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EIGENVALUE PROBLEMS FOR SINGULAR MULTI-POINT
DYNAMIC EQUATIONS ON TIME SCALES

ABDULKADIR DOGAN

Communicated by Mokhtar Kirane

Abstract. In this article, we study a singular multi-point dynamic eigenvalue
problem on time scales. We find existence of positive solutions by constructing

the Green’s function and studying its positivity eigenvalue intervals. Two

examples are given to illustrate our results.

1. Introduction

In this article, we consider the following singular m-point dynamic eigenvalue
problem on time scales

(p(t)u∆(t))∇ + λf(t, u(t)) = 0, t ∈ (0, 1] ∩ T, (1.1)

αu(0)− βp(0)u∆(0) =
m−2∑
i=1

aiu(ξi), γu(1) + δp(1)u∆(1) =
m−2∑
i=1

biu(ξi). (1.2)

Some basic definitions on dynamical systems on time scales can be found in [5, 6].
Throughout this paper, it is assumed that

(H1) p : (0, 1)T → (0,+∞) and
∫ 1

0
1
p(s)∆s exists; we let Q(t) :=

∫ t
0

1
p(s)∆s;

(H2) ξi ∈ (0, 1)T with 0 < ξ1 < ξ2 < · · · < ξm−2 < 1, ai, bi ∈ [0,+∞) with
0 <

∑m−2
i=1 ai < α, 0 <

∑m−2
i=1 bi < 1, α, β, δ ≥ 0, γ ≤ 0 and

0 <
m−2∑
i=1

biQ(ξi)− γQ(1)− 1
α−

∑m−2
i=1 ai

(
γ −

m−2∑
i=1

bi

)(
β +

m−2∑
i=1

biQ(ξi)
)
< δ;

(H3) f : (0, 1)T × (0,+∞)→ [0,+∞) is a continuous function and

0 <
∫ 1

0

Q(s)f(s, w)∇s < +∞.

Recently, some authors have proved the existence of positive solutions to bound-
ary value problems on time scales; see for example [1, 2, 4, 9, 10, 11, 12, 13, 15, 17,
21, 22, 23, 24, 25, 30] and the references therein. However, very little work has been
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done on the existence of positive solutions of singular dynamic boundary value prob-
lem on time scales [7, 8, 18, 19]. Other related results on singular ordinary differen-
tial equations and singular difference equations appear in [3, 16, 20, 26, 27, 28, 29].

We would like to mention the following results. DaCunha et al. [8] proved the
existence results for the singular three point boundary value problem on time scales

y∆∆ + f(x, y) = 0, x ∈ (0, 1]T,

y(0) = 0, y(p) = y(σ2(1)),

where p ∈ (0, 1) ∩ T is fixed and f(x, y) is singular at y = 0 and possibly at x = 0,
y = ∞. Liang et al. [18] considered the singular two point dynamic eigenvalue
problem on time scales

[ρ(t)x∆(t)]∆ + λm(t)f(tx(σ(t))) = 0, t ∈ [a, b]T,

αx(a)− βx∆(a) = 0, γx(σ(b)) + δx∆(σ(b)) = 0,

where ρ(t) > 0 on [a, σ(b)], such that both the delta derivative of ρ(t) and the
integral

∫ ρ(b)
a

(1/ρ(τ))∆τ exist, m(·) and f(·, ·) are given functions, α, β, γ, δ ≥ 0,
such that

d :=
γβ

ρ(a)
+

αδ

ρ(ρ(b))
+ αγ

∫ ρ(b)

a

1
ρ(τ)

∆τ > 0.

Zhang and Wang [29] considered the existence and multiplicity of positive solutions
to singular multi-point boundary value problem

−(p(t)u′(t))′ + F (t, u(t)) = 0, 0 < t < 1,

u(0) =
m∑
j=1

aju(xj), w(1) =
m∑
j=1

bjw(xj),

where w(t) := p(t)u′(t), ajbj ∈ [0,+∞) with 0 <
∑m
j=1 aj < 1 and

∑m
j=1 bj <

1, xj ∈ (0, 1) with 0 < x1 < x2 < · · · < xm < 1, under certain conditions on p
and F . The arguments were based upon the positivity of the Green’s function and
Krasnosel’skii fixed point theorem.

