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ABSTRACT 

DEVELOPMENT OF MODELS AND SOLUTION 
METHODOLOGIES FOR TREE OF HUBS LOCATION AND 

ARC CAPACITATED HUB LOCATION PROBLEMS 
 

Betül KAYIŞOĞLU 
Ph.D. in Industrial Engineering 

Advisor: Prof. Dr. İbrahim AKGÜN 
 

January 2022 
 

 

In this dissertation, we study two different extensions to hub location problems, namely, 

Multiple Allocation Tree of Hubs Location Problem (MATHLP) that result from 

incorporating a tree topology requirement for the hub network and Multiple Allocation 

Arc Capacitated Hub Location Problem (MACHLP)  that result from imposing 

capacities on the arcs. We consider both problems in a multiple allocation framework 

and try to minimize total flow cost by locating p hubs. Unlike most studies in the 

literature that use complete networks with costs satisfying the triangle inequality to 

formulate the problems, we define the problems on non-complete networks and develop 

a modeling approach that does not require any specific cost and network structure. Our 

proposed approach provides more flexibility in modeling several characteristics of real-

life hub networks. We solve the proposed models using CPLEX-based algorithm and 

Gurobi-based algorithm with NoRel heuristic. For MATHLP, we develop Benders 

decomposition-based heuristic algorithms and for MACHLP, we develop a heuristic 

algorithm based on simulated annealing. We conduct computational experiments using 

problem instances defined on non-complete networks with up to 500 and 400 nodes for 

MATHLP and MACHLP respectively. The results indicate that the proposed solution 

methodologies are especially effective in finding good feasible solutions for large 

instances. 

Keywords: hub location problem, tree of hubs location problem, arc capacitated hub 

location problem, benders-type heuristics, simulated annealing 
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ÖZET 
 

AĞAÇ YAPILI VE AYRIT KAPASİTELİ HUB YERLEŞİM 
PROBLEMLERİ İÇİN MODEL VE ÇÖZÜM 
METODOLOJİLERİNİN GELİŞTİRİLMESİ 

 
Betül KAYIŞOĞLU 

Endüstri Mühendisliği Anabilim Dalı Doktora 
Tez Yöneticisi: Prof. Dr. İbrahim AKGÜN 

 
Ocak 2022 

 
 

Bu tezde, ana dağıtım üsleri (hub) arasında bir ağaç topolojisi gerektiren Çok Atamalı 

Ağaç Yapılı Hub Yerleşim Problemi (AYHYP) ve ayrıtlar üzerinden geçen akışlara üst 

limitler getiren Çok Atamalı Ayrıt Kapasiteli Hub Yerleşim Problemi (AKHYP) 

çalışılmıştır. Her iki problemde de çoklu atama stratejisi kullanılmıştır ve p adet hub 

yerleştirilerek toplam akış maliyeti en aza indirilmeye çalışılmıştır. Problemler için 

formülasyon geliştirilmesinde maliyetleri üçgen eşitsizliğini sağlayan tam serimlerin 

kullanıldığı literatürdeki birçok çalışmanın aksine, her iki problem tam olmayan 

serimler üzerinde tanımlanmış ve özel bir maliyet ile serim yapısı gerektirmeyen bir 

modelleme yaklaşımı geliştirilmiştir. Önerilen yaklaşım, gerçek hayattaki hub 

serimlerinin çeşitli özelliklerini modellemede daha fazla esneklik sağlamaktadır. 

Önerilen modeller, CPLEX tabanlı dal ve sınır algoritması ve NoRel sezgiseli ile 

birlikte Gurobi tabanlı dal ve sınır algoritması kullanılarak çözülmüştür. AYHYP için 

Benders ayrıştırma tabanlı sezgisel algoritmalar ve AKHYP için benzetimli tavlama 

metoduna dayalı bir sezgisel algoritma geliştirilmiştir. AYHYP ve AKHYP için 

sırasıyla 500 ve 400 düğüme kadar tam olmayan serimlerde tanımlanan problem 

örnekleri kullanılarak testler gerçekleştirilmiştir. Test sonuçları, önerilen çözüm 

metodolojilerinin özellikle büyük örnekler için iyi çözümler bulmada etkili olduğunu 

göstermektedir. 

