,

‘‘forward set-up time’’ and ‘‘backward set-up time’’ are

discussed between consecutive tasks and consecutive

cycles, respectively. Furthermore, ‘‘the crossover set-up

 199 Page 2 of 15 Sådhanå (2018) 43:199

time’’, which arises from a new sequence of tasks in a

crossover station, is proposed for the first time in this study.

ALBP is NP-hard class of combinatorial optimization

problems [35]. Different metaheuristics like GA, Ant Col-

ony Optimization (ACO), Chemical Reaction Optimization

(CRO) are used to solve the NP hard problems within

reasonable computational time [36, 37]. An ant colony

optimization (ACO) based algorithm is developed to solve

the proposed problem. Although there are many different

versions of the ACO algorithm, the classical ACO structure

is preferred in this study in order to emphasize more on the

sequence-dependent set-up time approach and allow future

studies as well as benchmarks about the proposed model

[38–41]. Exploring capability of the proposed ACO algo-

rithm is reinforced by using a heuristic priority rule based

procedure which is described in detail in section 3.

The remainder of the paper is organized as follows.

TUALBPS is described in section 2. The proposed ACO is

presented in section 3. The proposed algorithm is illus-

trated with a numerical example in section 4. The compu-

tational results of the proposed ACO on a set of test

problems are presented in section 5. Finally, conclusions on

this work and ideas for further research are presented in

section 6.

2. Balancing two-sided U-type assembly lines
with sequence-dependent set-up times

In the TUALBPS, a single-model two-sided U-type

assembly line with sequence-dependent set-up times is

considered. Two-sided U-type assembly lines consist of

two parallel two-sided arms, i.e., front and back arm. Also,

the entrance and the exit of these arms are formed at the

same position. Each assembly operation is carried out at

stations of positions, each of which has four locations on a

U-shaped layout [18]. The tasks without any incomplete

predecessors are performed at stations of the front arm,

while the tasks without any incomplete successors are

performed at stations of the back arm. Some of tasks from

both of the central locations (locations 2 and 3 in figure 1)

may be performed in a pair of two directly facing stations

(crossover stations) by the same worker. In U-type lines,

equal or less number of stations in comparison to the

straight line is formed, owing to the crossover stations.

Depending on the task side values (L-type, R-type and E-

type) or precedence constraints of tasks, one crossover

station, two distinct stations or empty station(s) can be

occurred in the central locations, i.e., locations 2 and 3 in

figure 1. Also, right or left side of the product can be

worked on the central locations, depending on the entrance

arms of the line. This causes to achieve more solutions.

Consequently, both sides are considered and the solutions

are generated for each direction, respectively, in order to

achieve all possible solutions.

Considering potential sequence-dependent set-up times

(e.g., travel times of operators, material movements and

tool replacements) between consecutively performed tasks

generates a more realistic assembly line structures. The

GALBPS, defined by Andrés et al [20], considers the

sequence-dependent set-up times not only between con-

secutive tasks in a station, but also between consecutive

cycles. Scholl et al [29] modified and extended the

approach of Andrés et al [20] by additionally distin-

guishing between forward and backward set-up times.

Martino and Pastor [22] and Özcan and Toklu [23]

assumed that the same set-up times are valid in both

directions, i.e., fsi;j ¼ bsi;j for all task pairs i, j. Further-

more, they ignored the required time between consecutive

cycles at a station which has on one assigned task, i.e.,

fsi;i ¼ bsi;i ¼ 0, for each task i. These assumptions sub-

stantially restrict the applicability of their models in

practice. As can be seen at figure 1, a forward set-up time,

fsi;j, may occur between each consecutively assigned task

pair at the same station. Furthermore, the backward set-up

time, bsi;j, may occur between the last task of the current

cycle and the first task of the subsequent cycle at the same

station. In this paper, in addition to the set-up times

considered between consecutive tasks in a station (i.e.,

forward set-up time) and between consecutive cycles (i.e.,

backward set-up time), a new set-up time between con-

secutive tasks in a crossover station, namely, crossover

set-up time is proposed. Two different crossover set-up

times may occur in a crossover station. For instance, the

first one occurs between the last task of the front arm of

the station and the first task of the back arm of the station

(csf ;g in figure 1). The second one occurs between the last

task of the back arm of the station and the first task of the

front arm of the station (csh;e. in figure 1).

In TUALBPS, the tasks are operated on a set of positions

where there are maximum four operators working on

opposite sides of the front and back arms of the assembly

line, simultaneously. In a proposed model each precedence

relationship between tasks is satisfied while ensuring to

complete tasks within a predetermined cycle time (C). In

figure 1, the general structure of the TUALBPS, forward,

backward and crossover set-up times and unavoidable idle

times can be seen in detail.

In this paper, our proposed algorithm uses three distinct

matrices as set-up times, i.e., the forward set-up time matrix

(FSM), the backward set-up time matrix (BSM) and the

crossover set-up time matrix (CSM), to achieve a more

realistic assembly line configuration. As we know from the

literature, in two-sided U-type assembly lines, unavoidable

idle times between some of the consecutive tasks may

occur. For this reason, the sequence-dependent finishing

time of each task must be considered carefully. Due to the

compulsive precedence constraints, idle time (D), may

occur in the TUALBPS, e.g., before the first assigned task

(Dc, De and Dg), after the last assigned task (Db and Dd) and

between two consecutive tasks (Da;b, De;f and Dg;h).

Sådhanå (2018) 43:199 Page 3 of 15 199

Figure 1 shows the detailed layout of Station 1, Station 2

and Crossover_Station1 (Station 4) of a single-model

TUALBPS. In figure 1, each task number is placed at its

relevant position inside the bars. The shaded rectangle

shows all of the idle times (D), forward set-up times (fs),

backward set-up times (bs) and crossover set-up times (cs).

In a TUALBPS, idle times (D) can be used in order to

fulfil the set-up operations. For example, between task a

and task b in Station 1, idle time Da;boccurs in order to

satisfy the precedence relation between task c and task b

(assume that task a is immediate predecessor of task b and

c, and task c is immediate predecessor of task b and task d).

Forward set-up time between task a and task b (fsa;b) might

be operated while fsa;b �Da;b condition satisfies. If the idle

time, Da;b, is long enough to perform the set-up operations

between task a and task b, then, no extra time is added to

the equation of the finishing time of task b (ftb). The fin-

ishing time of each task in Station 1 is calculated as

follows:

– Task a: fta ¼ ta (Da ¼ 0)

– Task b: ftb ¼ fta þ max Da;b; fsa;b
� �

þ tb
– Task c: ftc ¼ Dc þ tc
– Task d: ftd ¼ ftc þ fsc;d þ td

where ti is operation time of task i. For both sides of the line

the backward set-up values must also be taken into con-

sideration to detect the feasibility (Fi;j) of the current line

balancing operation, using Eq. (1) as follows:

Fi;j ¼ 1; if C � ftlast � ftfirst
� �

� tfirst � bslast;first � 0

0 otherwise

�
;

i ¼ 1; 2; . . .n; j ¼ 1; 2

ð1Þ

For the left side of position 1 at front arm F1;1 is cal-

culated using the remainder time (RT1;1) as follows:

–

RT1;1 ¼ C � ftb � ftað Þ � ta � bsb;a

For the right side of position 1, F1;2 is calculated using

the remainder time (RT1;2) as follows:

–

RT1;2 ¼ C � ftd � ftcð Þ � tc � bsd;c

When the values of each remainder times, (RT1;1, RT1;2),

are greater than or equal to zero, the feasibility values of the

stations become true (F1;1 ¼ 1, F1;2 ¼ 1).

