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ABSTRACT Deep-learning based computer vision models have proved themselves to be ground-breaking
approaches to human activity recognition (HAR). However, most existing works are dedicated to improve
the prediction accuracy through either creating new model architectures, increasing model complexity,
or refining model parameters by training on larger datasets. Here, we propose an alternative idea, differing
from existing work, to increase model accuracy and also to shape model predictions to align with human
understandings through automatically creating higher-level summarizing labels for similar groups of human
activities. First, we argue the importance and feasibility of constructing a hierarchical labeling system for
human activity recognition. Then, we utilize the predictions of a black boxHARmodel to identify similarities
between different activities. Finally, we tailor hierarchical clustering methods to automatically generate
hierarchical trees of activities and conduct experiments. In this system, the activity labels on the same
level will have a designed magnitude of accuracy and reflect a specific amount of activity details. This
strategy enables a trade-off between the extent of the details in the recognized activity and the user privacy by
masking some sensitive predictions; and also provides possibilities for the use of formerly prohibited invasive
models in privacy-concerned scenarios. Since the hierarchy is generated from the machine’s perspective,
the predictions at the upper levels provide better accuracy, which is especially useful when there are too
detailed labels in the training set that are rather trivial to the final prediction goal. Moreover, the analysis
of the structure of these trees can reveal the biases in the prediction model and guide future data collection
strategies.

INDEX TERMS Hierarchical labeling, human activity recognition, machine learning, privacy preservation,
video processing.

I. INTRODUCTION
Video processing attracts a huge demand and interest from
both academia and industry due to its ability to unlock the
intelligence in many domains such as surveillance, gam-
ing, autonomous vehicles, medical imaging, human activ-
ity recognition, and alike. Therefore, video processing and
analysis have become a predominant research topic in the
artificial intelligence (AI) and machine learning (ML) field.
The performance of video processing tasks has been brought
to a new level with the utilization of deep learning (DL).

In existing ML models for video processing and labeling
approaches, we have problems such as (i) highly correlated
labels and low accuracy for activities involving richer context
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(e.g., labels with very specific definitions when the number
of labels is high) (ii) too detailed prediction results that can
violate privacy (iii) trivial labels that have no meaning for a
specific use scenario.

First, existing ML models increasingly try to find spe-
cific labels for a larger number of activities. Their accuracy
may become lower since it will be more challenging to
distinguish between different but similar activities. Without
understanding the correlation between the observed data,
more data collection can bemeaningless [1]. Besides, without
understanding the fundamentals of the model (often referred
to as the machine), it is hard to redesign the model struc-
ture. Given these issues, the explainable AI approach [2]–[4]
aims to understand how the machine thinks while possibly
using such understanding to improve prediction accuracy or
usefulness in real-world scenarios with various constraints.
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FIGURE 1. Examples of existing approaches for ADL understanding and classification.

Most existing work has been focusing on training data set and
tuning fine models, while limited attention has been given to
the post-processing related to the model predictions results.

Second, privacy has become a highly concerning issue
in many human-computer systems. In the context of mon-
itoring, privacy has been a controversial and focal point,
especially with the enforcement of certain laws such as the
General Data Protection Regulation (GDPR). The massive
video image collections and the intelligence of processing
ability have already brought many scary thoughts to the
public. For example, in the healthcare domain, being able to
predict human’s daily activities of living (ADL) and perform
auto logging will greatly help to build an evidence-based
medicine system. However, ADL classification through video
can be extremely invasive without information filter control.
With existing ML models, it is hard to control and balance
between the prediction accuracy and privacy. Hence, there
should be a way to trade off between the details presented
from the video analysis results and privacy while retaining
the effectiveness of the system and satisfying the privacy
expectations of people.

Third, with the increasing number of possible activity
labels, some of those labels have no use in many real-world
applications. For instance, the label alligator wrestling from
Kinetics-600 dataset will not be relevant in most use cases.
Hence, such models and their results should be processed
with an appropriate strategy that accounts for the trivial
labels.