Anahtar kelimeler: Ana dağıtım üssü yer seçimi problemi, ağaç yapılı ana dağıtım üssü 
yer seçimi problemi, ayrıt kapasiteli ana dağıtım üssü yer seçimi problem, Benders 
ayrıştırma tabanlı sezgiseller, benzetimli tavlama 
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Chapter 1  

INTRODUCTION 

Hubs act as aggregation, distribution, switching, and sorting centers in 

telecommunication, transportation, and computer networks where commodities (e.g., 

data, packages, etc.) are sent between many origin-destination (OD) pairs. In these 

networks, instead of sending flows directly between each OD pair, the flows are sent 

through hub facilities in at most three movements: collection from the origin to a hub, 

transfer between hubs, and distribution from the last hub to the destination (transfer 

movement may be skipped for some OD pairs). The transfer of consolidated flow 

between hubs enables to capture the economies of scale. Moreover, advantages resulting 

from reducing setup costs, centralized commodity handling, and sorting operations are 

obtained.  

A generic Hub Location Problem (HLP) is concerned with determining the 

locations of hubs, allocation of supply and demand points to hubs, and determining the 

routes between OD pairs such that total cost is minimized. The research on hub location 

addresses different types of problems, e.g., p-hub median problem locates p hubs  and 

minimizes total transportation cost, p-hub center problem minimizes maximum 

transportation cost between OD pairs by locating p hubs, hub location problem with 

fixed costs assumes that the number of hubs to locate is not known a priori and focuses 

on minimizing the sum of hub fixed costs and total transportation cost, and hub 

covering problem maximizes the demand covered with a given number of hubs to 

locate. These problems are also categorized as single allocation and multiple allocation. 

In single allocation problems, all the incoming and outgoing traffic of each node is 

routed through a single hub. In multiple allocation problems, each origin (destination) 

node can be allocated to more than one hub to send (receive) flows. For a 

comprehensive review of the problems, see, for instance, Alumur and Kara [1], 



2 
 

Campbell and O’Kelly [2], Farahani et al. [3], Contreras and O’Kelly [4], and Alumur 

[5]). 

Akgün and Tansel [6] give a network terminology for HLPs that we will also use 

to further discussion. They specify five different different types of networks: (1) Real-

world network (RealN): The physical network, e.g., road and rail networks, in which 

hub system will operate. (2) Modeled network (MN): The network used as an input in 

developing a model for the problem. MN is not necessarily the same as RealN but may 

be obtained from RealN through preprocessing. (3) Hub network (HN): The sub-

network of MN that consists of the hub nodes, non-hub nodes, and the arcs on the 

service routes between OD pairs. (4) Hub-level network (HLN): The subnetwork of HN 

consisting of the hub nodes and the hub arcs connecting them. (5) Access network 

(AN): The sub-network of HN consisting of the hub nodes, non-hub nodes, and access 

arcs that connect non-hub origin and destination nodes to hub nodes.  

The models developed for HLPs in the literature assume that the modeled network 

MN is a complete network with arc distances (costs) satisfying the triangle inequality. If 

the real-world network RealN is not complete or complete but its distances do not 

satisfy the triangle inequality (e.g., bus fares) as is the case for most real-life networks, a 

preprocessing on RealN is required to construct a complete MN by an algorithm (e.g., 

Floyd [7]) that finds the shortest path lengths between all OD pairs in RealN. Thus, the 

resulting complete MN consists of the shortest path lengths in RealN and hence its 

distances satisfy the triangle inequality. That is, an arc in a complete MN (and hence in 

a hub network HN) may actually correspond to a shortest path consisting of several 

arcs and not necessarily a single arc in RealN. Most studies do not differentiate 

between RealN and MN and directly assume that a complete MN with arc distances 

satisfying the triangle inequality is given. Even though this approach has gained 

acceptance, this may cause several modeling and computational disadvantages. For 

example, when the triangle inequality is not satisfied, the models do not work correctly 

(e.g., Marin et al. [8]). Moreover, the shortest path may not be preferred or may not be 

the path with the least cost in some cases, e.g., communication networks.   

Akgün and Tansel [6] discuss these issues in detail and propose a problem setting 

and modeling framework that allows (non-complete or complete) RealN with any cost 

structure to be directly used as MN. They present the modeling framework in the 

context of the p-hub median problem defined on non-complete networks (RealN) and 

show how to extend it to handle different hub location problems. The approach provides 
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flexibility in modeling several characteristics of real-life hub networks, e.g., the 

interactions between location and routing decisions, arcs with different costs and 

capacities, different topology and service level requirements.  