Set-up times between the last task of the back arm and

the first task of the front arm at the crossover station (csh;e)

may be operated before the first task of the front arm or

after the last task of the back arm, according to the

assignment sequence of the tasks. In order to focus to the

crossover set-up time approach and its basic features, lay-

out of the Station 3 and Station 5 and other precedence

relations between tasks are not considered in figure 1. In

the case of the crossover set-up, between task h and e

(csh;e), is operated before the first task of the front arm (task

operation sequence of assembly process is assumed to be e,

f, g and h), the finishing time of each task in Station 4 is

calculated as follows:

– Task e: fte ¼ max De; csh;e
� �

þ te

– Task f: ftf ¼ fte þ max De;f ; fse;f
� �

þ tf

– Task g: ftg ¼ ftf þ max Dg; csf ;g
� �

þ tg

– Task h: fth ¼ ftg þ max Dg;h; fsg;h
� �

þ th

Dg;h and fsg;h are used to calculate finishing time of task g,

because the actual operation direction of the back arm is

right to the left. For the crossover station, the crossover set-

up values between the last task of the front arm and the first

��Front Arm��

Position 1 Position 2 Position 3

Entrance

Loc.1
(Left)

Station 1 (front_left_1) Station 3(front_left_2) Station 6 (front_left_3)

a , b , assigned task(s) assigned task(s)
∆ , ∆

Loc. 2
(Right)

c , d , ℎ , e , f assigned task(s)
∆ ∆ ∆ ∆ ,

Station 2 (front_right_1) Station 4
(crossover_1)

Station 7 (front_right_2)

Exit

Loc. 3
(Right)

Station 11 (back_right_1) Station 9 (back_right_2)

assigned task(s) h ,ℎ g , assigned task(s)
∆ ,ℎ ∆

Loc. 4
(Left)

assigned task(s) assigned task(s) assigned task(s)

Station 10 (back_left_1) Station 5 (back_left_2) Station 8 (back_left_3)

�� Back Arm��

Figure 1. General structure of TUALBPS that workpiece enters the assembly line at front arm.

 199 Page 4 of 15 Sådhanå (2018) 43:199

task of the back arm must also be taken into consideration

to detect the feasibility of the current line balancing

operation.

The basic assumptions of TUALBPS are as follows:

• Each task is performed, simultaneously, at both sides

of the U shaped line.

• Deterministic task times and set-up times are used.

• Set-up times include walking times of operators,

material movements and tool replacements.

• Some of the tasks must be operated at one-side and

others may be operated at either side.

• The precedence relationships among tasks are known

and a single model of a product is produced.

• Equally equipped stations are used; each task can only

be assigned to one station.

• Work-in-process inventory is not allowed.

• Parallel tasks and parallel stations are not allowed.

3. The proposed algorithm: an ant colony
approach

Ant colony optimization (ACO) is one of the population-

based metaheuristic which mimics the collective capa-

bility of real ant colonies to find the shortest route

between the nest and a food source. Ants utilize a special

chemical substance called pheromone to communicate

and exchange the knowledge between colony members.

The amount of the substance in each route is reduced by

time because of evaporation effect. Furthermore, the

pheromone of a route is increased by those ants that

passed through that particular route. With more ants

following the same route, its pheromone deposit, left

behind on the route, accumulates faster. Given a choice

of many routes, an ant would choose the route with a

higher pheromone concentration using the sense of smell.

Hence, the amount of pheromone in a route is controlled

by two factors, the rate of evaporation and the number of

ants who passed through that particular route. The first

ant algorithm, Ant System, is proposed by Colorni et al

[42, 43] and used to solve the travelling salesman prob-

lem. Bautista and Pereira [44, 45], McMullen and Tar-

asewich [46] and Sabuncuoglu et al [47] presented

several heuristics for the ALBP using concepts derived

from ACO algorithm. Simaria and Vilarinho [48] and

Yagmahan [49] proposed new ACO techniques. Akpinar

et al [28] hybridized genetic algorithm with an ACO

algorithm. Kucukkoc and Zhang [50] proposed a flexible

agent-based ACO approach for the mixed model parallel

two-sided ALBP. Blum proposed BeamACO, the com-

bination of ACO algorithms with beam-search [38]. Ding

etal [39] proposed a hybrid ant colony optimization

(HACO). Mogale etal [40] proposed an effective meta-

heuristic which based on the strategy of sorting elite ants

and pheromone trail updating called Improved Max-Min

Ant System (IMMAS). Dorigo and Stützle [41] observed

many developments in ACO and gained an overview of

recent research trends in ACO.

In this study, an ACO algorithm based solution approach

is developed to solve the TUALBPS. Each ant (solution) of

the proposed ACO algorithm aims to find good solution for

the TUALBPS. Each member of the colony uses pher-

omone trails matrix and the heuristic information matrix, in

order to achieve the feasible solution. The general structure

and pseudo code of the proposed ACO algorithm are shown

in figures 2 and 3, respectively.

3.1 Initialization of the matrices

Initialization step consists of initialization of each basic

matrix and parameter, used by the proposed ACO in order

to solve the TUALBPS. Our proposed algorithm uses sev-

eral matrices. Some of them use constant values while

others use variable values. All of the basic matrices are

listed below:

– Precedence matrix (PMi;ji; j ¼ 1; 2; . . .; n) keeps the all

precedence relations between tasks. If there is a prece-

dence relation between task i and task j, the value of

PM[i, j] is set to 1, otherwise 0. The PM matrix is used to

determine the candidate tasks list (CL) for the assignment

operation.

– Task matrix (TMi;mi ¼ 1; 2; . . .; nand m ¼ 1; 2; 3) keeps

task number, task side and task time values of each

problem.

– Forward set-up matrix (FSMi;ji; j ¼ 1; 2; . . .; n) keeps the
forward set-up times between all tasks. The forward set-

up values are used whenever a task j is performed next to

task i at the same station, in order to compute the global

operation time.

– Backward set-up matrix (BSMi;ji; j ¼ 1; 2; . . .; n) keeps

the backward set-up times between all tasks. If task i is

the last task in a station in which task j was the first task

in the same station, the backward set-up values between

task i and task j are used in order to compute the global

operation time.

– Crossover set-up matrix (CSMi;ji; j ¼ 1; 2; . . .; n) keeps

the crossover set-up times between all tasks. If task i is

the last task in the front arm/back arm of the crossover

station in which task j is the first task in the back arm/

front arm of the same crossover station, the crossover set-

up value between task i and task j is used in order to

compute the global operation time of the crossover

station.

– Pheromone matrix (st;it; i ¼ 1; 2; . . .; n) saves the pher-

omone trail intensity of the task i stored in the tth task

assignment process. These values are required to calcu-

late the selection probability (P) of each task at the

assignment process.

Sådhanå (2018) 43:199 Page 5 of 15 199

– Heuristic information matrix (ga;ta ¼ 1; 2; . . .;CS and t ¼
1; 2; . . .; nþ 1) is used to save one of the six different

heuristic information which is required to calculate the

selection probability (P) of tth task assignment process

for the ant a. The last index of the g matrix saves the

side selection type value for the assignment of E-type

Figure 2. General structure of the proposed ACO algorithm.

 199 Page 6 of 15 Sådhanå (2018) 43:199

tasks. In the first iteration, g matrix is generated with

random integer numbers between [17, 34]. The last

index is assigned using binary values (0 for the side

which has more available time, 1 for the random

selection).

To evaluate the quality of each candidate ant, the solu-

tion matrix is used in the proposed algorithm in order to

save the detailed layout and the objective function values

for each ant.