Motivated by [8, 18, 29, 19], in this article, we study the existence of positive
solutions for a singular multi-point dynamic eigenvalue problem on time scales. We
allow f(t, w) to be singular at t = 0 and w = 0. We find eigenvalue intervals in
which there exists at least one positive solution of problem (1.1)-(1.2) by making
use of the fixed point index theory. The construction of a new Green’s function
and its positivity are important to our discussion.

This article is organized as follows. In Section 2, we construct the Green’s
function and give some lemmas based on the positivity of the Green’s function. In
Section 3, we find eigenvalue intervals in which there exists at least one positive
solution of problem (1.1)-(1.2). In Section 4, we study the existence of positive
solutions to boundary value problem (1.1)-(1.2) with λ = 1. Finally, in section 5,
we give two examples to illustrate our existence theorems.

2. Green’s function and some lemmas

Lemma 2.1. Let h : (0, 1)T → [0,+∞) be continuous and satisfy

0 <
∫ 1

0

Q(s)h(s)∇s < +∞.
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Let

Q(t) :=
∫ t

0

1
p(s)

∆s, y(t) := Q(t)
∫ 1

t

h(s)∇s, t ∈ [0, 1]T,

where the function p(t) is a nonnegative measurable on (0, 1]T. Then y(0) :=
limt→0+ y(t) = 0.

Proof. If
∫ 1

0
h(s)∇s < +∞, then the lemma is clearly true. We now assume that∫ 1

0
h(s)∇s = +∞. In this case, the function y(t) can be written in the form

y(t) =
∫ 1

t

Q(s)h(s)∇s−
∫ 1

t

(
Q(s)−Q(t)

)
h(s)∇s

=
∫ 1

0

H(s− t)Q(s)h(s)∇s−
∫ 1

0

H(s− t)
(
Q(s)−Q(t)

)
h(s)∇s

for all t ∈ (0, 1]T, where H(t) is the Heaviside function, i.e., H(s) = 1, for s > 0
and H(s) = 0, for s ≤ 0. Let

fn(s) = H(s− tn)Q(s)h(s), gn(s) = H(s− tn)(Q(s)−Q(tn))h(s), s ∈ [0, 1]T,

where tn is an arbitrary decreasing sequence that approaches 0 as n→∞. Then

lim
n→∞

fn(s) = lim
n→∞

gn(s) = Q(s)h(s).

Applying the Levi monotone convergence theorem or the Lebesgue dominated con-
vergence theorem, we have

y(0) = lim
t→0+

y(t) = lim
n→∞

∫ 1

0

fn(s)∇s− lim
n→∞

∫ 1

0

gn(s)∇s

=
∫ 1

0

lim
n→∞

fn(s)∇s−
∫ 1

0

lim
n→∞

gn(s)∇s

=
∫ 1

0

Q(s)h(s)∇s−
∫ 1

0

Q(s)h(s)∇s = 0.

This completes the proof. �

Lemma 2.2. Let the assumptions of Lemma 2.1 be satisfied. Then the boundary-
value problem

(p(t)u∆(t))∇ + h(t) = 0, t ∈ (0, 1]T, (2.1)

αu(0)− βp(0)u∆(0) =
m−2∑
i=1

aiu(ξi), γu(1) + δp(1)u∆(1) =
m−2∑
i=1

biu(ξi) (2.2)

has a unique solution given by

u(t) =
∫ 1

0

G(t, s)h(s)∇s, t ∈ [0, 1]T. (2.3)

Here the Green’s function is defined by

G(t, s) := D(t, s) +
1
d

[ 1
α−

∑m−2
i=1 ai

(m−2∑
i=1

bi − γ
)(m−2∑

i=1

aiD(ξi, s) + β
)

