
Designing and Modelling Selective Replication for Fault-tolerant HPC Applications

Omer Subasi1,2, Gulay Yalcin3, Ferad Zyulkyarov1, Osman Unsal1, Jesus Labarta1,2
1Barcelona Supercomputing Center, 2Universitat Politecnica de Catalunya, Spain, 3Abdullah Gul University, Turkey

{omer.subasi, ferad.zyulkyarov, osman.unsal, jesus.labarta}@bsc.es, gulay.yalcin@agu.edu.tr

Abstract—Fail-stop errors and Silent Data Corruptions
(SDCs) are the most common failure modes for High Per-
formance Computing (HPC) applications. There are studies
that address fail-stop errors and studies that address SDCs.
However few studies address both types of errors together. In
this paper we propose a software-based selective replication
technique for HPC applications for both fail-stop errors and
SDCs. Since complete replication of applications can be costly
in terms of resources, we develop a runtime-based technique for
selective replication. Selective replication provides an opportu-
nity to meet HPC reliability targets while decreasing resource
costs. Our technique is low-overhead, automatic and completely
transparent to the user.

I. INTRODUCTION

As High Performance Computing (HPC) systems grow
in size and complexity, they become more vulnerable to
faults [4]. There are two types of errors that threaten the
computations of HPC applications. The first is fail-stop
errors in which the failure is detected and the application is
aborted to avoid further propagation of the error. The second
one is the data corruptions that are not detected by hardware
ECCs. In this case, the data corruption is called silent since
it is undetected. Silent data corruptions (SDCs) jeopardize
the correctness of the results of HPC applications [8] and
as a result they pose a significant threat. Although there are
studies that address fail-stop errors or SDCs, there are few
studies that address both types of errors.

In this work we combine redundant computation and
checkpoint/restart to address SDCs and fail-stop errors of
HPC applications to increase reliability. Redundant com-
putation and checkpoint/restart are two well-known tech-
niques to achieve fault-tolerance. In redundant computation,
multiple replicas of a program are executed in parallel.
Redundant computation can be used for recovering from
task failures as well as for detecting silent errors. It recovers
from fail-stop errors since if a replica fails, the remaining
replicas can still continue their computations. It detects
silent errors, such as data corruptions, by comparing the
results of the replicas. However, detecting SDCs is not
sufficient, it is also necessary to recover from SDC errors.
Checkpoint/restart can be utilized for SDC error recovery.
In checkpoint/restart, the state of the computation, called
checkpoint, is saved periodically and when a SDC error is
detected, the computation restarts from the latest checkpoint
thus recovering from SDC.

The straightforward way to protect against fail-stop errors
and SDCs is the complete replication of applications1.
However complete replication may be prohibitive due to the
high resource cost and in fact might be excessive due to the
uneven susceptibility of the different application phases to
SDCs [10]. Therefore effective and efficient techniques are
needed to selectively replicate tasks. However the optimal
selective replication is NP-hard which can be formalized as
a bounded knapsack problem [11]. Consequently, practical
selective replication solutions must employ heuristics. In
our main contribution, we propose a runtime-based, fully
automatic and completely transparent heuristic, called Tar-
get Rep, to selectively choose tasks for replication. Our de-
sign does not require any modifications at all to application
code or operating system.

Target Rep is useful in cases when the system is not
fully utilized and the idle/spare resources can be used for
replication. For example, 10% of the nodes might be idle,
and we could utilize this spare capacity by replicating
10% of the tasks. This is especially attractive since our
Target Rep heuristic chooses the tasks which would improve
the program reliability the most. Moreover, HPC systems
are typically over-engineered with spare resources to handle
unexpected surges - although usually less than by 100% as
would be required by complete task replication - and these
existing resources could be utilized by Target Rep. With
Target Rep, users can set the maximum resource utilization
for replication and our heuristic maximizes the application
reliability by transparently and automatically replicating
tasks but without exceeding the resource utilization.