3.2 Candidate list and priority rules

After the initialization step, the algorithm becomes ready

for the assignment procedure. In order to perform the task

assignment process of the proposed algorithm, all of the

assignable tasks are combined into a candidate list (CL).

Some of the tasks whose predecessors have already been

assigned are defined as Front-type while some tasks whose

successors have already been assigned are defined as back-

type. All front-type and back-type tasks combined in CL,

according to the precedence diagram. A task is selected

from the candidate list using the probability value (Pi) of

each candidate task by the roulette wheel selection strategy.

For the current ant, the selection probability value of each

task is calculated using ant’s pheromone value and the

selected priority rule, using Eqs. (2)–(4).

pri ¼
Xr;iP
Xr;i

; r ¼ ga;t and i 2 CL ð2Þ

where ga;t has the priority rule value of the tth task

assignment operation of ant a. The Xr;i matix is used to save

all of the priority rule values for each task i in CL and all

values are determined in the initialization step. Vector pri is

used to save all of the calculated relative priority rule

values according to the selected priority rule type r.

Pi ¼
a � st;i þ b � priP
a � st;i þ b � pri

; i

2 CL and t is the current assignment number ð3Þ

where a and b are the parameters which determine the

relative importance of pheromone matrix versus heuristic

information matrix. According to the cumulative selection

probability matrix (SP) and the randomly generated q value

(q [(0,1)), a task is chosen from the candidate list, ran-

domly as follows:

SPl ¼ SPl�1 þ Pi; l ¼ 1; . . .; nc nc is# of clð Þ; i
2 cl; where ðSP1 ¼ 0; SPnc ¼ 1Þ ð4Þ

The task, whose cumulative probability value satisfies

SPl�1 � q\SPl rule, is chosen for the assignment process.

Then assignment procedure is implemented.

Bautista et al [51] firstly proposed the priority rule based

approach about assignment of tasks to the workstations. In

the literature, some priority rules have been proposed.

Helgeson and Birnie [52] proposed maximum ranked

positional weight, Tonge [53] proposed maximum number

of immediate followers, Kilbridge and Wester [54] pro-

posed maximum task time, Arcus [55] proposed random

task assignment, Moodie and Young [56] proposed maxi-

mum task time first, Brian and Patterson [57] proposed

maximum total number of follower tasks, Elsayed and

Boucher [58] proposed minimum total number of prede-

cessor tasks and minimum reverse positional weight and

also Talbot et al [59], Scholl and VoB [60] and Boctor [61].

The six different priority rules used to calculate the prob-

ability value of each task in the proposed ACO algorithm

are as follows:

– The task number: Select task with smallest task number,

– The total number of successor tasks: Select task having

most followers,

– The total number of predecessor tasks: Select task having

most predecessors,

– The ranked positional weight: Select task with highest

ranked positional weight,

– The processing time: Select task with longest duration,

– Random assignment: Select task randomly.

3.3 Task assignment procedure

The task assignment procedure is executed, repeatedly, for

each ant of the existing colony during whole iterations. At

first step of the procedure an empty position with four

locations is opened. Depending on the arm of the line that

the assembly process start, different alternative line bal-

ances may be achieved. That is to say, if the assembly

Step1. Initialize Step

Step1.1. Set iter = 1, a= 1

Step 2. Solution Step

Do while iter≤IS (iteration_size)

Do while a≤CS (colony_size)

Step 2.1. Generating new colony

Step 2.2. Evaluating objective functions

Step 2.3. Updating best solution

Step 2.4. Updating Feromon Matrix

 Increment ant_number(a)

 end do

Increment iteration_number(iter)

end do

Step 3. Show best solution

Step 4. Finish

Figure 3. Pseudo code of the proposed ACO algorithm.

Sådhanå (2018) 43:199 Page 7 of 15 199

process start at front arm, center of the two-sided U-line

becomes right (R), otherwise center of the two-sided U-line

becomes left (L). And this enlarges the solution space of the

problem and may produce different possible solutions.

After determining operation side of the line, a candidate

task is selected by the selection procedure from the CL.

The location of the current position should be determined

in order to apply the assignment procedure. It is deter-

mined depending on the side value of the selected task,

i.e., L-type, R-type and E-type tasks, selection side of

precedence diagram value of the task (front or back) and

the center of the line value (R or L). For the L-type and R-

type tasks, the assignment location is already known. That

is to say, if the selection side of the precedence diagram

value is front and the center of the assembly line is R/L,

the L-type task is assigned to location 1/location 2 while

the R-type task is assigned to location 2/location 1. Simi-

larly, if the selection side of the precedence diagram value

is back and the center of the assembly line is R/L, the L-

type task is assigned to location 4/location 3 while the R-

type task is assigned to location 3/location 4. However, for

the E-type tasks, the operation side is selected using the

side type value of the active ant. The last index of the each

heuristic information matrix of the current ant determines

the assignment side for the E-type tasks. For example, the

side which has more available time is selected when the

last index value of the heuristic information matrix is 0

while the random side selection is occurred when the value

is 1. To select the side, which has more available time, for

the E-type tasks, provides better utilization and less idle

times but it may also prevent to reach some of the possible

solutions. Therefore, it is also preferred to use the random

side selection method for the E-type tasks to make the

proposed algorithm having ability of finding all possible

solutions.

After the task number and the position value are deter-

mined, the task assignment operation is completed by

assigning the task information to the solution matrix. Then,

the solution and solution results are determined by calcu-

lating the sequence-dependent starting and finishing times

including forward, backward and crossover set-up times for

all locations of the line. At each assignment process, the

crossover availability of the current position must be con-

trolled. The crossover situation for the empty central

locations (locations 2 and 3) may have three different

values, i.e., 0 (undefined), 1 (non-crossover) or 2 (cross-

over) as can be seen in figure 2. At first, the crossover

situation value is set as undefined for each location. At the

assignment process, if some of the tasks are assigned to

stations at locations 2 and 3, concurrently, the crossover

station occurs and the crossover situation is set as two.

Sometimes, stations at location 2 and 3 are filled sequen-

tially (one after the other). Depending on task number, task

side and the center of the line value some of the selected

tasks are assigned to only a station at location 2/location 3

while the station at location 3/location 2 is empty, the

crossover station cannot occur and the crossover situation is

set as one.

3.4 Evaluating objective function

After computing the solutions of the proposed ACO at each

step, the solution qualities are evaluated by considering the

objective function values. Performance level of each can-

didate solution is determined by objective function values.

End of each step of ACO algorithm, the pheromone

information matrix is influenced by the best solution, in

other words, best solution influences the new ant colonies

which will be generated at next iterations.