The traditional way of understanding structure and rela-
tionships among human activities is based on taxonomy

or ontology knowledge graphs, as visually exemplified
in Figure 1. However, in existing approaches, the structure of
these taxonomies (i.e., activity trees) are generated from the
human’s perspective. Yet, if we want to apply ML models for
analyzing videos to identify ADL and evaluate the models’
intelligence in order to redesign themodel, it is also important
to understand the classification logic from the machine’s
perspective. This is essential to improve and tailor the ML
models’ performance in a clear direction.

In order to address the above-stated problems, we present
a hierarchical labeling system for human activity recognition.
Such a system is inspired from the machine’s perspective
and aims to provide adjustable accuracy and privacy for
different use scenarios. The concept of the system is illus-
trated in Figure 2. Each level has a designed accuracy range
and context richness. Based on the use case requirements
on privacy, the system can be set at a specific level. For
example, in an edge-cloud configuration, the data collection
and analysis can be done on the edge and only summarized
results can be transmitted to the cloud so that the private
information is not seen or stored by the system operator. Since
the hierarchical structure is generated through observations
from the machine’s perspective, the prediction accuracy will
increase as LEVEL moves from bottom to up. Moreover,
the similarities between labels as understood by the machine
will be revealed by the hierarchical tree, which in turn enables
model understanding and may guide future data collection
strategies.

To the best of knowledge, this is the first study to pro-
pose a fully machine-generated human activity hierarchy to
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FIGURE 2. Analysis supporting a hierarchical labeling system.

overcome above-stated problems and reveal the biases of a
HAR machine, and explore how it sees the world; eventu-
ally allowing and guiding researchers and practitioners to
design appropriate mechanisms in real-world use scenarios
and also to improve the model accuracy. In the next section,
we provide a brief review of methods and datasets for human
activity recognition, present our motivation, and discuss the
feasibility of our approach. In Section 3, we describe our
methods for automatically generating the hierarchical trees
and demonstrate our strategy utilizing a chosen deep learning
model and several public datasets. We present experimental
results and provide quantitative and qualitative analyses in
Section 4. Finally, we present our final remarks and a brief
discussion on future directions.

II. BACKGROUND
A. RELATED WORK
Human activity recognition aims to analyze and detect differ-
ent human actions from various data sources such as sensor
data or multimedia data. It finds application areas in security
and surveillance, healthcare, autonomous driving, robotics,
smart home, entertainment, and others. Generally speaking,
the literature on HAR is clustered around two topics: the
more traditional sensor-based HAR and vision-based HAR.
For vision-based HAR, earlier methods include more tra-
ditional machine learning algorithms such as decision trees
or support vector machines which require hand-engineered
features. Recently, deep learning-based models gained pop-
ularity since they do not require a time-consuming manual
feature generation process and show superior performance. In
particular, sequential learning methods (e.g., long-short term
memory) and convolutional neural networks play a key role
in the architecture of the state-of-the-art deep learning-based
HAR models [7].

Providing a comprehensive review of the developments in
and the current state of HAR research is not possible given the
limited space and is beyond the scope of this work. We refer
interested readers to the recent comprehensive survey paper
by Dang et al. [8] that provides a relatively concise review
of hundreds of relevant studies among which exist more
than 10 other HAR survey papers. However, here, we briefly
describe the model used in this study. Two-Stream Inflated

FIGURE 3. Two-stream inflated 3D ConvNet model, input and output.

3DConvnet (I3D) [9] is a state-of-the-art deep learning-based
computer vision model used in human action recognition.
As illustrated in Figure 3, taking an RGB video as the input,
the model produces a series of probabilities corresponding to
the labels. The label with the highest probability can be con-
sidered as the prediction result for the video. Alternatively,
the top k results can be considered together as top predictions.
Many human activity datasets of different formats and