+
m−2∑
i=1

biD(ξi, s)− γQ(s)
][β +

∑m−2
i=1 aiQ(ξi)

α−
∑m−2
i=1 ai

+Q(t)
]
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+
1

α−
∑m−2
i=1 ai

(m−2∑
i=1

aiD(ξi, s) + β
)
,

where

D(t, s) := min{Q(t), Q(s)},

d = γQ(1) + δ −
m−2∑
i=1

biQ(ξi) +
1

α−
∑m−2
i=1 ai

(
γ −

m−2∑
i=1

bi

)(
β +

m−2∑
i=1

aiQ(ξi)
)
.

Proof. We suppose that C1 and C2 are arbitrary constants. Let

u(t) :=
∫ t

0

Q(s)h(s)∇s+
∫ 1

t

Q(t)h(s)∇s+ C1Q(t) + C2

=
∫ 1

0

D(t, s)h(s)∇s+ C1Q(t) + C2, t ∈ [0, 1]T. (2.4)

Then we have

u∆(t) =
(∫ t

0

Q(s)h(s)∇s+
∫ 1

t

Q(t)h(s)∇s+ C1Q(t) + C2

)∆

=
(∫ t

0

Q(s)h(s)∇s+ C2

)∆

+
(
Q(t)

∫ 1

t

h(s)∇s
)∆

+ C1Q
∆(t)

=
(∫ t

0

Q(s)h(s)∇s
)∆

+Q(σ(t))
(∫ 1

t

h(s)∇s
)∆

+Q∆(t)
∫ 1

t

h(s)∇s+
C1

p(t)
= Q(σ(t))h(σ(t))−Q(σ(t))h(σ(t))

+
1
p(t)

∫ 1

t

h(s)∇s+
C1

p(t)
, t ∈ (0, 1]T

=
1
p(t)

∫ 1

t

h(s)∇s+
C1

p(t)
, t ∈ (0, 1]T, (2.5)

where we used the delta derivative product rule, and

p(t)u∆(t) =
∫ 1

t

h(s)∇s+ C1, t ∈ (0, 1]T. (2.6)

Hence

(p(t)u∆(t))∇ =
(∫ 1

t

h(s)∇s+ C1

)∇
=
(
−
∫ t

1

h(s)∇s
)∇

= −h(t), t ∈ (0, 1]T, (2.7)

which shows that the function u(t) defined by (2.4) is a general solution of (2.7).
We are going to find a solution to problem (2.1) and (2.2). From (2.2), (2.4)-(2.6)

and (H2), we find the system of two equations

αC2 − β
∫ 1

0

h(s)∇s− βC1
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= C2

m−2∑
i=1

ai + C1

m−2∑
i=1

aiQ(ξi) +
m−2∑
i=1

ai

∫ 1

0

D(ξi, s)h(s)∇s,

γC2 + γC1Q(1) + γ

∫ 1

0

Q(s)h(s)∇s+ δC1

= C2

m−2∑
i=1

bi + C1

m−2∑
i=1

biQ(ξi) +
m−2∑
i=1

bi

∫ 1

0

D(ξi, s)h(s)∇s.

Rearranging these equations, we have(
α−

m−2∑
i=1

ai

)
C2

= C1

(
β +

m−2∑
i=1

aiQ(ξi)
)

+
m−2∑
i=1

ai

∫ 1

0

D(ξi, s)h(s)∇s+ β

∫ 1

0

h(s)∇s,

(
γQ(1) + δ −

m−2∑
i=1

biQ(ξi)
)
C1

=
m−2∑
i=1

bi

∫ 1

0

D(ξi, s)h(s)∇s+ C2

m−2∑
i=1

bi − γC2 − γ
∫ 1

0

Q(s)h(s)∇s.