In the proposed ACO for TUALBPS, the primary

objective is minimizing the number of positions and the

secondary objective is minimizing the number of total

stations, for a predetermined cycle time. Since the NP is

more important than NS, it is multiplied by a sufficiently

large numberðuÞ. Therefore, Eq. (5) is used to compute the

objective function value of each solution as follows:

Min Z ¼ u � NPþ NS ð5Þ

3.5 Updating the best solution and pheromone

matrix

In every step of the algorithm, the ant which has the min-

imum total objective function value, so far, is defined as the

best candidate solution. The best solution is updated at the

end of the each assignment process during the whole iter-

ations. Pheromone updating is done to avoid premature

search convergence and to add the ants’ search experience

that contains good or promising solutions into the pher-

omone structure. Pheromone updating procedure is done by

decreasing all the pheromone values through pheromone

evaporation and increasing the pheromone values associ-

ated with a chosen set of good solution. Updating of the

pheromone matrix is applied by evaporating of existing

pheromone quantity using Eq. (6).

st;i ¼ 1� qð Þ � st;i ð6Þ

where q a coefficient is called the evaporation rate. At the

end of the each iteration, pheromone matrix is updated

according to the following formula:

st;i iter þ 1ð Þ ¼ st;i iterð Þ þ Dsbestt;i ð7Þ

where Dsbestt;i ¼
0:01; if the best ant so far uses t; ið Þ assignment

0; otherwise

�

In addition to the pheromone update heuristic informa-

tion matrix is also updated in order to avoid premature

search convergence. Also, a local search mechanism is

added to the updating process to improve the solutions

 199 Page 8 of 15 Sådhanå (2018) 43:199

obtained by the best ant. At the end of the each iteration,

heuristic rule matrix is updated using two-stage process. At

the first stage of the updating process of the heuristic

information matrix, a local search is applied for the first

20% part of the ants, using the best ant achieved so far. For

this purpose, two index numbers are selected, randomly,

and a swap mechanism is applied to the heuristic infor-

mation values of the best ant solution using these two index

numbers. The heuristic rule numbers at these two index

numbers are switched and achieved values are saved to

complete the updating mechanism. At the second stage of

updating procedure of the heuristic information matrix, a

random heuristic rule assignment is applied for the other

part of ants, to complete the updating mechanism.

3.6 Algorithm parameters

In this study, the basic ACO parameters used in the pro-

posed ACO are colony size = 100, number of itera-

tions = 1000, a = 0.1, b = 0.1 and evaporation rate = 0.01.

They are obtained from preliminary experiments.

4. An illustrative example

A numerical example is used to show the important char-

acteristics of the proposed algorithm for TUALBPS. The

example problem has the following characteristics:

– A single model product is assembled in a two-sided

U-type assembly line with the cycle time of C = 8.

– Task times, task sides and the precedence diagram of 12

tasks are given in figure 4.

– Table 1 shows forward, backward and crossover set-up

times of the tasks, respectively.

Representation of an assembly line balancing solution

built by the proposed ACO for high set-up times (Center is

Right) is presented by figure 5. It shows the sequence and

the operational times of each task. According to figure 5,

Figure 4. An example problem (P12).

T
a
b
le

1
.

S
et
-u
p
ti
m
e
m
at
ri
ce
s
(h
ig
h
v
ar
ia
b
il
it
y
).

F
o
rw

ar
d
se
t-
u
p
ti
m
es

B
ac
k
w
ar
d
se
t-
u
p
ti
m
es

C
ro
ss
o
v
er

se
t-
u
p
ti
m
es

T
as
k
s

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
2

3
4

5
6

7
8

9
1
0

1
1

1
2

1
0

0
0

0
1

0
0

0
1

1
2

0
0

0
1

0
1

0
2

0
1

1
1

0
0

0
0

0
1

0
1

0
2

2
1

0

2
0

0
2

0
2

0
0

2
0

2
1

1
0

0
2

0
1

0
2

1
1

1
1

1
0

0
2

0
1

0
1

0
0

2
2

1

3
2

0
0

1
0

1
1

1
1

1
2

1
0

1
0

0
1

1
1

1
1

1
1

0
0

0
0

0
1

2
0

1
1

2
1

1

4
0

0
0

0
2

2
2

0
2

2
2

0
0

0
1

2
2

2
1

0
0

1
2

0
0

0
1

0
1

2
0

0
0

1
1

0

5
1

1
1

2
0

1
1

1
0

1
1

1
1

0
2

1
0

0
1

0
1

1
0

2
2

1
1

0
0

1
0

1
0

0
2

0

6
0

0
2

1
2

0
1

0
1

0
2

0
0

0
0

1
0

2
2

0
1

2
0

0
0

0
2

0
1

0
1

0
1

1
1

0

7
1

0
1

2
1

1
0

1
1

1
1

2
0

2
1

1
1

1
1

0
0

1
2

0
2

0
0

2
2

0
0

2
0

0
2

1

8
0

1
0

0
0

0
2

0
1

1
0

0
0

1
1

0
0

0
1

1
2

1
0

1
0

2
1

0
1

0
0

0
1

0
0

1

9
2

1
2

1
2

1
1

2
0

1
1

2
1

0
2

0
0

1
1

0
1

1
1

1
1

2
0

0
0

0
1

1
0

1
1

1

1
0

2
1

0
0

1
1

1
1

1
0

1
1

0
0

0
2

0
0

1
2

1
1

2
1

1
0

0
0

1
0

1
1

0
0

1
0

1
1

2
0

2
1

1
1

1
1

1
1

0
2

0
0

2
2

1
2

2
1

1
1

1
0

2
1

1
0

2
1

2
1

2
1

0
0

1
2

0
0

0
0

0
0

1
1

1
0

2
0

0
1

2
0

1
0

0
2

2
2

1
0

0
0

1
0

1
0

0
2

1
0

2
0

Sådhanå (2018) 43:199 Page 9 of 15 199

the TUALBPS model has four different locations with two

positions, i.e., the front left (F_L), front right (F_R), back

right (B_R) and back left (B_L). In addition to the three

non-crossover stations (F_L1 and F_R2 in front arm and

B_R2 in back arm) and three empty stations (F_L2 in front

arm and B_L1 and B_L2in back arm), a crossover station is

arranged in the solution layout, i.e., C_O1. Total number of

used stations is four. In addition to generating layout which

requires less set-up times, these crossover stations also

reinforce the proposed algorithm to achieve better layout

solutions which require fewer operators.

All of the stations, arranged at 4 locations of current

position, are identified using location name and sequential

numbers. Allocations of each task into the stations are

performed depend on the sequence-dependent finishing

time and cycle time values. The task number, location, start

time (sti), finish time (fti) and station number values of each

task and forward, backward and crossover set-up times

between tasks are shown in figure 5. An arrow mark shows

the operational direction of the assembly line. The opera-

tion direction is left to right at front arm while it is right to

left at back arm.

5. Computational study

Literature test problems have been used to demonstrate the

effectiveness of the proposed ACO algorithm. Solution

quality and algorithm performance are compared with best

known results for two-sided U-type assembly line balanc-

ing problem without set-up times [18]. Four of test prob-

lems are small-sized (P9, P12, P16 and P24) and three of

them are large-sized (P65, P148 and P205). P16, P65 and

P205 are taken from Lee et al [11], P9, P12 and P24 are

taken from Kim et al [9] and P148 is taken from Bartholdi

[10] and modified by Lee et al [11]. Two different cycle

time are considered for P9 problem and others as follows:

P12(4), P16(3), P24(5), P65(5), P148(6) and P205(10). This

means that 14 small-sized and 21 large-sized instances are

evaluated. The precedence relationships, the operational

directions and the task times are not changed. In the paper,

new data sets including forward set-ups, backward set-ups

and crossover set-ups are generated with considering Scholl

et al [29] data set generation concept.