coverage have been employed in the literature. It is beyond
the scope of this work to list and present datasets. There are
studies that specifically review and compare HAR datasets in
the literature [10]–[12]. Instead, here, we only present a sum-
mary of several public, popular, and relevant video datasets
in Table 1. Kinetics has been first published as Kinetics-
400 [9]. It has 400 different classes and 306, 245 videos all
with a length of 10 seconds. Kinetics-600 extended it to cover
600 classes 495, 547 videos [13]. Recently, Kinetics-700was
made available [14]. All of the video labels in Kinetics dataset
are homogeneous and no hierarchical labels are considered.
Kuchne et al. [15] published HMDB51 which covers 51 dif-
ferent human activities with 6, 766 videos, with a minimum
1 second long length. All the videos are also labeled with
meta labels, which can be used to create higher classes among
those 51 classes. Soomro et al. [16] published UCF101
which covers 101 different classes and 13, 320 videos. It
applied a simplified approach of ontology where the action
categories can be divided into five types: human-object
interaction, body-motion only, human-human interaction,
playing musical instruments, and sports. ActivityNet was
originally published asActivityNet-100 [17] and later updated
as ActivityNet-200, containing 849 hours long videos in total.
It has organized the labels into a relatively richer hierarchi-
cal tree through the expert taxonomy approach. Similarly,
FCVID [18] categorizes activities in 11 high-level groups.
Lastly, COIN dataset [19] employs a similar taxonomy clas-
sification with 3-stages (domain, task, and step) and contains
11, 827 instructional videos related to 180 different tasks
in 12 domains.

As previously illustrated in Section I, existing studies
focusing on human activity hierarchies employs expert gen-
erated hierarchies such as in [5], [6], [20]. Long et al. [21]
utilizes action hierarchies represented in a hyperbolic space
rather than simpler tree representations, where hierarchies are
based on some external expert guidelines from ActivityNet.
Gaidon et al. [22] represent individual videos as a hierarchy
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TABLE 1. Open video datasets.

of activities based on spatio-temporal trajectories but do not
provide a global taxonomy of activities. Our strategy differs
from these and brings a novel approach to understand the
behavior and bias of an HARmachine and leverage the power
of human intelligence to improve it.

B. MOTIVATION AND FEASIBILITY
The ultimate goal of AI is to train the machine to think in a
consistent way with how a human thinks, particularly in tasks
where humans are good at such as human activity recognition.
Unfortunately, we are currently far from that and there is
still a large gap between how the machines think and how
we humans think. In order to reduce this gap, it is necessary
to assess where the machine’s intelligence is through under-
standing the analysis results from the machine’s perspective.
This awareness will be a key to enhance the learning model
and it can also provide directions for future data collection.
In order to train the machine and collect more data in an
efficient and effective manner, one needs to understand the
correlation between the existing videos and address the lim-
itations and boundaries. Most existing models are mainly
concerned with the accuracy for each label and video. We
think that introducing a hierarchical prediction system can
better serve the goal. Moreover, one huge concern currently
about video processing is privacy invasion. Limited work
concerned itself with the privacy problem when design-
ing an analyzing/predicting machine learning model for
ADL recognition.

In order to modify existing deep learning models to output
prediction results through a hierarchical labeling structure,
firstly we need to analyze the current prediction results and
prove that there is such a possibility. This requires us to under-
stand the human activities from the machine’s perspective,
rather than from our human intuition. The machine learns
about the world through the dataset that is fed to them, more
specifically, videos and the labels that are associated with
them. The model might be biased and contradicting to our
intuition due to the explicit or implicit limitations of the
dataset. For example, from the perspective of a human or a
real-world use case, we may think videos of brushing teeth
and flossing are quite similar. However, an ML model may
classify them quite differently and identify that flossing has a
higher similarity to putting makeup. This may simply because
the training dataset does not have enough number of diverse
videos for these labels, hence, the model cannot identify this
activity precisely.

We have examined several existing video analysis deep
learning models and discover that the total number of labels
are huge, ranging to more than 600 labels. Some of the labels
are revealing great details of human activities. In many sce-
narios, too detailed labeling is not necessary and also invasive
to privacy. For example, due to privacy issues, there would be
different requirements for the analysis results and the level
of details. Besides, too detailed labels make training those
models become difficult since sourcing appropriately rich and
diverse training data is challenging. Due to the limited amount
of training data, the prediction accuracy for individual labels
can be extremely low, which provides little meaning. Some
of the labels have high correlations, which makes prediction
even more difficult and the ML model can be easily con-
fused. Some of the labels are mostly trivial and make little
sense in reality, especially in daily activities monitoring. To
summarize, there are several existing problems accosted with
existing video processing deep learning models:

• Too many labels with only homogeneous organizing
• Low accuracy for top 1 prediction
• High correlation between many labels
• Too detailed labeling invading privacy

The Two-Stream I3D model trained on ImageNet [23]
and Kinetics dataset yields the following performance on
Kinetics-400. The accuracy for the Top 1 prediction is 74.2%
whereas the accuracy for the sum of top 5 predictions
can reach 91.3%. Some activities with more details/context
involved are harder to predict than the ones with less detail.
For example, tango dancing is harder to identify comparing
with jogging. Furthermore, tango dancing is reflecting more
details related to a scenario than dancing.