Solving for C1 and C2 yields

C1 =
∫ 1

0

1
d

{ ∑m−2
i=1 bi

α−
∑m−2
i=1 ai

(m−2∑
i=1

aiD(ξi, s) + β
)

+
m−2∑
i=1

biD(ξi, s)

− γ

α−
∑m−2
i=1 ai

(m−2∑
i=1

aiD(ξi, s) + β
)
− γQ(s)

}
h(s)∇s

and

C2 =
∫ 1

0

{ 1
α−

∑m−2
i=1 ai

(1
d

{ ∑m−2
i=1 bi

α−
∑m−2
i=1 ai

(m−2∑
i=1

aiD(ξi, s) + β
)

+
m−2∑
i=1

biD(ξi, s)

− γ

α−
∑m−2
i=1 ai

(m−2∑
i=1

aiD(ξi, s) + β
)
− γQ(s)

})(
β +

m−2∑
i=1

aiQ(ξi)
)

+
1

α−
∑m−2
i=1 ai

(m−2∑
i=1

aiD(ξi, s) + β
)}
h(s)∇s.

Substituting C1 and C2 in (2.4), we find that

u(t) =
∫ 1

0

G(t, s)h(s)∇s, t ∈ [0, 1]T,

where G(t, s) is defined as in Lemma 2.2. Clearly, the constants C1 and C2 are
uniquely determined by the boundary conditions, the function u is a unique solution
to problem (2.1) and (2.2). �

We discuss the positivity of G(t, s). It is clear that

G(t, s) > 0, (t, s) ∈ [0, 1]T × (0, 1]T. (2.8)
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Lemma 2.3. The unique solution u of problem (2.1) and (2.2) satisfies

ηu(1) ≤ u(0) ≤ u(t) ≤ u(1), t ∈ [0, 1]T,

where

η := inf
{G(0, s)
G(1, s)

: s ∈ (0, 1]T
}
> 0.

Proof. From Lemma 2.2 we know that

u(t) =
∫ 1

0

G(t, s)h(s)∇s, t ∈ [0, 1]T,

where G(t, s) is defined as in Lemma 2.2 and satisfies (2.8). From (2.5), we know
that

u∆(t) =
1
p(t)

∫ 1

t

h(s)∇s+
C1

p(t)
≥ 0, t ∈ (0, 1]T,

therefore u(0) ≤ u(t) ≤ u(1) on [0, 1]T. Note that

G(0, s) =
1
d

( 1
α−

∑m−2
i=1 ai

(m−2∑
i=1

bi − γ
)(m−2∑

i=1

aiD(ξi, s) + β
)

+
m−2∑
i=1

biD(ξi, s)− γQ(s)
)(β +

∑m−2
i=1 aiQ(ξi)

α−
∑m−2
i=1 ai

)
+

1
α−

∑m−2
i=1 ai

(m−2∑
i=1

aiD(ξi, s) + β
)
,

and

G(1, s) = Q(s) +
1
d

( 1
α−

∑m−2
i=1 ai

(m−2∑
i=1

bi − γ
)(m−2∑

i=1

aiD(ξi, s) + β
)

+
m−2∑
i=1

biD(ξi, s)− γQ(s)
)(β +

∑m−2
i=1 aiQ(ξi)

α−
∑m−2
i=1 ai

+Q(1)
)

+
1

α−
∑m−2
i=1 ai

(m−2∑
i=1

aiD(ξi, s) + β
)
.

It is clear that G(0, s) < G(1, s), s ∈ (0, 1]T. We obtain

0 < η ≤ G(0, s)
G(1, s)

< 1,

where

η := inf
{G(0, s)
G(1, s)

: s ∈ (0, 1]T
}
.

As a result, we have

ηu(1) =
∫ 1

0

ηG(1, s)h(s)∇s ≤
∫ 1

0

G(0, s)h(s)∇s = u(0).