The proposed ACO approach is coded in Borland Delphi

7. Each test problem is tested on a computer which has Intel

Xeon(R) CPU E-5-2695, 2.4 GHz processor and 32 GB

RAM. ACO algorithm is run ten times for each cycle time

of each test problem. The number of positions, number of

stations and average CPU time values are presented in

table 2 for the two possible situations that the item enters

the assembly line at front arm (L) or back arm (R). Table 2

summarizes the results of all test problems with low set-up

time variability level and high set-up time variability level l

for both of the solutions, left (L) and right (R). According

to table 2 and figure 6(a), the computational times for the

test problems with low set-up variability level are less than

one second at 12 of 35 instances. Results of 11 of 35

instances are obtained less than one second for high set-up

variability. And also, all instances are calculated not more

than 3000 seconds. Therefore, computational analysis is not

required for these problem sets. Computational time vari-

abilities are depended on both low and high set-up vari-

ability levels as given in figure 6(a). The main inference of

the figure 6(a) is solution times of the test problems with

low set-up variability level less than the test problems with

��Front Arm��
Position 1 Position 2

L1 0

1-L 1,4 4-L 4,6 6-L 6,1

8 Empty station 16sti 0 0 2 2 7 0 fti 2 5 8
F_L1 F_L2

L2 0
10,3 3-E

8

2-R 2,5 5-E 5,9 9-E 9,2

16sti 0 0 8 2 13 0 14 0 fti 2 11 14 16
C_O1 F_R2

L3 32

10-E 7,10 7-E 3,7

24
12,11 12-R 8,12 8-R 11,8 11-E

16sti 30 1 26 0 1 22 0 19 1 16
fti 32 29 23 22 18

B_R2

L4 32 Empty station 24 Empty station 16sti
fti

B_L1 B_L2
��Back Arm��

Figure 5. Representation of an assembly line balancing solution for high setup times (Center is Right).

 199 Page 10 of 15 Sådhanå (2018) 43:199

T
a
b
le

2
.

C
o
m
p
u
ta
ti
o
n
al

re
su
lt
s
o
f
p
ro
p
o
se
d
A
C
O
.

L
o
w

se
t-
u
p
v
ar
ia
b
il
it
y
le
v
el

H
ig
h
se
t-
u
p
v
ar
ia
b
il
it
y
le
v
el

W
it
h
o
u
t
se
t-
u
p

(D
el
ic
e
et

a
l
2
0
1
7
)

N
M
[N

S
]

N
M
[N

S
]

C
P
U

N
M
[N

S
]

N
M
[N

S
]

C
P
U

(m
in
)

(a
v
g
)

ti
m
e
(s
)

(m
in
)

(a
v
g
)

ti
m
e
(s
)

P
ro
b
le
m

C
R

L
R

L
R

L
R

L
R

L
R

L
R

L

P
9

5
4

4
1
[4
]

1
[4
]

1
[4
]

1
[4
]

\
0
.0
1

\
0
.0
1

2
[5
]

2
[5
]

2
[5
]

2
[5
]

\
0
.0
1

\
0
.0
1

6
3

3
1
[4
]

1
[4
]

1
[4
]

1
[4
]

\
0
.0
1

\
0
.0
1

2
[5
]

2
[5
]

2
[5
]

2
[5
]

\
0
.0
1

\
0
.0
1

P
1
2

5
5

5
2
[6
]

2
[6
]

2
[6
]

2
[6
]

\
0
.0
1

\
0
.0
1

3
[7
]

3
[7
]

3
[7
.1
]

3
[7
]

\
0
.0
1

1

6
5

5
2
[5
]

2
[5
]

2
[5
]

2
[5
]

\
0
.0
1

\
0
.0
1

2
[6
]

2
[6
]

2
[6
]

2
[6
]

\
0
.0
1

\
0
.0
1

7
4

4
2
[5
]

2
[5
]

2
[5
]

2
[5
]

\
0
.0
1

\
0
.0
1

2
[5
]

2
[5
]

2
[5
]

2
[5
]

\
0
.0
1

\
0
.0
1

8
4

4
1
[4
]

1
[4
]

1
[4
]

1
[4
]

\
0
.0
1

\
0
.0
1

2
[4
]

2
[5
]

2
[4
.5
]

2
[5
]

\
0
.0
1

\
0
.0
1

P
1
6

1
6

6
6

2
[7
]

2
[7
]

2
.7
[7
]

2
[7
]

\
0
.0
1

\
0
.0
1

3
[8
]

3
[8
]

3
[8
]

3
[8
]

1
1

1
9

5
5

2
[6
]

2
[6
]

2
[6
]

2
[6
]

\
0
.0
1

\
0
.0
1

2
[6
]

2
[6
]

2
[6
.5
]

2
[6
.4
]

1
1

2
2

4
4

2
[5
]

2
[5
]

2
[5
]

2
[5
]

\
0
.0
1

\
0
.0
1

2
[6
]

2
[6
]

2
[6
]

2
[6
]

\
0
.0
1

\
0
.0
1

P
2
4

2
0

7
7

2
[8
]

2
[8
]

2
.9
[8
.1
]

2
.9
[8
.2
]

3
3

3
[9
]

3
[9
]

3
[9
.4
]

3
[9
.5
]

2
2

2
5

6
6

2
[7
]

2
[7
]

2
[7
]

2
[7
]

\
0
.0
1

\
0
.0
1

2
[8
]

2
[8
]

2
[8
]

2
[8
]

\
0
.0
1

1

3
0

5
5

2
[6
]

2
[6
]

2
[6
]

2
[6
]

\
0
.0
1

\
0
.0
1

2
[6
]

2
[6
]

2
[6
.5
]

2
[6
.1
]

1
0

6

3
5

4
4

2
[5
]

2
[5
]

2
[5
]

2
[5
]

\
0
.0
1

\
0
.0
1

2
[5
]

2
[5
]

2
[5
.6
]

2
[5
.6
]

1
3

2
3

4
0

4
4

1
[4
]

1
[4
]

1
.5
[4
.1
]

1
.8
[4
.3
]

1
6

1
7

2
[5
]

2
[5
]

2
[5
]

2
[5
]

\
0
.0
1

\
0
.0
1

P
6
5

3
2
6

1
7

1
7

6
[1
9
]

6
[1
9
]

6
[1
9
]

6
[1
9
]

5
8

6
[2
1
]

6
[2
1
]

6
[2
1
.9
]

6
.2
[2
1
.8
]

2
1

1
9

3
8
1

1
4

1
4

5
[1
6
]

5
[1
6
]

5
[1
6
]

5
[1
6
.2
]

1
8

1
4

5
[1
8
]

5
[1
8
]

5
.3
[1
9
.1
]

5
.3
[1
8
.9
]

2
1

2
5

4
3
5

1
2

1
2

4
[1
4
]

4
[1
4
]

4
.2
[1
4
]

4
.5
[1
4
.3
]

5
5

8
5
[1
6
]

5
[1
6
]

5
[1
6
]

5
[1
6
.1
]

7
9

4
9
0

1
1

1
1

4
[1
3
]

3
[1
2
]

4
[1
3
]

3
.9
[1
2
.8
]

1
6

3
6
0

4
[1
4
]

4
[1
4
]

4
[1
4
.9
]

4
.3
[1
4
.6
]

1
8

1
1

5
4
4

1
0

1
0

3
[1
1
]

4
[1
1
]

3
.6
[1
1
.2
]

4
[1
1
.4
]

5
2

1
6

4
[1
3
]

4
[1
3
]

4
.2
[1
3
]

4
.1
[1
3
]

2
3

P
1
4
8

2
5
5

2
1

2
1

7
[2
4
]

7
[2
4
]

7
[2
4
]

7
[2
4
.3
]

1
4
2

1
7
8

7
[2
4
]

6
[2
4
]

7
[2
5
.5
]

7
.1
[2
5
.4
]

4
9
4

8
4
5

3
0
6

1
7

1
7

6
[2
0
]

6
[2
0
]

6
[2
0
.1
]

6
[2
0
.6
]

8
1

1
2
3

6
[2
0
]

6
[2
0
]

6
[2
0
.9
]

6
.2
[2
1
.6
]

5
1
0

8
3
5

3
5
7

1
5

1
5

5
[1
7
]

5
[1
7
]

5
[1
7
.7
]

5
.4
[1
8
]