In order to understand how much we would improve
the overall system reliability by replicating a process2, we
develop a reliability model based on Markov chains. The
reliability model provides a quantitative way to estimate the
reliability of HPC applications. It is basically a mathematical
framework to characterize the reliability of HPC programs
with or without replication. Our model predicts the applica-
tion FITs very accurately with only 0.26% deviation from the
actual FITs obtained by fault-injection experiments. To the
best of our knowledge, this is the first mathematical model
which quantifies the reliability of HPC programs while

1We use replication to refer to replication and checkpoint/restart together.
2We use process as a unit of execution which can be a thread, task or

MPI rank.

1

© 2017 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future
media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or
redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.
DOI 10.1109/CCGRID.2017.40

considering both fail-stop errors and SDCs. In particular,
our model is the first that distinguishes the fail-stop errors
and SDCs. The proposed reliability model is a powerful tool
which enables us to develop efficient selective replication
heuristics. Moreover these techniques are the first to solve
the problems regarding the reliability and resource budgets
of HPC applications.

As a use case, we apply our framework (i.e., model
and heuristic) to task-parallel dataflow HPC applications
where we replicate tasks. Results show that our Target Rep
heuristic stays within 5% of the optimum solutions with 50%
target replication percentage. Moreover, our overhead results
show that our selective replication heuristic has very low
overheads.

Briefly, our contributions are:

• Development, validation and implementation of a re-
liability model for HPC programs based on Markov
Chains.

• An automatic and efficient heuristic to selectively repli-
cate tasks while reducing costs significantly.

• Design, implementation and evaluation of our heuristic
using task-parallel programs as a case study.

The rest of this paper is organized as follows: Section II
presents background information. Section III presents our re-
liability model. Section IV discusses our heuristic. Section V
presents the experimental evaluation. Section VI surveys
related work. Finally, Section VII summarizes this work.

II. ERROR CLASSIFICATION AND FAILURE MODEL

Throughout this study, we refer to failures or errors as
the manifestation of faults. Errors are classified into three
categories based on their propagation (or lack thereof) from
typical error detection/correction hardware. The first class is
the Detected and Corrected Errors (DCE) where an error is
detected and corrected by the hardware. The second class
consists of errors that are Detected and Uncorrected Errors
(DUE) where the hardware is unable to recover from the
detected error. DUEs are expected to become more frequent
in the future with the increasing likelihood of double-bit and
multi-bit flips [6, 15] for caches and memory. Moreover, a
single bit flip in parity protected processor structures such as
register files could also lead to a DUE. DUEs typically result
in the crash (fail-stop) of applications since it is not possible
for the faulted processor/hardware to recover [21]. The third
class of errors consists of Silent Data Corruptions (SDCs). In
SDC, the error is not detected, and the application terminates
with wrong results. Recent research suggests that SDC can
be a serious threat for HPC and exascale [8, 14]. A previous
study at CERN found that SDC could be a serious concern
since the observed SDC rate was orders of magnitude higher
than manufacturer specifications [12]. Thus in this study we
target SDCs and fail-stop errors.

III. RELIABILITY MODELLING HPC APPLICATIONS

We now introduce and elaborate on our theoretical model
for estimating the reliability of HPC programs. We start by
introducing the reliability model when program processes
are not replicated. Then we extend the model using Markov
Chains to account for the case when processes can be
replicated.

A. Reliability Model for HPC Programs without Replication

In this section we present our formal reliability model in
which we define the intrinsic reliability of processes, and the
overall and instantaneous reliability of HPC programs. This
model sets the base for our model that incorporates process
replication in the next section.