Considering the advantages resulting from the problem setting and modeling 

framework proposed by Akgün and Tansel [6], we study two different hub location 

problems, namely, Multiple Allocation Tree of Hubs Location Problem (MATHLP) and 

Multiple Allocation Arc Capacitated Hub Location Problem (MACHLP), built upon the 

problem setting proposed by Akgün and Tansel [6]. In MATHLP, a tree topology 

requirement is imposed in the hub level network. In MACHLP, capacities are imposed 

on the arcs of the network. We consider both problems in a multiple allocation 

framework and try to minimize total flow cost by locating p hubs.  

1.1 Multiple Allocation Tree of Hubs Location 
Problem (MATHLP) 

The Multiple Allocation Tree of Hubs Location Problem (MATHLP) imposes a 

tree topology requirement on the part of the network where the transfer between hubs is 

carried out, i.e., on the backbone or hub-level network, using multiple allocation 

strategy. Tree topology required for MATHLP on the HLN has been used or suggested 

for applications in railway transportation, telecommunication networks, electricity and 

water distribution networks, and pipeline transportation, where the connectivity between 

hubs is required but the setup costs for inter-hub links are significant. For example, a 

backbone network with tree topology is required in designing the high-speed train 

network in Spain with the stations being hubs [9]; in private data networks, 

metropolitan area networks, and community antenna television network systems in a 

hierarchical structure with concentrators (that aggregate and forward data packets) being 

hubs [10]; in gas pipeline networks with valve sets being hubs, which receive gas 

produced in wells through production pipes and transfer it to a station via gathering 

pipes [11]; in electricity power distribution networks with distribution substations being 

hubs [12]; in urban and public transport network with transfer points between cities and 

towns being hubs [13]. The aforementioned tree of hubs location studies consider single 

allocation framework and try to minimize the total fixed and flow cost. In this 

dissertation, we study tree of hubs location problem considering multiple allocation 

framework and minimize the total transportation cost.  
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As a motivating example for MATHLP, consider the problem of determining a 

public transportation network in a city where the nodes represent bus/rail stations and 

the arcs represent the roads/railways between bus/rail stations. The objective is to move 

the passengers from their origin stations to their destination stations such that the total 

transportation cost (e.g., travel time or operating cost) is minimized. There are different 

types of public transport networks, e.g., direct, trunk-and-feeder, radial, diameter, 

hybrid. [14]. In a trunk-and-feeder system, which is similar to the hub-and-spoke 

system, the demand on the feeder routes is served by small vehicles and combined on 

the trunk routes so that passengers from multiple feeder routes can all use a much larger 

trunk vehicle. The operating costs of large vehicles per passenger are lower than those 

of smaller vehicles. The trunk network, i.e., the back-bone network, has mostly a tree 

structure, e.g., a tram network and/or a road network with high-capacity buses operating 

with higher frequency along rapid transit corridors or paths. The stations on the 

backbone network that are incident to feeder lines are transfer points (hub nodes) where 

passengers change line. In a trunk-and-feeder system, a demand point is served by a 

single line and most passengers need to make two transfers, which is not desired by 

passengers. In this regard, a hybrid system where direct travel service between some 

OD pairs is made possible by allowing some bus lines to go beyond the trunk route as 

necessary. In such a case, these bus lines are required to pass through a transfer point on 

the backbone network for the passengers that need to change line. Moreover, more than 

one bus line may be planned to serve the same demand point (bus station) so that 

passengers can prefer the line closer to their destinations, i.e., multiple allocation. Most 

of the cities in Turkey operate such a hybrid public transport system. A tree-like 

backbone network is especially preferred in cities where the metro/tram system is still in 

its infancy. The metro/tram network is complemented by high-capacity buses operated 

on rapid transit corridors. In the context of public transportation, MATHLP allows us to 

determine the physical network including the tree-like trunk routes on which the flow of 

passengers is achieved with the minimum cost. The resulting network and passenger 

loads on the links may be used to determine bus lines and their frequencies in 

accordance with the public transport service planning process [15].  

An example of MATHLP is the public transportation system in Curitiba, the 

capital and largest city in the Brazilian state of Paraná. Curitiba’s public transportation 

system is known worldwide as an example of a pragmatic, integrated, cost-effective, 

and efficient transportation system [16]. Figure 1.1 shows Curitiba’s public 
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transportation network consisting of the lines (red) used by express buses and the lines 

(yellow, green, and orange) used by other buses. Red lines constitute the backbone 

network in a tree structure, i.e., the hub-level network is a tree. Other bus lines (yellow, 

green, and orange) are connected to the backbone network not at a single point, that is, a 

passenger may use more than one hub implying the multiple allocation case.  