�
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Let E = C[0, 1]T be a Banach space equipped with the supremum norm and

P := {u ∈ E : η‖u‖ ≤ u(t), t ∈ [0, 1]T},

where η > 0 is given by Lemma 2.3. Then P is a cone in E. For u ∈ P , we define

(Au)(t) = λ

∫ 1

0

G(t, s)f∗(s, u(s))∇s, ∀u ∈ P, 0 < λ, (2.9)

where
f∗(t, w) := f(t,max{w, ητ}) (2.10)

Here τ is a small positive number to be determined. Note that f∗ has effectively
“removed the singularity” in f(t, w) at w = 0, therefore Au is well defined.

By Lemma 2.3, we have for each fixed u ∈ P ,

‖Au‖ = (Au)(1) = λ

∫ 1

0

G(1, s)f∗(s, u(s))∇s, (2.11)

η‖Au‖ ≤ λ
∫ 1

0

G(0, s)f∗(s, u(s))∇s = (Au)(0) ≤ (Au)(t), ∀t ∈ [0, 1]T. (2.12)

Therefore, A : P → P . Additionally, it is easy to check that A is a completely
continuous mapping.

Theorem 2.4 ([14]). Let P be a cone in a Banach space E,Ω ⊂ E a bounded open
set, 0 ∈ Ω, and A : P ∩ Ω→ P a completely continuous operator.

(A1) If Ax = µx, x ∈ P∩∂Ω⇒ µ < 1, then the fixed point index i(A,P∩Ω, P ) =
1.

(A2) If there exists y ∈ P , y 6= 0, such that x − Ax 6= vy, for all x ∈ P ∩ ∂Ω,
0 ≤ v, then the fixed point index i(A,P ∩ Ω, P ) = 0.

3. Positive solutions to eigenvalue problems (1.1)-(1.2)

For an arbitrary constant r, we let Ωr = {u ∈ E : ‖u‖ < r}. Then

∂Ωr = {u ∈ E : ‖u‖ = r},

M1(x) := min
w∈[ηx,x]

∫ 1

0

G(1, s)f(s, w)∇s, x > 0,

M2(x) := min
w∈[ηx,x]

∫ 1

0

G(0, s)f(s, w)∇s, x > 0,

M3(x) := max
w∈[ηx,x]

∫ 1

0

G(0, s)f(s, w)∇s, x > 0,

M4(x) := max
w∈[ηx,x]

∫ 1

0

G(1, s)f(s, w)∇s, x > 0.

For eigenvalue problem (1.1)-(1.2), we have the following existence theorems for
positive solutions.

Theorem 3.1. Suppose that (H1)–(H3) hold. If f0
M4

:= limx→0+ M4(x)/x and
f∞M1

:= limx→∞M1(x)/x exist and 0 < f0
M4

< f∞M1
, then problem (1.1)-(1.2) has at

least one positive solution 1
f∞M1

< λ < 1
f0

M4

.
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Proof. Since λ < 1/f0
M4

, we know that there exists 0 < τ where, for τ ≥ x > 0,∫ 1

0

G(1, s)f(s, w)∇s < x

λ
, ∀ηx ≤ w ≤ x.

Therefore, ∫ 1

0

G(1, s)f(s, w)∇s < τ

λ
, ∀ητ ≤ w ≤ τ.

We show that Au = µu, u ∈ P ∩ ∂Ωτ ⇒ µ < 1. From u ∈ P ∩ ∂Ωτ , we obtain
‖u‖ = τ and ητ ≤ u(t) ≤ τ for all t ∈ [0, 1]T. Thus,

µ‖u‖ = ‖Au‖ = (Au)(1) = λ

∫ 1

0

G(1, s)f∗(s, u(s))∇s

= λ

∫ 1

0

G(1, s)f(s, u(s))∇s

< λ
τ

λ
= τ = ‖u‖.

Therefore µ < 1. By Theorem 2.4 (A1) it follows that

i(A,P ∩ Ωτ , P ) = 1. (3.1)

Further, since 1
f∞M1

< λ, there exists 0 < τ < ρ where, for ρ ≤ x,∫ 1

0

G(1, s)f(s, w)∇s > x

λ
, ∀ηx ≤ w ≤ x.