Let ExecT ime(P) be the amount of time that the process
P takes to finish its computation. We define the intrinsic
reliability of the process P during 0 − t period, denoted
by Rintr(P, t), as the probability it will not crash and not
experience SDCs from the beginning of its computation
(t = 0) until time t where 0 <= t <= ExecT ime(P)
due to process-local errors. We assume that the system
on which the HPC programs are running is in its useful
lifetime which means that the failure rate is constant and
thus the intrinsic reliability has an exponential distribution
[20]. Mathematically, Rintr(P, t) = e−λ(P)t where λ(P) is
the failure rate of process P . Note that the unit of λ(P)
is Failures in Time (FIT) showing the number of failures
in one billion hours. The intrinsic reliability of the process
when it finishes, i.e., t = ExecT ime(P), is denoted by
Rintr(P,⊥), and Rintr(P,⊥) = e−λ(P)×ExecTime(P).

Note that it is straightforward to modify the reliability
definition to account for different phases in the lifetime of a
computing system such as for the aging phase of a system
by Weibull distribution where Rintr(P, t) = e−λ(P)(t/α)β .
In Weibull distribution α is known as the scale parameter and
β is the shape parameter. Briefly, β < 1 models the burn-in
phase, β = 1 models the useful lifetime phase (equivalent
to the exponential distribution we use) and β > 1 models
the aging (wear-out) phase in Weibull distribution [20].
Consequently, our model - without any further modification
- can address varying failure rates of processes during their
computations.

Finally we define the overall and instantaneous reliability
of a distributed HPC program respectively as follows:

R(App) =

|ℵ|∏
i

Rintr(Pi,⊥) (1)

R(App, t) =

|ε(t)|∏
i

Rintr(Pi, t) (2)

where ℵ is the set of all application processes and ε(t)
is the set of executing processes at time t. Basically the

2

Figure 1. The Markov model for a single process

reliability of a distributed program is the product of intrinsic
reliabilities of all processes in the program.

In this section we described the reliability model for pro-
grams where processes are not replicated. Now in the next
section we continue by extending this model for programs
in which processes are replicated.

B. Reliability Model for HPC Programs with Replication

When process replication is available, it is not possible (or
may not be the best fit) to use only combinatorial techniques
to model the intrinsic reliability for the processes. This is
because in case of being replicated, a process has different
states during its computation and moves among them with
some error rates. Thus we establish a Markov model based
reliability characterization formalism by leveraging Markov
chains. The model is constructed for a single process and
we use it to remodel the intrinsic reliabilities of the pro-
cesses. The reliability definitions (Equations 1 and 2) for a
distributed program remain the same.

A Markov model is a stochastic model assuming the mem-
oryless property in which the future states are determined
solely by the present state and are independent of past states.
A Markov chain is a mathematical system where the system
(in our case an individual process) goes through transitions
from one state to another in the state diagram. We establish
the state diagram where a process goes through the possible
set of states with certain error rates. Figure 1 shows our
model for a single process. We chose duplication (100%)
of processes instead of triplication (200%) to incur less cost
in the fault-free computation. State HR represents the case
where the process is healthy and replicated. A process is
healthy if it has not experienced any SDCs and has not failed
(crashed/fail-stopped). State SHR represents the case where
the process is replicated and is semi-healthy. A process is
semi-healthy if none of the replicas has crashed but one of
them has experienced some SDCs. State HNR refers to
the case where exactly one of the replicas has crashed but
the remaining one has no SDCs, i.e., it is healthy. Finally,
state F indicates that the process is in failure. That is, both
replicas have crashed or they have experienced SDCs that
have not been detected.

We now elaborate on the transitions between the states.

Transitions encapsulate the rate and conditions for them to
occur between states. λSDC(P) refers to the rate of experi-
encing a SDC for process P . Similarly λF (P) is the rate for
failures or crashes due to fail-stop errors for process P . The
transition from state HR to state HNR shows that only one
of the replica crashes and the other does not experience any
SDCs for which there are two possible combinations. We
denote it by α1 = 2λF (P)(1 − λSDC(P)). The transition
from state HR to state SHR refers the case where none
of the replicas crashes and exactly one of them experiences
some SDCs for which there are two possible combinations.
We denote it by α2 = 2λSDC(P)(1 − λF (P))