 

 

Figure 1.1. Curitiba’s transportation system (Adapted from Rehan and Mahmoud 
[16]) 
 

We propose a new mixed integer programming (MIP) model for MATHLP built 

upon the problem setting adopted by Akgün and Tansel [6]. The proposed model is 

defined on a non-complete network but can also be used with complete networks. We 

solve the proposed model by CPLEX-based algorithm and Gurobi-based algorithm with 

NoRel heuristic. MATHLP is difficult to solve using standard optimization software. 

This has led us to develop specialized solution methodologies. We develop Benders 

decomposition (BD)-based heuristic algorithms using two acceleration strategies, 

namely, strong cut generation and cut disaggregation. We conduct computational tests 

to assess the performance of the proposed heuristics using test instances on networks 

with up to 500 nodes. As the network size gets larger, the resulting optimality gaps get 

higher for the solutions found by CPLEX or Gurobi with NoRel heuristic. On the other 

hand, the proposed BD-based heuristics can find solutions either close to or better than 

those found by CPLEX and Gurobi with NoRel heuristic for those instances. 
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1.2 Multiple Allocation Arc Capacitated Hub 
Location Problem (MACHLP) 

The Multiple Allocation Arc Capacitated Hub Location Problem (MACHLP) 

imposes an upper limit on the flow traversing the arcs of the network. Incorporation of 

capacity considerations when designing hub networks is an important extension to 

HLPs to delimit the allowable activities and operations. Capacity constraints on hub 

networks may be imposed both on nodes and arcs of the network. However, most 

studies, e.g., Campbell [17], Ernst and Krishnamoorthy [18], Ebery et al. [19], Boland et 

al. [20], Labbé et al. [21], Contreras et al. [22], Correia et al. [23], and Contreras et al. 

[24] consider capacity constraints only on incoming or outgoing flow at hub nodes. 

Contreras and O’Kelly [4] and Alumur et al. [25] state that, in the case of HLPs, the 

capacity constraints may arise not only at the hub facilities but also on the arcs of the 

network. There are several studies incorporating arc capacities in HLPs, e.g., Bryan 

[26], Sasaki and Fukushima [27], Rodríguez-Martín and Salazar-González [28] and Lin 

et al. [29]. The aforementioned studies assume that the modeled network MN is a 

complete network with arc distances (costs) satisfying the triangle inequality. However, 

this assumption does not allow directly to model arc capacities existing in real 

transportation networks, as will be discussed in Section 3. In this regard, we deviate 

from the literature by adopting a modeling framework based on non-complete networks, 

i.e., real network, which allows us to model arc capacities directly. 

Arc capacitated hub location problems may arise in telecommunication networks 

on which servers can be considered as hubs and fiberoptic cables can be considered as 

arcs. Fiberoptic cables can transit a limited amount of data in a certain time period. 

Water or natural gas distribution networks also have certain capacities on the pipes that 

limit the amount of water or natural gas transported in a given amount of time. 

Moreover, road, rail, and airway transportation networks may have arc capacities 

imposed by the number of available vehicles and the capacity of the infrastructure. 

Available vehicles on the hub level network may be over-size vehicles, trains, and 

airplanes while available vehicles on the access network may be small-size vehicles, 

trains, and airplanes. Bridges, subways, canals, and straits are examples of the 

infrastructure that puts a limit on transportation capacity. Just like the arc capacities on 

telecommunication, water, and gas distribution networks, arc capacities on 
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transportation networks should have a temporal dimension, e.g., the number of drivers 

that can pass through a bridge in a day. 

Public transportation networks may be arc capacitated as well. Kaveh et al. [30] 

presents a new multi-modal hub location problem for the design of an urban public 

transportation network imposing a limited capacity on both hubs and hub arcs. As a case 

study, they design an efficient public transportation network for the Qom city located in 

Iran. In each hub node, they establish one or both bus rapid transit (BRT) and metro 

stations and in each hub link, they establish one of the BRT or metro lines. Since the 

number of available BRT buses and metro trains change, the number of passengers 

travelling through the hub arcs depends on the transportation mode chosen for that hub 

arc. In other words, hub arcs have different capacities. Figure 1.2 illustrates one of the 

public transportation systems proposed by Kaveh et al. [30] for Qom city. 