This motivates us to investigate into the similarity of the
labels and build a hierarchical tree structure of them by ML
techniques. The depth of the tree indicates the accuracy and
level of details of the prediction result to fulfill a system’s
privacy and accuracy requirements. In order to construct such
a hierarchical tree for ADL, we need to understand the cor-
relations between the labels and this understanding needs to
be from the machine’s perspective. Through this way, we can
discover which parts of the machine’s thinking are contra-
dicting to our human common sense. Therefore we can fill
the gap via specifically directed future improvements. Then,
for privacy concerns, we need to understand the connection
between privacy and accuracy. We can choose a method to
cluster activity labels into a hierarchical structure to enable

18310 VOLUME 9, 2021



M. Altin et al.: Machine-Generated Hierarchical Structure of Human Activities to Reveal How Machines Think

the high prediction accuracy at desired, privacy-preserving
levels.

III. HIERARCHICAL LABELLING SOLUTION
The methodology in this study is designed to generate a
hierarchy labeling tree for human activities and can be con-
ducted in two consecutive steps. First, similarity measures
are devised to quantify the resemblance between different
activities through their co-occurrences in the predictions of
a video classification model. This resemblance is measured
and assessed from the machine’s perspective rather than
the human’s. Then, considering the quantified similarities
between activities as the distance metric, a set of various
hierarchical clustering techniques are applied to automati-
cally generate the activity label trees. Through analyzing the
generated tree from the human’s perspective, we can gain
insights into the model and the dataset.

A. SIMILARITY SPACE
In order to construct the similarity dataset, we have followed
the following procedures.

1) COMPOSED DATASET
A collective dataset with 15, 938 videos are formed from
public datasets including UCF101, HMDB51, and Kinetics-
600. Herein we refer this dataset as the ComposedDS. The
whole UCF101 dataset which consists of 12, 435 videos is
taken. 3456 videos are chosen randomly from HMDB51.
However, the selected videos from the two datasets did not
have any videos that resembled the 6 of the 600 activities from
Kinetics, which hints at the discrepancy between different
datasets. To ensure that all labels show up at least once in
the top-5 predictions of the I3D model, 47 videos of these
6 activities are taken from the test set of Kinetics-600.

2) VIDEO CLASSIFIER
The I3D model pre-trained on the training set of
Kinetics-600 is used to make predictions for each of video
from ComposedDS. The model has an output vector with
600 values through a softmax function. Each value in the
vector represents the predicted probability of the correspond-
ing label. The prediction results for all the videos from
ComposedDS are recorded and used to form a generated
dataset with a size of [15938, 600], herein named Gener-
atedDS600. It is important to note that the I3D model was
not trained on any of the videos from ComposedDS and the
original ground-truth labels of ComposedDS differs from that
of Kinetics-600. Therefore, the dataset that the I3D model is
trained on does not overlapwith the dataset that is used to gen-
erate GeneratedDS. For each video, the top five predictions
of ComposedDS are recorded as an individual set, named
GeneratedDS5 with a size of [15938, 5]. For an example
video, the top five predictions are stored in GeneratedDS5
as shown in Table 2, originally followed by No. 6 passing
American football (AF), in game with a probability of 0.02.

TABLE 2. I3D predictions for a sample video.

A really interesting fact we have observed from Table 2
and many other instances fromGeneratedDS5, is that most of
the time, the activities that the machine thinks are correlated,
are also correlated from our human’s understanding. This
gives us a good start. I3D model is recognizing the world
similarly as a human to a certain degree. However, it is
not always the case. As in Table 2, the machine thinks that
playing field hockey is similar to other soccer activities and
ranks better than few other soccer activities in this case. This
mistake is not dramatically disappointing since the probabil-
ities associated with those labels are not high. With a simple
analogy, if a child has made this mistake, blindly forcing
them to remember this activity is not an efficient way of
education. Finding the correlation between the activities and
teaching the child to learn the similarities and the distinc-
tions is a better approach. Therefore, teaching the child to
distinguish a soccer field from the hockey field may avoid
this mistake in the future. The same is true when training
machines.