1
2
5

1
4
9

5
[1
7
]

5
[1
7
]

5
.4
[1
8
.6
]

5
.9
[1
8
.3
]

4
7
2

1
1
8
7

4
0
8

1
3

1
3

5
[1
5
]

5
[1
5
]

5
[1
5
]

5
[1
5
.6
]

1
2
5

1
3
7

5
[1
5
]

4
[1
5
]

5
[1
5
.8
]

4
.9
[1
6
.2
]

1
0
7

1
2
1
0

4
5
9

1
2

1
2

4
[1
3
]

4
[1
3
]

4
[1
3
.9
]

4
.4
[1
4
.1
]

4
6
0

9
9

4
[1
4
]

4
[1
4
]

4
.4
[1
4
.4
]

4
.8
[1
4
.9
]

1
0
1

1
6
6

5
1
0

1
1

1
1

4
[1
2
]

4
[1
2
]

4
[1
2
]

4
[1
2
.2
]

1
2
8

1
2
1

4
[1
2
]

4
[1
2
]

4
[1
2
.9
]

4
[1
2
.9
]

4
8
5

1
1
5
2

P
2
0
5

1
1
3
3

2
2

2
2

8
[2
5
]

8
[2
5
]

8
[2
6
.7
]

8
[2
5
.8
]

8
8
2

1
5
0

8
[2
6
]

8
[2
6
]

8
.9
[2
7
.3
]

8
[2
7
.2
]

1
1
2

1
5
0

1
3
2
2

1
9

1
9

7
[2
2
]

7
[2
1
]

7
[2
2
.8
]

7
[2
1
.8
]

1
5
3

9
9

7
[2
3
]

7
[2
2
]

7
.2
[2
3
.5
]

7
[2
3
.1
]

1
3
0

5
2
6

1
5
1
0

1
7

1
7

6
[2
0
]

6
[1
9
]

6
[2
1
.1
]

6
[1
9
.9
]

1
3
7

1
2
9

6
[2
0
]

6
[2
0
]

6
.5
[2
1
.1
]

6
[2
0
.6
]

4
4
1

1
3
9

1
6
9
9

1
5

1
5

6
[1
7
]

6
[1
7
]

6
[1
7
.9
]

6
[1
7
]

4
0
9

1
4
0

6
[1
8
]

6
[1
7
]

6
[1
8
.4
]

6
[1
7
.7
]

1
2
8

1
3
6

1
8
8
8

1
3

1
3

5
[1
6
]

5
[1
5
]

5
[1
7
]

5
[1
5
.8
]

6
4
8

1
2
9

5
[1
7
]

5
[1
6
]

5
.4
[1
7
.3
]

5
[1
6
.3
]

1
3
4

1
5
9

2
0
7
7

1
2

1
2

5
[1
4
]

5
[1
4
]

5
[1
4
.9
]

5
[1
4
.3
]

1
3
3

1
2
4

5
[1
5
]

5
[1
4
]

5
[1
5
.5
]

5
[1
4
.9
]

1
4
3

1
7
7

2
2
6
6

1
1

1
1

4
[1
3
]

4
[1
3
]

4
.8
[1
3
.7
]

4
[1
3
.9
]

9
2
9

9
3
0

4
[1
4
]

4
[1
4
]

4
.8
[1
4
.1
]

4
[1
4
.6
]

2
0
9

1
6
1

2
4
5
4

1
0

1
0

4
[1
2
]

4
[1
2
]

4
[1
3
.2
]

4
[1
2
.6
]

1
1
5
9

1
2
4

3
[1
2
]

4
[1
2
]

3
.9
[1
2
.9
]

4
[1
2
.8
]

2
9
0
7

1
3
2

2
6
4
3

1
0

1
0

4
[1
1
]

4
[1
1
]

4
[1
2
.1
]

4
[1
1
.9
]

1
7
5
7

2
5
6
1

3
[1
1
]

4
[1
1
]

3
.9
[1
1
.9
]

4
[1
1
.9
]

2
5
4
9

5
3
3

2
8
3
2

9
9

4
[1
1
]

3
[1
1
]

4
[1
1
.7
]

3
.1
[1
1
.8
]

1
9
2

1
8
1

4
[1
1
]

3
[1
1
]

4
[1
1
.4
]

3
.5
[1
1
.9
]

1
7
6

1
2
2
0

B
o
ld

ch
ar
ac
te
rs

ar
e
u
se
d
to

in
d
ic
at
e
th
e
so
lu
ti
o
n
s
th
at

ac
h
ie
v
e
b
et
te
r
re
su
lt
s
fr
o
m

th
e
o
p
p
o
si
te

si
d
e
o
f
th
e
as
se
m
b
ly

li
n
e.

Sådhanå (2018) 43:199 Page 11 of 15 199

high set-up variability level. Another inference is that R

solutions have bigger range than L for the test problems

with high set-up variability level.

Box plot of deviation from the U-type two sided

assembly line balancing problem without set-up times

results are given in figure 6(b) for the proposed ACO.

Although there are some outliers, most results have

acceptable deviations. Because 29 and 30 of 35 instances

have less/equal 20% Gap for R and L at low set-up vari-

ability, respectively. High set-up variability results are not

as good as low’s but 15 and 16 of 35 instances are not

exceeded 20% Gap for R and L, respectively.

Summary results of the test problems according to the

problem size are shown in table 3. In addition, number of

instances for each size of problems and average percent

deviation values are given. As seen in table 3, proposed

approach has less than 20% Gap except P16. Especially,

left side entrance direction results are more acceptable than

right side for the large sized test problems as P65 and P205.

Deviation of the number of station from the best known

without set-up times results are given in table 4. There is no

deviation for low set-up variability level at both R and L

entrance direction for 4 of 35 instances. Moreover, 14 of 35

problems have only deviation of only one station. This means

that more than half of the instances have acceptable deviation

of number of station which is less and equal than one station.

However, the proposed approach is not as efficient as for high

set-up variability. Number of acceptable deviation instances

for R and L entrance side is 10 instances. And also Gap% of

means is shown for both low and high set-up time variability

level. While deviations of means are 1.69 and 1.49 for low

set-up variability, 2.26 and 2.2 are for high set-up variability

level. Lastly, all results obtained illustrate that the proposed

algorithm finds promising results.

6. Conclusions and future research directions

In our study, a new two sided U-type assembly line bal-

ancing problem with sequence-dependent set-up times

model and a new ACO algorithm in order to solve this

model with the objectives of minimizing the number of

positions and the number of total stations for a given cycle

time is presented. Exploring capability of the proposed

ACO algorithm is reinforced by using a heuristic priority

rule based procedure. An illustrative example is used in

order to explain each step of the proposed algorithm. Test

problems taken from the literature and newly generated

data set are solved to prove the efficiency of the proposed

algorithm. Obtained results are compared with the best

known U-type assembly line balancing problem without

(a)

(b)

High-LHigh-RLow-LLow-R

500

400

300

200

100

0

CP
U

 t
im

es
 (s

)

CPU times for low and high setup variability

High-LHigh-RLow-LLow-R

70

60

50

40

30

20

10

0

%
 G

ap

Boxplot of % Gap

Figure 6. The results of the proposed ACO approach (a) CPU

times and (b) boxplot for the Gap%.

Table 3. Results of the test problems according to the problem

size.

Proposed ACO Gap%

Problem types Number of instances R L

P9 2 16.66 16.66

P12 4 11.25 11.25

P16 3 20.55 20.55

P24 5 15.19 15.19

P65 5 14.18 12.36

P148 6 13.01 13.01

P205 10 17.05 15.17

Table 4. Deviation of the number of station.