Therefore, ∫ 1

0

G(1, s)f(s, w)∇s > ρ

λ
, ∀ηρ ≤ w ≤ ρ. (3.2)

Taking y ≡ ρ, we show that x − Ax 6= vy for all x ∈ P ∩ ∂Ωρ, 0 ≤ v. Assume
to the contrary that there exist u0 ∈ P ∩ ∂Ωρ, 0 ≤ v0 such that u0 − Au0 = v0ρ.
From (2.9)-(2.12), (3.2), ‖u0‖ = ρ and 0 < ητ < ηρ ≤ u0(t) ≤ ρ for all t ∈ [0, 1]T,
we have

u0(1) = (Au0)(1) + v0ρ

= λ

∫ 1

0

G(1, s)f∗(s, u0(s))∇s+ v0ρ

= λ

∫ 1

0

G(1, s)f(s, u0(s))∇s+ v0ρ

> ρ+ v0ρ = (1 + v0)ρ = (1 + v0)‖u0‖
≥ ‖u0‖,

which is a contradiction.
By Theorem 2.4 (A2) we have

i(A,P ∩ Ωρ, P ) = 0. (3.3)

In view of (3.1), (3.3) with the fact that Ωτ ⊂ Ωρ, we obtain

i(A,P ∩ (Ωρ\Ωτ ), P ) = i(A,P ∩ Ωρ, P )− i(A,P ∩ Ωτ , P ) = 0− 1 = −1. (3.4)

By (3.4) and the fixed point index theory the operator A has a fixed point u ∈
P ∩ (Ωρ\Ωτ ) with ρ ≥ ‖u‖ ≥ τ > 0, therefore 0 < ητ ≤ η‖u‖ ≤ u(t) for all
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t ∈ [0, 1]T. This shows that the fixed point u is a positive solution of (1.1)-(1.2).
The proof is complete. �

Corollary 3.2. Suppose that (H1)–(H3) hold. If f0
M4

:= limx→0+ M4(x)/x and
f∞M2

:= limx→∞M2(x)/x exist and 0 < f0
M4

< f∞M2
, then problem (1.1)-(1.2) has at

least one positive solution 1
f∞M2

< λ < 1
f0

M4

.

Theorem 3.3. Suppose that (H1)–(H3) hold. If f∞M4
:= limx→∞M4(x)/x and

f0
M1

:= limx→0+ M1(x)/x exist and 0 < f∞M4
< f0

M1
, then problem (1.1)-(1.2) has

at least one positive solution 1
f0

M1

< λ < 1
f∞M4

.

Proof. Since λ > 1/f0
M1

, we know that there exists 0 < τ where, for τ ≥ x > 0,∫ 1

0

G(1, s)f(s, w)∇s > x

λ
, ∀ηx ≤ w ≤ x.

Therefore, ∫ 1

0

G(1, s)f(s, w)∇s > τ

λ
, ∀ητ ≤ w ≤ τ.

Since λ < 1
f∞M4

, there exists 0 < τ < ρ where, for ρ ≤ x,∫ 1

0

G(1, s)f(s, w)∇s < x

λ
, ∀ηx ≤ w ≤ x.

Therefore, ∫ 1

0

G(1, s)f(s, w)∇s < ρ

λ
, ∀ηρ ≤ w ≤ ρ.

In the same way as in the proof of Theorem 3.1, we have

i(A,P ∩ (Ωρ\Ω̄τ ), P ) = i(A,P ∩ Ωρ, P )− i(A,P ∩ Ωτ , P ) = 1− 0 = 1. (3.5)

By (3.5) and the fixed point index theory, the operator A has a fixed point u ∈
P ∩ (Ωρ\Ωτ ) with ρ ≥ ‖u‖ ≥ τ > 0, therefore 0 < ητ ≤ η‖u‖ ≤ u(t) for all
t ∈ [0, 1]T. This shows that the fixed point u is a positive solution of problem
(1.1)-(1.2). The proof is complete. �

Corollary 3.4. Suppose that (H1)–(H3) hold. If f∞M4
:= limx→∞M4(x)/x and

f0
M2

:= limx→0+ M2(x)/x exist and f0
M2

> f∞M4
> 0, then problem (1.1)-(1.2) has

at least one positive solution provided 1
f0

M2

< λ < 1
f∞M4

.