2. The
transition from state SHR to state HNR indicates that
the replica which experienced some SDCs actually crashes
and the remaining replica has no SDCs i.e., healthy. We
denote it by β1 = λF (P). The transition from state SHR
to state F represents the case where either the healthy
replica crashes or the replicas experience the same number
of SDCs in the same memory locations whose probability is
represented by ψ. The latter causes SDCs to go undetected.
If the size of the memory usage of a process is N bits in
total and k errors occur in N bits, then ψ = 1/C(N, k)
(C(N, k) denotes N choose k). We denote this transition
by β2 = ψλSDC(P)(1 − λF (P)) + λF (P). Finally, the
transition from state HNR to state F shows that the
remaining replica crashes or experiences some SDCs. We
denote it by γ = λF (P) + λSDC(P).

We now establish the Markov equations from the state
diagram from which we will derive the intrinsic reliability
of a single process. Let PHR(t), PSHR(t), PHNR(t) and
PF (t) be the probability of a process to be in the state
HR, SHR, HNR and F respectively. We use the dummy
s variable to indicate whether a process is replicated before
its computation (s = 1) or not (s = 0). The s variable is
set when a process is chosen to be selected by the runtime
heuristic. Then the series of differential equations describing
the state diagram for a single process is

dPHR(t)

dt
= −(α1 + α2)PHR(t) (3)

dPSHR(t)

dt
= α2PHR(t)− (β1 + β2)PSHR(t) (4)

dPHNR(t)

dt
= α1PHR(t) + β1PSHR(t)− γPHNR(t) (5)

dPF (t)

dt
= β2PSHR(t) + γPHNR(t) (6)

with the initial conditions:
PHR(0) = s, PSHR(0) = 0, PHNR(0) = 1−s and PF (0) =
0.

The solution to this series of differential equations of
Markov model is:

PHR(t) = se−(α1+α2)t (7)

PSHR(t) = C1 × (e−(α1+α2)t − e−(β1+β2)t (8)

3

PHNR(t) =
sα2

γ − (α1 + α2)
× e−(α1+α2)t (9)

+ C2 × e−(α1+α2)t − C3 × e−(β1+β2)t

+ (1 + s
γ(α2 + β1 + β2)− γ2 − α1β2
(γ − (α1 + α2))(γ − (β1 + β2))

)× e−γt

PF (t) = 1− PHR(t)− PSHR(t)− PHNR(t) (10)

where

C1 =
sα2

β1 + β2 − (α1 + α2)
(11)

C2 =
sβ1α2

(γ − (α1 + α2))(β1 + β2 − (α1 + α2))
(12)

C3 =
sβ1α2

(γ − (β1 + β2))(β1 + β2 − (α1 + α2))
(13)

Hence the intrinsic reliability of a process P when repli-
cation is available is defined as

RRepintr(P, t) = PHR(t) + PSHR(t) + PHNR(t). (14)

From the formula above MTTF (Mean Time To Failure) [20]
of a process P is calculated as:

MTTF (P) =

∫ ∞
0

RRepintr(P, t) dt. (15)

After calculating MTTF, we calculate FIT in billion hours
of process P as follows:

FIT (P) =
1

MTTF (P)
× 109. (16)

For brevity we omit the FIT formula, but it directly follows
from applying Equation 15 to the solutions.

An interesting ramification of our Markov model is that
the selective replication will be more significant and the
difference among the impacts of the processes on the overall
application reliability will be even more visible: The intrinsic
reliability of T can be written if it is replicated as follows:

RRepintr(P, t) = c1 × e−(α1+α2)t + c2 × e−(β1+β2)t + c3 × e−γt
(17)

for some constants c1, c2 and c3. In addition, if P is not
replicated, its intrinsic reliability (it is in HNR state at the
beginning of its computation) is

Rintr(P, t) = c′3 × e−γt (18)

for some constant c′3. Thus the reliability impact (improve-
ment) factor of P is

RRepintr(P, t)

Rintr(P, t)
=
c1
c′3
× e(γ−(α1+α2))t +

c2
c′3
× e(γ−(β1+β2))t +

c3
c′3
,

(19)

which is an exponential function.