Proposed ACO

Low set-up

variability

High set-up

variability

Number of station deviation R L R L

0 4 4 1 0

1 13 14 9 10

2 11 13 11 13

3 4 4 8 7

4 3 0 3 5

Mean 1.69 1.49 2.26 2.2

 199 Page 12 of 15 Sådhanå (2018) 43:199

set-up times. Initial solution using six types of priority rules

are improved for the proposed ACO. The experimental

results and statistical analysis show that the proposed

approach is efficient in solving the TUALBPS. An efficient

lower bound will be developed to analyse performance of

the proposed algorithm at future research. Moreover,

another population based metaheuristics such as new vari-

ants of ACO, ABC or PSO algorithms will be proposed for

the problem. Also, for the future research multi objective,

mixed model or stochastic versions of the problem may be

a promising direction.

Acknowledgement

This research was supported by Scientific Research Fund of

Erciyes University under the contract no: FBA-2017-7349.

Notations
IS Iteration size (number of iterations)

iter Iteration index 1� iter� ISð Þ
CS Colony size

a Colony index 1� a�CSð Þ
n Number of tasks

i,j Task index 1� i; j� nð Þ
CL A list composed of candidate tasks

PMi;j Precedence matrix which keeps the precedence

relations between all tasks

TMi;m Task matrix which keeps the required values of

each task

st;i Pheromone matrix saves real numbers which

indicate the pheromone trail intensity of the

task i stored in the tth task assignment process

ga;t Heuristic information matrix saves one of the

six different heuristic information which is

required to calculate the selection probability

(P) of tth task assignment process for the ant

a

Sa;i;k Solution matrix saves detailed solutions for each

task (i) of each ant

SRa;l Solution Result matrix saves objective function

values for each ant

NP Position index

NS Station index

loc Assignment locations, (loc = 1,2, 3, 4)

pos The selected position for assignment, (pos = 1,

2, …, posmax)

C Cycle time

ti Task time of each task, i 2 1; 2; . . .; nf g
fsi;j Forward set-up time for all i; j 2 1; 2; . . .; nf g
bsi;j Backward set-up time for all i; j 2 1; 2; . . .; nf g
csi;j Crossover set-up time for all i; j 2 1; 2; . . .; nf g
FSMi;j Forward set-up matrix consists of the setup

values between each task, for all

i; j where i; j 2 1; 2; . . .; nf g

BSMi;j Backward set-up matrix consists of the setup

values between each task, for all

i; j where i; j 2 1; 2; . . .; nf g
CSMi;j Crossover set-up matrix consists of the setup

values between each task, for all

i; j where i; j 2 1; 2; . . .; nf g
Fpos;loc The feasibility value of the current assignment

operation at position pos and location loc

RTpos;loc Remainder time of the current assignment

operation at position pos and location loc

Xr;i It is used to save all of the priority rule values,

which are determined in the initialization step,

for all tasks i in CL

pri It is used to save all of the calculated relative

priority rule value of each candidate task

Pi The selection probability value of task i. It is

calculated using the ant’s pheromone value and

the selected priority rule

SPl Cumulative selection probability matrix

References

[1] Boysen N, Fliedner M and Scholl A 2007 A classification of

assembly line balancing problems. Eur. J. Oper. Res. 183:

674–693

[2] Li M, Tang Q, Zheng Q, Xia X and Floudas C A 2017 A

Rules-based heuristic approach for the U-shaped assembly

line balancing problem. Appl. Math. Modell. https://doi.org/

10.1016/j.apm.2016.12.031

[3] Becker C and Scholl A 2006 A survey on problems and

methods in generalized assembly line balancing. Eur.

J. Oper. Res. 168: 694–715

[4] Salveson M E 1955 The assembly line balancing problem. J.

Ind. Eng. 6(6): 18–25

[5] Urban T L and Chiang W C 2006 An optimal piecewise-

linear program for the U-line balancing problem with

stochastic task times. Eur. J. Oper. Res. 168(3): 771–782

[6] Boysen N, Fliedner M and Scholl A 2008 Assembly line

balancing: Which model to use when? Int. J. Product. Econ.

111: 509–528

[7] Battaia O and Dolgu A 2013 A taxonomy of line balancing

problems and their solution approaches. Int. J. Product.

Econ. 142: 259–277

[8] Sivasankaran P and Shahabudeen P 2014 Literature review

of assembly line balancing problems. Int. J. Adv. Manuf.

Technol. 73: 1665–1694

[9] Kim Y K, Kim Y, Kim Y J 2000 Two-sided assembly line

balancing: a genetic algorithm approach. Product. Plan.

Control 11: 44–53

[10] Bartholdi J J 1993 Balancing two-sided assembly lines: A

case study. Int. J. Product. Res. 31: 2447–2461

[11] Lee T O, Kim Y and Kim Y K 2001 Two-sided assembly line

balancing to maximize work relatedness and slackness.

Comput. Ind. Eng. 40: 273–292

[12] Miltenburg J and Wijngaard J 1994 The U-line balancing

problem. Manag. Sci. 40(10): 1378–1388

Sådhanå (2018) 43:199 Page 13 of 15 199

https://doi.org/10.1016/j.apm.2016.12.031
https://doi.org/10.1016/j.apm.2016.12.031

[13] Urban T L 1998 Optimal balancing of U-shaped assembly

lines. Manag. Sci. 44(5): 738–741

[14] Aigbedo H and Monden Y 1997 A parametric procedure for

multi-criterion sequence scheduling for just-in-time mixed-

model assembly lines. Int. J. Product. Res. 35: 2543–2564

[15] Miltenburg J 1998 Balancing U-lines in a multiple U-line

facility. Eur. J. Oper. Res. 109: 1–23

[16] Yegül M F, Ağpak K and Yavuz M 2010 A new algorithm

for U-shaped two-sided assembly line balancing. Trans. Can.

Soc. Mech. Eng. 34(2): 225–241

[17] Ağpak K, Yegül M F and Gökçen, H 2012 Two-sided U-type

assembly line balancing problem. Int. J. Product. Res.

50(18): 5035–5047

[18] Delice Y, Aydoğan E K, Özcan and İlkay M S 2017

Balancing two-sided U-type assembly lines using modified

particle swarm optimization algorithm. 4OR 15: 37–66

[19] Delice Y, Kızılkaya Aydoğan E and Özcan U 2016

Stochastic two-sided U-type assembly line balancing: a

genetic algorithm approach. Int. J. Product. Res. 54(11):

3429–3451

[20] Andrés C, Miralles C and Pastor R 2008 Balancing and

scheduling tasks in assembly lines with sequence-dependent

setup times. Eur. J. Oper. Res. 187(3): 1212–1223

[21] Scholl A, Boysen N and Fliedner M 2008 The sequence-

dependent assembly line balancing problem. OR Spectr.

30(3): 579–609

[22] Martino L and Pastor R 2010 Heuristic procedures for

solving the general assembly line balancing problem with

setups. Int. J. Product. Res. 48(6): 1787–1804

[23] Özcan U and Toklu B 2010 Balancing two-sided assembly

lines with sequence-dependent setup times. Int. J. Product.