 

Figure 1.2 A public transportation system with different types of transportation 
modes and changing arc capacities changing according to the transportation mode 
used (Adapted from Kaveh et al. [30]) 
 

We propose a new MIP model for MACHLP built upon the problem setting 

adopted by Akgün and Tansel [6]. The proposed model is defined on a non-complete 

network but can also be used with complete networks. We solve the proposed model by 

CPLEX-based algorithm and Gurobi-based algorithm with NoRel heuristic. We also 

develop a simulated annealing (SA)-based heuristic algorithm. We create test instances 

by defining capacities on different arcs, i.e., on only hub arcs, and on both hub and 

access arcs, and changing arc capacities. We conduct computational tests to assess the 
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performance of the proposed heuristics using these test instances on networks with up to 

400 nodes. The resulting optimality gaps are high for the solutions found by CPLEX 

and Gurobi with NoRel heuristic. However, the proposed SA heuristic can find 

solutions either close to or better than those found by CPLEX and Gurobi with NoRel 

heuristic for those instances. 

In Chapter 2, we introduce the multiple allocation tree of hubs location problem 

(MATHLP) and present the related literature. Then, we compare hub networks that 

result from using different modeling approaches for MATHLP and show the advantages 

of the proposed approach. After presenting the details of the MIP model for MATHLP, 

we give the proposed BD-based heuristic approaches and the computational studies. An 

article mostly composed of Chapter 2 was published in the journal of Computers and 

Operations Research [31].  

In Chapter 3, we introduce multiple allocation arc capacitated hub location 

problem (MACHLP) and give the related literature. We demonstrate on the necessity of 

using RealN as MN to be able to incorporate arc capacities into the HLPs. After 

defining a MIP model, we present a heuristic approach based on SA algorithm and give 

the computational studies.  

Finally, in Chapter 4 we conclude the dissertation with some final remarks and 

future research directions. 
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Chapter 2 

MULTIPLE ALLOCATION TREE 
OF HUBS LOCATION PROBLEM 

In this chapter, we consider Multiple Allocation Tree of Hubs Location Problem 

(MATHLP) that imposes a tree topology requirement on the part of the network where 

the transfer between hubs is carried out, i.e., on the backbone or hub-level network, 

using multiple allocation strategy. The objective is to minimize the total transportation 

cost needed to transport the given flow between OD pairs by locating p hub nodes. 

Most hub location problems are known to be NP-hard (e.g., Carello et al. [32]; 

Alumur and Kara [1]; Contreras and O’Kelly [4]). MATHLP is NP-hard as well. When 

the hub locations and the allocation of supply and demand points to hubs are fixed in 

MATHLP, the problem of finding a tree spanning the hub nodes is equivalent to the 

Optimum Communication Spanning Tree Problem, which is NP-hard (Johnson et al. 

[33]; Contreras et al. [9]). 

In Section 2.1, we give the related literature for MATHLP. We propose a new 

MIP model for MATHLP that is built upon the problem setting adopted by Akgün and 

Tansel [6]. In Section 2.2, we show through examples that the proposed modeling 

approach may produce better solutions than the classical approach, which may result 

from the differences in the selected hubs, the flow routes between origin-destination 

points, and the assignment of non-hub nodes to hub nodes. In Section 2.3, we define the 

problem and present the details of the MIP model. The proposed model is defined on 

non-complete networks but can also be used with complete networks.  We solve the 

model by the CPLEX-based algorithm and Gurobi-based algorithm with NoRel 

heuristic. In Section 2.4, we develop BD-based heuristic algorithms using two 

acceleration strategies, namely, strong cut generation and cut disaggregation. We 

conduct computational tests to assess the performance of the proposed heuristics using 

instances defined on different networks with the number of nodes changing from 81 to 
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500. We present these computational studies in Section 2.5 and conclude the chapter in 

Section 2.6. 