Algorithm 1: Target Rep Heuristic
Input: x: Target % of replication to be performed.
Output: appFIT is the final FIT of the application

1 Algorithm begin
2 appFIT = 0; /* Global atomic variable */
3 numSelected = 0; /* Global atomic variable */
4 target = x; locCounter = 0;
5 For each thread in Threadpool:
6 repeat
7 createprocessesAndAddtoQueue(RdQ);
8 if (locCounter == 0) then
9 if (numSelected < target× RdQ.size()) then

10 SortedQueue queue;
11 queue = sortandMarkOriginals(RdQ);
12 selectprocesses(queue);
13 process p = RdQ.pollMarkedprocesses();
14 if p == NULL then continue;
15 executeprocess(p);
16 if p.isTwin() then continue;
17 if p.isSelected() then
18 p.waitTwin(); locCounter −−;
19 updateAppFITwithReplica(p, appFIT);
20 else
21 updateAppFITwithNoReplica(p, appFIT)
22 until (App is finished)
23 Function selectprocesses(SortedQueue queue)
24 while (locCounter < x× queue.size()) do
25 process temp = queue.peek();
26 temp.selected = true;
27 RdQ.push(temp.duplicate());
28 numSelected+ +; locCounter + +;
29 if (numSelected == target) then return;

IV. SELECTIVE REPLICATION HEURISTIC

When selecting processes dynamically at runtime, our
goal is to avoid requiring the knowledge of the entire
execution (can be obtained by offline profiling) and to avoid
keeping extensive information as the execution continues
since both are expensive. Therefore we propose a heuristic
that make use of only already existing information at runtime
to achieve efficient, lightweight and near-optimal selective
process replication.

A. Target Rep Heuristic

Target Rep aims to selectively replicate the x% of the
application processes in the best possible way. Here, x%
is the percentage of spare computational resources in the
system. In essence, Target Rep is a greedy approach that
tries to get the global optimal solution by approximating
and aggregating the local optimal solutions using the set
of processes as the computation progresses. Algorithm 1 is
the pseudo-code for Target Rep. We omit details such as
the synchronization among the threads for brevity. Since
Target Rep will not have the entire global information,
we design it as follows to get a near-optimal solution:
Target Rep inspects the set of processes as needed, marks
and sorts the processes according to their FITs (Lines 8-11).
It selects the first x% of processes from the set of marked
processes (Line 12). It accumulates the application FIT as
the execution continues according to whether a process has
been selected for replication (Lines 17-21).

4

Table I
DETAILS OF OUR TASK-PARALLEL HPC BENCHMARKS

Shared-memory Benchmarks

Sparse LU LU decomposition
Matrix size 12800x12800 doubles, block size 200x200

Cholesky Cholesky factorization
Matrix size 16384x16384 doubles and block size 512x512

FFT Fast Fourier Transform
Matrix size 16384x16384 complex doubles, block size 16384x128

Perlin Noise Noise generation to improve realism in motion pictures
Array of pixels with size of 65536, block size 2048

Stream Linear operations among arrays
Array size 2048x2048 (doubles), block size 32768

Distributed Benchmarks

Nbody Interaction between N bodies
Array size 65536 bodies, block size depends on #nodes

Matrix Multiplication Matrix Multiplication using CBLAS
Matrix size 9216x9216 doubles and block size 1024x1024

Pingpong Computation and communication between pairs of taskes
Array size 65536 doubles, block size 1024

Linpack HPL Linpack
Matrix size 131072 doubles, block size 256, 8x8 grid

V. EVALUATION

In this section we provide the evaluation and analysis of
our techniques. We apply our ideas to task-parallel HPC
programs and evaluate them with these applications. We
implement our ideas in OmpSs [5] and Nanos [18]. We
perform our experiments on Marenostrum supercomputer
[2]. Up to 64 nodes and 16 cores per node are used in
the experiments. Table I summarizes our benchmarks [1].
In shared-memory benchmark experiments all 16 cores in
one node are used. In distributed benchmark experiments
1024 cores over 64 nodes are used.