4. Eigenvalue problem (1.1)-(1.2) for λ = 1

Theorem 4.1. Suppose that (H1)–(H3) hold. If f(t, w) satisfies f∞M4
< 1 < f0

M1
,

then boundary value problem (1.1)-(1.2) has at least one positive solution.

The above theorem is a special case of Theorem 3.3 when λ = 1.

Corollary 4.2. Suppose that (H1)–(H3) hold. If f(t, w) satisfies f∞M4
< 1 < f0

M2
,

then the boundary value problem (1.1)-(1.2) has at least one positive solution.

Theorem 4.3. Suppose that (H1)–(H3) hold. Assume that f(t, w) satisfies

(H4) 1
η

R 1
0 G(1,s)∇s < limw→0+

f(t,w)
w ≤ ∞, uniformly for t ∈ (0, 1]T.

Then boundary value problem (1.1)-(1.2) has at least one positive solution.
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Proof. By a method similar to that used to prove Theorem 3.3 with some alter-
ations, we can complete this proof. �

Corollary 4.4. Suppose that (H1)–(H3) hold. Assume that f(t, w) satisfies

(H5) 1
η

R 1
0 G(0,s)∇s < limw→0+

f(t,w)
w ≤ ∞, uniformly for t ∈ (0, 1]T.

Then boundary value problem (1.1)-(1.2) has at least one positive solution.

5. Examples

In this section, we illustrate our results with some examples.

Example 5.1. Let T = {0}∪ { 1
2n : n ∈ N0}, where N0 denotes the set of nonnega-

tive integers. Take p(t) ≡ 1, α = 1, γ = −1/2, δ = 3, β = 1/4, a1 = 1/2, a2 = 1/4,
b1 = 1/3, b2 = 1/6, ξ1 = 1/4, ξ2 = 1/2, and choose

f(t, w) =
1
t

( w
10

+
1
w

)
, w > 0.

We can see that f(t, w) is singular at t = 0 and w = 0. Consider the boundary-value
problem

u∆∇(t) +
1
t

(u(t)
10

+
1
u(t)

)
= 0, t ∈ T, (5.1)

u(0)− 1
4
u∆(0) =

1
2
u
(1

4
)

+
1
4
u
(1

2

)
,

−1
2
u(1) + 3u∆(1) =

1
3
u
(1

4
)

+
1
6
u
(1

2
)
. (5.2)

It is easy to see by calculation that
2∑
i=1

ai =
3
4
,

2∑
i=1

bi =
1
2
, Q(t) = t,

β +
∑m−2
i=1 aiQ(ξi)

α−
∑m−2
i=1 ai

= 2, d =
1
3
,

therefore conditions (H1),(H2) and (H3) hold. By calculations we obtain

G(0, s) = 6
[
2 min

{1
4
, s
}

+ min
{1

2
, s
}

+ 1 +
1
3

min
{1

4
, s
}

+
1
6

min
{1

2
, s
}

+
1
2
s
]

+ 4
[1

2
min

{1
4
, s
}

+
1
4

min
{1

2
, s
}

+
1
4

]
,

G(0, s) =


27s+ 7, for 0 ≤ s ≤ 1

4 ,
33
2 , for s = 1

2 ,

18, for s = 1,
and

G(1, s) = s+ 9
[
2 min

{1
4
, s
}

+ min
{1

2
, s
}

+ 1 +
1
3

min
{1

4
, s
}

+
1
6

min
{1

2
, s
}

+
1
2
s
]

+ 4
[1

2
min

{1
4
, s
}

+
1
4

min
{1

2
, s
}

+
1
4

]
,

G(1, s) =


40s+ 10, for 0 ≤ s ≤ 1

4 ,
97
4 , for s = 1

2 ,

27, for s = 1,

η = inf
s∈(0,1]