3) SIMILARITY CALCULATION
To teach the machine to be more intelligent, we want to adopt
a more systematic way rather than just randomly collecting
more data and perform more training. We need to understand
why the machine made this mistake. Like teaching a child,
firstly, we need to find out, which labels that the machine
thinks are highly similar. We propose a similarity mea-
sure based on the element co-occurrences in GeneratedDS5.
We propose to use two different measures to quantify the
extent of co-occurrence: confidence [24] (Eq. 1) and lift [25]
(Eq. 2).

Cij = P(i|j) =
P({i, j})
P(j)

(1)

Lij =
P(i|j)
P(i)

=
P({i, j})
P(i)P(j)

(2)

Confidence Cij measures the probability of i being in the
set given that j already exists. Cij can range from 0 to 1 and a
higher value indicates a greater similarity between the activity
i and j. It is an asymmetric measure; thus, Cij 6= Cji usually.
Moreover, if i is a popular activity in the dataset, it tends
to co-occur more with others, resulting in having higher
confidence values.
Lift Lij corrects Cij for the overall popularity of i over all

sets. When it equals 1, it indicates the complete independence
of events i and j, i.e., the extent of their co-occurrences is by
random chance. Like confidence, the higher values indicates
greater similarity. Unlike the former which is limited to the
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[0, 1] range, it can take any non-negative value and it is a
symmetric metric; thus, Lij = Lji.
We can consider that high confidence or lift value indicate

high similarity between two activities from the machine’s
perspective. However, we are also interested in the similarity
structure among all activities. We use confidence and lift
as the distance metrics to cluster activities into subgroups.
The information for the subgroups is important for testing
a machine and further training. Using the same analogy,
when asked to describe an activity, a child might say playing
soccer. This may be a wrong answer, but you can still get
the general concept that people are playing a certain sport.
If people are not playing soccer but are playing sports, then
you can still trust the explanation of the child at a certain
level. If people are not even playing sports, then you cannot
rely on the responses of the child at all. This hints that there
are more fundamental issues about how the child is taught
to distinguish different activities. Likewise, in the machine
intelligence case, we want to know what is the probability
associated with playing sports and what is the probability
associated with playing soccer. Therefore, hierarchical clus-
tering for activities is a good strategy to assess the intelligence
of a machine and also can help with teaching a machine to
learn.

For hierarchical clustering, the distance between i and j
must be symmetric, i.e., Dij = Dji. Lift is symmetric whereas
confidence is not. We define the distance Dij between two
activities i and j in two alternative ways based on confidence
and lift as shown in Equation 3 and 4 respectively and ensure
that both are generalized to the range [0, 1] for consistency.

DCij = 1−
√
CijCji (3)

DLij = 1−
Lij −min(L)

max(L)−min(L)
(4)

In obtaining a single symmetric measure from two asym-
metric confidence measures, geometric mean is chosen over
arithmetic mean on purpose to award reciprocal similarities
where activity i co-occurs with activity j, and j also co-occurs
with i. The measure obtained by geometric mean is referred
to as the cosine measure whereas the measure that can be
obtained by the arithmetic mean is referred to as Kulczyn-
ski measure. Cosine measure is null-invariant, i.e., it is not
affected by the sets that do not contain any of the examined
elements (i.e., null sets). On the other hand, lift is sensitive to
the number of such null sets, which [26, Chapter 6] provides
a comparative discussion on different measures in the context
of frequent itemset mining. As a demonstrating example,
Table 3 lists each activity that is a member in at least 5% of
all sets where playing basketball is also a member, along with
the values calculated by the similarity measures employed in
this study.

B. HIERARCHICAL CLUSTERING
Clustering is the process of creating multiple groups (i.e.,
clusters) from the given objects such that the objects are
similar to those in the same clusters and dissimilar to those

TABLE 3. Top items co-occurring with j : playing basketball.

in different clusters. We employ hierarchical clustering (HC)
methods to obtain a tree-like structure where the number of
clusters can be determined post-hoc and the interpretation is
richer.