First, we validate the estimations of our model against the
results obtained in Monte Carlo simulations. Then we eval-
uate the efficacy of the Target Rep Heuristic by comparing
it to the optimal solutions.

A. Experimental Results

1) Model Validation Results: The reliability model from
Section III is utilized at runtime for selective task replication
to estimate the possible improvement in application’s reli-
ability if a task is replicated. To see whether our model is
accurate we provide an extensive validation using Monte
Carlo simulations. For the Monte Carlo simulations, we
execute each benchmark 100× and during its executions we
inject faults. For a successful validation we would expect
that the results from the Monte Carlo simulations closely
match those that are obtained from our reliability model.

Table II shows the results for the validation of our reliabil-
ity model. We perform validation for the baseline replication
where all tasks are replicated; this is the most general version
of our model. The table shows the average FIT estimated
by our model and by our injection based experiments. It
also shows the difference between the estimated FIT and
the measured FIT for each benchmark. On average, the
difference between them is 4.9%. The model underestimates
FIT for Cholesky, Pingpong and SparseLU, and for others
it overestimates. Note that FITs reported in the table are in
billion hours. We also report the standard deviations of our
results for each benchmark in the last column.

Table II
MODEL VALIDATION RESULTS

Benchmark Model FIT Experiments FIT % Difference STD
Cholesky 3.31× 100 3.57× 100 7.28% 2× 10−4

FFT 1.0× 100 9.2× 10−1 8% 3× 10−4

Linpack 1.7677× 102 1.7633× 102 5.33% 7.1
Matmul 3.48× 10−2 3.28× 10−2 5.74% 6× 10−6

Nbody 2.5× 10−4 2.4× 10−4 4% 3.6× 10−7

Perlin 2.35× 10−1 2.31× 10−1 0.002% 3× 10−4

Pingpong 1.14× 10−4 1.16× 10−4 1.75% 1.8× 10−6

SparseLU 3.6× 10−3 3.9× 10−3 7.69% 1.33× 10−4

Stream 2.2× 10−2 2.1× 10−2 4.54% 1.32× 10−4

Figure 2. Target Rep results

2) Evaluation of Target Rep Heuristic: Target Rep tries
to maximize the reliability of an application while obeying
the target percentage of task replication. We assess Tar-
get Rep by comparing its output to the optimum solution
to evaluate its efficacy. To get the optimum solution for a
specified percentage, say x%, of task replication, we first
profile each benchmark and then we sort all the tasks ac-
cording to their FITs (from smallest to the largest) calculated
during profiling and we sort and store these FITs. We choose
the first x% of the sorted tasks. The chosen set of tasks is
the optimum solution for x% of tasks.

Figure 2 shows how close our solution is to the optimal
one. The x-axis is the percentage of tasks being selected and
the y-axis is the difference (in %) between the FITs that
would be achieved with the tasks selected for replication by
the optimum solutions and the FITs that Target Rep achieves
for a given percentage of task replication. As expected, as
the replication percentage increases, the difference between
the FITs achieved by Target Rep and the optimal solution
decreases. Overall, Target Rep achieves close to the optimal
solution. When half and more than half of the tasks are
replicated (50% replication and more), the difference is only
5% and less than 5% on average respectively.

Moreover, our results show the overheads of Target Rep
with respect to fault-free execution (wall-clock) time are low
and the average overhead is 1.2%. We omit overhead results
for brevity.