{G(0, s)
G(1, s)

}
=

2
3
.
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Observe that w
10 + 1

w is increasing when w ≥
√

10 and decreasing when w ≤
√

10.
For x ≥

√
10
η , we obtain

M4(x) = max
w∈[ηx,x]

∫ 1

0

G(1, s)f(s, w)∇s

= max
w∈[ηx,x]

∫ 1

0

G(1, s)
s

( w
10

+
1
w

)
∇s

≤
( x

10
+

1
x

)∫ 1

0

G(1, s)
s
∇s

=
365
8

( x
10

+
1
x

)
.

For x ≤
√

10, we obtain

M1(x) = min
w∈[ηx,x]

∫ 1

0

G(1, s)f(s, w)∇s

= min
w∈[ηx,x]

∫ 1

0

G(1, s)
s

( w
10

+
1
w

)
∇s

≥
( x

10
+

1
x

)∫ 1

0

G(1, s)
s
∇s

=
365
8

( x
10

+
1
x

)
and

M2(x) = min
w∈[ηx,x]

∫ 1

0

G(0, s)f(s, w)∇s

= min
w∈[ηx,x]

∫ 1

0

G(0, s)
s

( w
10

+
1
w

)
∇s

≥
( x

10
+

1
x

)∫ 1

0

G(0, s)
s
∇s

= 31
( x

10
+

1
x

)
.

Therefore,

f∞M4
:= lim

x→∞

M4(x)
x

≤ 365
8

lim
x→∞

x2 + 10
10x2

=
365
80

;

f0
M1

:= lim
x→0+

M1(x)
x

≥ 365
8

lim
x→0+

x2 + 10
10x2

=∞;

f0
M2

:= lim
x→0+

M2(x)
x

≥ 31 lim
x→0+

x2 + 10
10x2

=∞.

By Theorem 4.1 or Corollary 4.2, problem (5.1) and (5.2) have at least one positive
solution.

Example 5.2. If we set

f(t, w) = t
( w

10
+

1
w

)
, w > 0,
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then f(t, w) is singular at w = 0. By example 5.1 and simple calculations, we have∫ 1

0

G(1, s)∇s = 20
∞∑
n=2

1
4n

+ 5 +
97
16

+
27
2

=
1259
48

,

∫ 1

0

G(0, s)∇s =
27
2

∞∑
n=2

1
4n

+
7
2

+
33
8

+ 9 =
71
4
.

Thus,

1

η
∫ 1

0
G(1, s)∇s

=
72

1259
< lim
w→0+

f(t, w)
w

= t lim
w→0+

w2 + 10
10w2

=∞,

uniformly for t ∈ (0, 1]T;
1

η
∫ 1

0
G(0, s)∇s

=
6
71

< lim
w→0+

f(t, w)
w

=∞,

uniformly for t ∈ (0, 1]T. By Theorem 4.3 or Corollary 4.4, the singular boundary
value problem

u∆∇(t) + t
(u(t)

10
+

1
u(t)

)
= 0, t ∈ T,

u(0)− 1
4
u∆(0) =

1
2
u
(1

4
)

+
1
4
u
(1

2

)
, −1

2
u(1) + 3u∆(1) =

1
3
u
(1

4
)

+
1
6
u
(1

2
)

has at least one positive solution.

Conclusion. In this article we have considered a singular multi-point dynamic
eigenvalue problem on time scales. We have allowed f(t, w) to be singular at t = 0
and w = 0. We have found eigenvalue intervals in which there exists at least one
positive solution of problem (1.1)-(1.2). We have constructed the Green’s function
and have given some lemmas based on the positivity of the Green’s function. Our
results generalize and improve the results in [19]. Moreover, we have given two
examples to indicate just how our results differ from and generalize those in other
recent papers.

Acknowledgments. The author would like to thank the anonymous referees and
editor for their helpful comments and suggestions.
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