Agglomerative hierarchical clustering works by merging
the most similar objects in a tree-like structure from leaf
nodes to the root node in a bottom-up manner. In the begin-
ning, it creates the same number of clusters as the number of
objects where each object is a cluster of its own, called as a
singleton. Then, at each step, it identifies the most similar two
clusters and merges them into one cluster. This process iter-
ates until all clusters are merged into the single highest-level
cluster. The order in which clusters are merged with each
other, hence, results in the hierarchical tree structure.

There exist multiple methods for calculating the dis-
tance between two clusters. Given two clusters u and v,
single-linkage uses the shortest distance between any pair
of objects from u and v, complete linkage uses the longest
distance between any pair of objects from u and v, average-
linkage [27] uses the average distance between all pairs of
objects from u and v. Given that s and t is merged to form
cluster u, weighted-linkage [27] uses the average of distances
between s and v, and t and v to find the distance between u
and v. On the other hand, Ward’s method [28] merges two
clusters which minimizes the total within-cluster variance at
each step. According to [29] and [30], Ward’s and complete-
linkage methods tends to generate a more balanced tree with
approximately equal cluster sizes.

600 activity labels i, j, . . . and the pairwise distances
between themDij, . . . are fed as input to the above-mentioned
set of hierarchical clustering methods. In line with its goals
and underlying mechanisms, the HC process is expected to
reveal the hidden hierarchy of human activities. Moreover,
HC algorithms utilizing differentmethods to calculate the dis-
tance between clusters would result in different trees which
can be compared quantitatively (e.g., the extent it improves
prediction accuracy at activity group levels) and qualitatively
(e.g., the extent that the shared semantics within the same
activity cluster is plausible).

The trees obtained by the HCmethod can be cut at different
depths to divide the data into the desired number of clusters.
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FIGURE 4. Classification accuracy of I3D model on ADL hierarchies.

In this case, the maximum number of clusters is 600 where
each label is a cluster of its own and there is practically no
clustering. The minimum number of clusters is 1 where all
labels are grouped together and there is again practically no
clustering. The tree can be cut to obtain k clusters where
1 ≤ k ≤ 600. 2670 videos are randomly selected from
Kinetics-600 test set (excluding the 47 videos utilized earlier)
and prediction of I3D model is compared at different levels.
The accuracy at k = 600 gives the accuracy with respect to
the individual activity labels, the accuracy at 1 < k < 600
gives accuracy with respect to the activity groups at different
levels, and k = 1 gives the accuracy of 100%. For instance,
when k = 10, the activities are organized under 10 groups
and accuracy is measured based on whether the label pre-
dicted by I3D is in the same cluster as the ground-truth label
is in.

IV. RESULTS
A. OVERVIEW ON THE ACCURACY
Utilizing the two distance measures and five hierarchical
clustering methods, a total of 10 different hierarchies are
obtained. Figure 4 visualises the classification accuracy of
I3D model on randomly selected 2670 videos from Kinetics-
600 test set. Each line represents an activity hierarchy
obtained by a different method, x-axis shows the hierarchy
levels from bottom (more detailed activities) to top (broader
categories), and y-axis shows the prediction accuracy at cor-
responding levels of hierarchy. The predictive accuracy is
higher at the upper levels of the hierarchy. This is fitting with
our human intuition. It makes the machine’s predictions at
high levels more trustworthy. For instance, from the original
I3Dmodel, we only get one lengthy final output vector. Even
though the original top 1 prediction from the model is wrong,
the upper-level predictions have a better chance to be right.

In very detailed levels where the average cluster size is up
to around 2 (i.e., when k > 300 approximately), most meth-
ods perform comparably. In this regime characterized by very
small-sized clusters of activities, confidence-based distance
measure slightly outperforms lift-based distance measure as
shown by the consistently underperforming dashed lines
in this region –except for lift-based single-linkage method
(dashed green line) which begins to outperform all other
methods at around k = 400. For k < 300, which is the
more interesting and real-world case with more clustering,
the two single-linkage methods are the only contenders with
the confidence-based version outperforming the other once
the average cluster size is above 6, that is when k > 100.
Overall, single-linkage method utilizing confidence-based
distance (hereafter called Confidence-Single) performs better
than the others when clusters include several items (i.e., k <

100) or very few items (i.e., k > 400) and performs very close
to the method with highest accuracy when 100 < k < 400.