VI. RELATED WORK

Replication is a well-known technique that has been
adopted in various domains from aviation to distributed
systems [13]. This technique has been used for reliability,

5

performance and ensuring quality of service. However in
most cases the complete replication of a system or an ap-
plication can be prohibitively costly to achieve the intended
purpose. As a result, selective replication becomes the only
viable solution. For instance concerning the performance
of systems, the work of Beckmann et al. [3] investigates
selective replication to increase the performance of the
caches of chip multiprocessors using a metric based on hit
latency and misses. In case of aiming for better quality of
service (QoS), Gruneberger et al. [9] propose a selective
replication heuristic to increase QoS while keeping costs
affordable for the distributed event-processing systems.

However selective replication as a way to address the
trade-off between resource costs and reliability has not been
investigated thoroughly, particularly in HPC community.
Moreover, on one hand, the aforementioned studies [3, 9]
cannot be employed to increase reliability while keeping
cost affordable since those techniques and heuristics do
not capture the reliability critical aspects of systems. On
the other hand, there is the growing body of evidence
showing that selective fault-tolerance support is of key-
importance to decrease the resource costs while providing
the required level of reliability. For instance, Luo et al.
[10] and Fang et al. [7] find that different applications and
different phases in applications exhibit different vulnerabil-
ities. Although neither of these works state it explicitly,
it follows that selective fault-tolerance is a natural fit to
achieve a reasonable trade-off between costs and the re-
quired level of reliability for different applications. In our
previous work [17] we proposed a runtime-based heuristic to
obey application specific reliability thresholds. In this work
we model HPC application reliability formally by Markov
chains and we propose a dynamic runtime heuristic for
utilizing idle resources to maximize the reliability of HPC
applications. Our work [16] proposes a programmer-guided
partial redundancy mechanism for SDCs and fail-stop errors.

Research on reliability modelling, such as [19, 22], has
been conducted for various types of computing systems.
However they all model the reliability of systems rather
than that of applications to predict the failure rates of
the systems. For instance, Thanakornworakij et al. [19]
provide a model for HPC systems while Welke et al. [22]
establish generic models based on Markov modelling that are
applicable for hardware or software systems having well-
known architectures such as simplex and triplex modular
redundant architectures. However, none of these models
can be utilized to achieve application-level reliability with
selective redundancy under the failure rates of both SDCs
and fail-stop errors.

VII. CONCLUSION

In this study we propose low-overhead and effective
selective replication for HPC programs to mitigate SDCs and
fail-stop errors. To achieve selective replication, we develop

and validate a reliability model for HPC programs. Based
on the model we present an automatic heuristic to select the
tasks to replicate for using spare resources for redundancy.

This work is supported in part by the European Union
Mont-blanc 2 Project (www.montblanc-project.eu), grant
agreement no. 610402 and the FEDER funds under contract
TIN2015-65316-P.

REFERENCES
[1] BSC Application Repository: https://pm.bsc.es/projects/bar/wiki/applications.
[2] Marenostrum III: http://www.bsc.es/marenostrum-support-services/mn3.
[3] B. M. Beckmann, M. R. Marty, and D. A. Wood. Asr: Adaptive selective

replication for cmp caches. In Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, MICRO 39, pages 443–454,
Washington, DC, USA, 2006. IEEE Computer Society.

[4] F. Cappello, A. Geist, B. Gropp, L. Kale, B. Kramer, and M. Snir. Toward
exascale resilience. Int. J. High Perform. Comput. Appl., 23(4):374–388, Nov.
2009.

[5] A. Duran, E. Ayguade, R. M. Badia, J. Labarta, L. Martinell, X. Martorell,
and J. Planas. Ompss: a proposal for programming heterogeneous multi-core
architectures. Parallel Processing Letters, 21(2):173–193, 2011.

[6] M. Ebrahimi, H. Asadi, and M. B. Tahoori. A layout-based approach for multiple
event transient analysis. In Proceedings of the 50th Annual Design Automation
Conference, DAC ’13, pages 100:1–100:6, New York, NY, USA, 2013. ACM.