Res. 48(18): 5363–5383

[24] Nazarian E, Ko J and Wang H 2010 Design of multi-product

manufacturing lines with the consideration of product change

dependent inter-task times, reduced changeover and machine

flexibility. J. Manuf. Syst. 29(1): 35–46

[25] Seyed-Alagheband S A, Ghomi S F and Zandieh M 2011

A simulated annealing algorithm for balancing the

assembly line type II problem with sequence-dependent

setup times between tasks. Int. J. Product. Res. 49(3):

805–825

[26] Yolmeh A and Kianfar F 2012 An efficient hybrid genetic

algorithm to solve assembly line balancing problem with

sequence-dependent setup times. Comput. Ind. Eng. 62(4):

936–945

[27] Hamta N, Ghomi S F, Jolai F and Shirazi M A 2013 A hybrid

PSO algorithm for a multi-objective assembly line balancing

problem with flexible operation times, sequence-dependent

setup times and learning effect. Int. J. Product. Econ. 141(1):

99–111

[28] Akpinar Ş, Bayhan G M and Baykasoğlu A 2013 Hybridiz-

ing ant colony optimization via genetic algorithm for mixed-

model assembly line balancing problem with sequence

dependent setup times between tasks. Appl. Soft Comput.

13(1): 574–589

[29] Scholl A, Boysen N and Fliedner M 2013 The assembly line

balancing and scheduling problem with sequence-dependent

setup times: problem extension, model formulation and

efficient heuristics. OR Spectr. 35(1): 291–320

[30] Akpinar Ş and Baykasoğlu A 2014 Modeling and solving

mixed-model assembly line balancing problem with setups.

Part I: A mixed integer linear programming model. J. Manuf.

Syst. 33(1): 177–187

[31] Akpinar Ş and Baykasoğlu A 2014 Modeling and solving

mixed-model assembly line balancing problem with setups.

Part II: A multiple colony hybrid bees algorithm. J. Manuf.

Syst. 33(4): 445–461

[32] Esmaeilbeigi R, Naderi B and Charkhgard P 2016 New

formulations for the setup assembly line balancing and

scheduling problem. OR Spectr. 38: 493–518

[33] Şahin M and Kellegöz T 2017 Increasing production rate in

U-type assembly lines with sequence-dependent set-up times.

Eng. Optim. 49(8): 1401–1419

[34] Akpinar Ş, Elmi A and Bektaş T 2017 Combinatorial Ben-

ders cuts for assembly line balancing problems with setups.

Eur. J. Oper. Res. 259(2): 527–537

[35] Gutjahr A L and Nemhauser G L 1964 An algorithm for the

line balancing problem. Manag. Sci. 11(2): 308–315

[36] Mogale D G, Kumar M, Kumar S K and Tiwari M K 2018

Grain silo location-allocation problem with dwell time for

optimization of food grain supply chain network. Transp.

Res. Part E 111: 40–69

[37] Mogale D G, Kumar S K and Tiware M K 2018 An MINLP

model to support the movement and storage decisions of the

Indian food grain supply chain. Control Eng. Pract. 70:

98–113

[38] Blum C 2005 Beam-ACO - Hybridizing ant colony opti-

mization with beam search: An application to open shop

scheduling. Comput. Oper. Res. 32(6): 1565–1591

[39] Ding Q, Hu X, Sun L and Wang Y 2012 An improved ant

colony optimization and its application to vehicle routing

problem with time windows. Neurocomputing 98: 101–107

[40] Mogale D G, Dolgui A, Kandhway R, Kumar S K and Tiwari

M K 2017 A multi-period inventory transportation model for

tactical planning of food grain supply chain. Comput. Ind.

Eng. 110: 379–394

[41] Dorigo M and Stützle T 2009 Ant colony optimization:

Overview and recent advances. Techreport, IRIDIA.

Universite Libre de Bruxelles

[42] Colorni A, Dorigo M and Maniezzo V 1991 Distributed

optimization by ant colonies. In: Proceedings of ECAL

91-European Conference on Artificial Life, Paris, France.

Elsevier, Amsterdam, pp. 134–142

[43] Colorni A, Dorigo M and Maniezzo V 1992 An investigation

of some properties of an ant algorithm. In: Manner R,

Manderick B (Eds.), In: Proceedings of the Parallel Problem

Solving from Nature Conference (PPSN 92), Brussels, Bel-

gium. Elsevier, Amsterdam, pp. 509–520

[44] Bautista J and Pereira J 2002 Ant algorithms for assembly line

balancing. In: Lecture Notes in Computer Science 2463: 65–75

[45] Bautista J and Pereira J 2007 Ant algorithms for a time and

space constrained assembly line balancing problem. Eur.

J. Oper. Res. 177: 2016–2032

[46] McMullen P R and Tarasewich P 2003 Using ant techniques

to solve the assembly line balancing problem. IIE Trans. 35:

605–617

[47] Sabuncuoglu I, Erel E and Alp A 2009 Ant colony opti-

mization for the single model U-type assembly line balanc-

ing problem. Int. J. Product. Econ. 120: 287–300

[48] Simaria A S and Vilarinho P M 2009 2-ANTBAL: An ant

colony optimisation algorithm for balancing two-sided

assembly lines. Comput. Ind. Eng. 56, 489–506

 199 Page 14 of 15 Sådhanå (2018) 43:199

[49] Yagmahan B 2011 Mixed-model assembly line balancing

using a multi-objective ant colony optimization approach.

Expert Syst. Appl. 38: 12453–12461

[50] Kucukkoc I and Zhang D Z 2016Mixed-model parallel two-

sided assembly line balancing problem: a flexible agent-

based ant colony optimization approach. Comput. Ind. Eng.

97: 58–72

[51] Bautista J, Suarez R, Mateo M and Companys R 2000

Local search heuristics for the assembly line balancing

problem with incompatibilities between tasks. In: Pro-

ceedings of the IEEE international conference on

robotics and automation. San Francisco, CA,

pp. 2404–2409

[52] Helgeson W and Birnie D 1961 Assembly line balancing using

the rankedpositionalweight technique. J. Ind.Eng.12: 394–398

[53] Tonge F 1961 A Heuristic Program of Assembly Line

Balancing. Englewood Cliffs, NJ: Prentice-Hall

[54] Kilbridge M and Wester L 1961 A heuristic method for

assembly line balancing. J. Ind. Eng. 12: 292–298

[55] Arcus A L 1963 An analysis of a computer method of

sequencing assembly line operations. PhD dissertation.

University of California, Berkeley

[56] Moodie C L and Young H H 1965 A heuristic method of

assembly line balancing for assumptions of constant or

variable work element times. J. Ind. Eng. 16: 23–29

[57] Brian T F and Patterson J H 1984 An integer programming

algorithm with network cuts for solving the assembly line

balancing problem. Manag. Sci. 30(1): 85–99

[58] Elsayed E A and Boucher T O 1994 Analysis and Control of

Production Systems. New Jersey: Prentice Hall International

Series in Industrial and Systems Engineering

[59] Talbot F B, Patterson J H and Gehrlein W V 1986 A com-

parative evaluation of heuristic line balancing techniques.

Manag. Sci. 32(4): 430–454

[60] Scholl A and VoB S 1994 A note on fast, effective heuristics for

simple assembly line balancing, Working paper, TH Darmstadt

[61] Boctor F F 1995 A Multiple-rule heuristic for assembly line

balancing. J. Oper. Res. Soc. 46: 62–69

Sådhanå (2018) 43:199 Page 15 of 15 199

	An ant colony optimisation algorithm for balancing two-sided U-type assembly lines with sequence-dependent set-up times
	Abstract
	Introduction
	Balancing two-sided U-type assembly lines with sequence-dependent set-up times
	The proposed algorithm: an ant colony approach
	Initialization of the matrices
	Candidate list and priority rules
	Task assignment procedure
	Evaluating objective function
	Updating the best solution and pheromone matrix
	Algorithm parameters

	An illustrative example
	Computational study
	Conclusions and future research directions
	Acknowledgement
	References