When Figure 4 is evaluated as a whole, we observe that
a hierarchical labeling system can dramatically improve the
prediction accuracy at upper levels, particularly when the
activity hierarchy is discovered with an appropriate and effec-
tive clustering method. This property carries importance for
prediction systems with a large number and variety of activi-
ties, particularly when the information at different levels is
necessary for specific use cases. Generally, for this to be
useful, the clusters should be organized in a meaningful way.
It should be feasible to label or annotate clusters such that
the activity labels are consistent with their respective cluster
labels at upper levels.

Next, we closely examine, annotate, and discuss the activ-
ity hierarchies generated by Confidence-Singlewhich has the
highest overall accuracy, and by Confidence-Ward’s which
has a more balanced structure.
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FIGURE 5. Hierarchy of outdoor water activities.

FIGURE 6. Hierarchy of hair shaping activities.

B. THE HIERARCHY OF ACTIVITIES
The activity hierarchies generated by the machine and anno-
tated by humans cannot be produced here in full due to space
limitations but will be made available online.1 Figures 5, 6,
and 7 provides some extracts from the tree where original
labels are coloured in black and human annotations are writ-
ten in blue and uppercase letters, and some annotations are
omitted for very small clusters.

The hierarchy generated byConfidence-Single can be char-
acterized as follows. The major part of the tree consists of
clusters whose members are clearly related to each other. For
instance, Figure 5 shows a subtree that brings together various
outdoor water sports and Figure 6 shows another subtree for
hair shaping activities. In general, these figures exemplify the
major part where the machine is able to generate intuitive and
meaningful hierarchical relations among the activity labels.

The other and minor part, however, consists of the outlier
and/or under-identified activities that are not found to be
sufficiently similar to most other activities. These activities,

1https://aiiot.ucd.ie/

FIGURE 7. Individual and small groups of outlier activities.

individually or in very small groups, are merged into the rest
of the tree, i.e., the large tree that consists of the very intuitive
groupings as described in the preceding paragraph. Figure 7
exemplifies the characteristics of this part. The singleton
riding elephant is merged with the rest of the tree, i.e., the
cluster of other 599 activities. Playing paintball and playing
lasertag are grouped together to form a meaningful cluster
of two before merging with the rest of the tree, i.e., a large
cluster of 586 activities. Usually, activities in this part are not
part of meaningful hierarchies that span more than two levels.

Given the limitations of hierarchy generated byConfidence-
Single, we also investigate the hierarchy generated by
Confidence-Ward’s since it tends to construct clusters of
comparable sizes. Unlike the former, there are no activities
that are merged to the rest of the tree as individuals or in very
small groups. When visually inspected, it appears as a bal-
anced tree with some activities (those activities Confidence-
Single is not able to place within meaningful hierarchies)
are now grouped with relatively similar activities along-
side some occasional misplacements. Figure 8 presents the
human-annotated groups of activities based on the hierarchy
automatically generated by Confidence-Ward’s. The binary
nature of the tree is omitted for neat visualization. Original
activities (in italic) are given as examples for each cluster.

C. INSIGHTS ON THE DATASETS AND PREDICTION MODEL
The generated hierarchies provide implicit insights into the
prediction model and the datasets. Some activity labels are
not part of any meaningful multiple-level hierarchies and
remain in very small groups or as singletons until near the
end when they merge with the rest of the tree. Other activity
labels are placed in hierarchies where they do not intuitively
belong. This manifests under-identification for those activi-
ties. We point out three potential reasons for this problem and
suggest appropriate improvements to overcome such under-
identification.