[7] B. Fang, K. Pattabiraman, M. Ripeanu, and S. Gurumurthi. Evaluating the error
resilience of parallel programs. In The 4th Fault Tolerance for HPC at eXtreme
Scale Workshop (FTXS), 2014.

[8] D. Fiala, F. Mueller, C. Engelmann, R. Riesen, K. Ferreira, and R. Brightwell.
Detection and correction of silent data corruption for large-scale high-
performance computing. In Proceedings of the International Conference on
High Performance Computing, Networking, Storage and Analysis, pages 78:1–
78:12, 2012.

[9] F. J. Grneberger, T. Heinze, and P. Felber. Adaptive selective replication for
complex event processing systems. In BD3@VLDB, volume 1018 of CEUR
Workshop Proceedings, pages 31–36. CEUR-WS.org, 2013.

[10] Y. Luo, S. Govindan, B. Sharma, M. Santaniello, J. Meza, A. Kansal, J. Liu,
B. Khessib, K. Vaid, and O. Mutlu. Characterizing application memory error
vulnerability to optimize datacenter cost via heterogeneous-reliability memory.
In Proceedings of the 2014 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN ’14, pages 467–478, Washington,
DC, USA, 2014. IEEE Computer Society.

[11] S. Martello and P. Toth. Knapsack Problems: Algorithms and Computer
Implementations. John Wiley & Sons, Inc., 1990.

[12] B. Panzer-Steindel. Data integrity. In CERN/IT Draft 1.3, 2007.
[13] D. Siewiorek and R. Swarz. Reliable Computer Systems: Design and Evaluation.

1998.
[14] M. Snir, R. W. Wisniewski, J. A. Abraham, and A. et al. Addressing failures

in exascale computing. International Journal of High Performance Computing
Applications, 28(2), 2014.

[15] V. Sridharan and D. Liberty. A study of dram failures in the field. In Proceedings
of the International Conference on High Performance Computing, Networking,
Storage and Analysis, SC ’12, pages 76:1–76:11, Los Alamitos, CA, USA, 2012.
IEEE Computer Society Press.

[16] O. Subasi, J. A. Moreno, O. S. Unsal, J. Labarta, and A. Cristal. Programmer-
directed partial redundancy for resilient HPC. In Proceedings of the 12th ACM
International Conference on Computing Frontiers, CF’15, Ischia, Italy, May
18-21, 2015, pages 47:1–47:2, 2015.

[17] O. Subasi, G. Yalcin, F. Zyulkyarov, O. S. Unsal, and J. Labarta. A runtime
heuristic to selectively replicate tasks for application-specific reliability targets.
In 2016 IEEE International Conference on Cluster Computing, CLUSTER 2016,
Taipei, Taiwan, September 12-16, 2016, pages 498–505, 2016.

[18] X. Teruel, X. Martorell, A. Duran, R. Ferrer, and E. Ayguadé. Support for
OpenMP tasks in nanos v4. In Proceedings of the 2007 Conference of the
Center for Advanced Studies on Collaborative Research, pages 256–259, 2007.

[19] T. Thanakornworakij, R. Nassar, C. B. Leangsuksun, and M. Paun. Reliability
model of a system of k nodes with simultaneous failures for high-performance
computing applications. Int. J. High Perform. Comput. Appl., 27(4):474–482,
Nov. 2013.

[20] A. Verma, S. Ajit, and D. Karanki. Reliability and Safety Engineering. 2010.
[21] C. Weaver, J. Emer, S. S. Mukherjee, and S. K. Reinhardt. Techniques to

reduce the soft error rate of a high-performance microprocessor. In Computer
Architecture, 2004. Proceedings. 31st Annual International Symposium on, pages
264–275, June 2004.

[22] S. R. Welke, B. W. Johnson, and J. H. Aylor. Reliability modeling of
hardware/software systems. IEEE Transactions on Reliability, 44(3):413–418,
Sep 1995.

6