First, the example videos that exhibit those activities might
be scarce or monotypic in the collected datasets. This results
in too few samples to learn the characteristics of these activ-
ities and their resemblance to other activities. For instance,
riding elephant is the top prediction and in the top-5 pre-
dictions only for 4 and 19 videos, respectively. To explore
whether the scarcity in the dataset is related to under-
identification, consider the top 50 activities that are among
the first to merge into meaningful and intuitive hierarchies
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FIGURE 8. Human activity hierarchy.

and the bottom 50 activities that are merged individually or
in very small groups to the rest of the tree near termination.
For the top 50 activities, the median number of videos where
the top five predictions include them is 117 whereas the same
value for the bottom 50 videos is only 31. The overall median
is 78. This indicates that the lack of videos for some activities
might be preventing those activities to be placed well in the
automatically generated hierarchy.

Second, the set of activities the model is trained for might
not be comprehensive enough to cover other activities that
are naturally very similar. For instance, consider the activity
milking cow. Themost similar activitymight bemilking sheep
or some other farm activity involving cow. However, there is
almost no other activity in the 600 activities that involve ani-
mal husbandry. As a result, milking cow could not be placed
as part of an intuitive, interesting, or otherwise informative
sub-hierarchy byConfidence-Single.Confidence-Ward’s pro-
vides only a relatively meaningful hierarchy for milking cow
where it is first merged with grooming horse, and then the
two are merged with bullfighting.

Third, some activities might have very unique nature that
it is hard to group them with other activities. For instance,
playing paintball and playing lasertag form the very intu-
itive cluster confrontational shooting sports (in Figure 7) but
they are not part of a hierarchy with meaningful depth and
width since there are not many other activities neither in the
model nor in the real world such that they are sufficiently
close.

Tracing the individual impacts of these factors on the gen-
erated hierarchies is very difficult if not impossible. Often,
more than one underlying factor contribute when some activ-
ity is not well-placed in the hierarchy. Nevertheless, our
conclusion is rather simple. We recommend that in devel-
oping an image recognition model (i) data collection should
be prioritized for activities that are not well-placed in the
hierarchy and (ii) enhancements to the label set should be
made considering the potential similarity to those activities
such as including more activities from the same domain.
Likewise, it is important to ensure a rich variety and quantity
also for the dataset that is used in calculating the similarities
between the activities for hierarchical clustering. In this way,
the performance of the proposed hierarchical labeling system
can be improved and become more practical for real-world
tasks. Besides, the predictive accuracy might improve not
only at upper levels of hierarchy but also at the level of
individual activities which is desirable in any prediction use
case in computer vision.

V. CONCLUSION AND FUTURE WORK
In this paper, we have proposed a method to automatically
generate hierarchical activity trees to understand and improve
how a HAR machine thinks. We have demonstrated that such
a hierarchical labeling system can be constructed based on
the similarity patterns in the prediction results from a state-
of-the-art DL-based HARmodel. We have performed a series
of experiments to prove the feasibility of labeling systems that
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can automatically generate hierarchical taxonomies of human
activities from the machine’s perspective.

The proposed labeling technique can preserve privacy at
upper levels while maintaining a better accuracy at those
desired and sufficient levels for the specific use cases. Also,
deep learning video processing is generally built on one or a
few datasets, with fixed label sets. Due to the nature of super-
vised learning, the model can only predict behaviors that exist
in its training set. Even with an unseen input, a model will
produce the most likely prediction from the known behaviors,
which could be wrong. Through our approach, this unseen
input will be at least associated with the correct higher level
labels.

The proposed approach provides tools to evaluate the
model’s intelligence while keeping the human in the loop and
reveals the bias of the underlying model. Such information
can also provide guidelines for collecting training data, e.g.,
by focusing on the activities that are not intuitively similar
but clustered together by the machine-generated tree. The
contradictions in the summarized level labels between the
understandings of the machine and the human, we can refer
them as cognition outliers, can reveal the underlying barriers
that are preventing a machine to think intelligently like a
human. Future research may use not only the output from the
last neural network layer but also the last few layers to further
investigate the machine’s presentations for the similarities
and distinctions between activities. If we can understand
machine thinking on a deeper level, the better we can train it
to truly think like a human. Such methods would also be con-
tributing significantly to the research stream of Explainable
AI. We also motivate researchers to further develop model
architectures that can directly produce predicting outputs in
a hierarchical tree structure. Lastly, such machine-generated
hierarchies can be used in other research problems where
similar hierarchies are created manually.
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