2.1. Literature Review 
Tree of hubs location problems (THLP) require a tree topology on the part of the 

network where the transfer between hubs is carried out, i.e., on the backbone or hub-

level network (HLN). Most studies in the literature impose a complete HLN topology 

but do not discuss whether this is a result of the nature of the application or the 

assumptions regarding the network or data structure. It occurs that there are three main 

assumptions in most HLP models (For a detailed discussion, see, e.g., Contreras and 

O’Kelly [4]; Akgün and Tansel [6]): (1) MN is a complete network with arc distances 

satisfying the triangle inequality, (2) transportation costs on all hub arcs are discounted 

by a constant factor independent of the actual amount of flow on the arcs, i.e., collection 

and distribution are more costly, and (3) all flows are routed via a set of hubs, i.e., no 

direct flows between non-hub nodes. A model with these three assumptions and a cost 

minimization objective and without any topological requirements produces a solution 

where the flows between an OD pair visit at most two hubs. In other words, a route 

between an OD pair in an HN consists of at most three arcs, namely, collection (access), 

transfer (hub), and distribution (access) arcs. Given non-zero flows between all OD 

pairs, the resulting HLN is a complete network, i.e., all hubs are fully interconnected by 

hub arcs.  

Considering the complete HLN topology to be restrictive, several researchers 

have studied incomplete HLN topologies. Some of these studies (e.g., Alumur et al. 

[34]; Nickel et al. [35]; Mohri and Akbarzadeh [36]; Calık et al. [37]; Alumur and Kara 

[38]; Yoon and Current [39]; Alumur et al.[40]; Martins de Sa ́ et al. [41], [42]) require 

HLN only to be connected and do not impose any specific HLN topology. Some studies 

(e.g., Campbell et al. [43], [44]; Campbell [45]) do not even require HLN to be 

connected. The studies that impose a particular HLN topology other than a tree structure 

are Labb ́e and Yaman [46] and Yaman [47] that study a star HLN, Martins de Sa ́ et al. 

[48], [49] that address a line HLN, and Lee et al. [50] and Contreras et al. [51] that 

investigate a cycle HLN.  

To our knowledge, all studies that require a tree HLN address the single allocation 

version of the problem. Contreras et al. [9] are the first to require a tree-like HLN 

topology. They propose a MIP formulation for THLP presenting several families of 
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valid inequalities to strengthen the proposed formulation together with their exact 

separation procedures. The authors show the effectiveness of the proposed valid 

inequalities with a set of computational experiments. They are able to solve instances 

with up to 25 nodes optimally in reasonable computational time.  

Contreras et al. [22] develop a new formulation for the single allocation THLP. 

Their aim is to develop a new formulation that yields tighter linear programming (LP) 

bounds than that in Contreras et al. [9]. They observe the quality of LP bounds produced 

by different formulations for classical single allocation hub location problems, and find 

out that the best LP bounds are usually obtained with four-index formulations proposed 

by Campbell [17] for the single allocation p-hub median problem. In this regard, 

Contreras et al. [22] propose a new formulation for the single allocation THLP based on 

the model proposed by Campbell [17] and an algorithm where the lower bounds (LB) 

are generated by the Lagrangean dual and the upper bounds (UB) are generated by a 

simple heuristic applied at each iteration of the subgradient optimization. They can find 

solutions with at most 10% deviation between lower and upper bounds for instances 

with at most 100 nodes.  

Martins de Sa et al. [52] propose a Benders Decomposition (BD) approach to 

solve the model developed by Contreras et al. [22]. They develop a new cut selection 

scheme to improve the BD algorithm. The proposed BD Algorithm solves instances up 

to 100 nodes optimally. Sedehzadeh et al. [53] address a multi-objective and multi-

modal problem with uncertain input data allowing hubs to have different capacity levels 

and to be connected with different transportation modes. They obtain Pareto-optimal 

solutions for instances with up to 100 nodes by using two different algorithms. Pessoa et 

al. [54] design a genetic algorithm for THLP. They test their algorithm using the 

instances with 25 nodes generated by Contreras et al. [9]. They can find better feasible 

solutions for instances not solved to optimality and optimal or near-optimal solutions 

for instances solved to optimality by Contreras et al. [9]. Blanco and Marin [55] offer 

two MIP models for upgrading nodes, which implies a decrease in the cost of traversing 

arcs connecting those upgraded nodes. They offer two MIP models, one based on the 

ideas presented in Contreras et al. [9] and one based on the disaggregation of the 

variables, and compare their computational performance using instances with up to 25 

nodes. The proposed models in this study are hub location models with hub and/or arc 

fixed costs rather than p-hub median models.  
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We remark that the models that require a connected HLN may produce hub 

networks with a tree HLN depending on the data. For example, Martins de Sa et al. [42] 

obtain optimal solutions having a tree HLN for problem instances with sufficiently high 

fixed arc setup costs for a multiple allocation incomplete hub location problem with 

service time requirements.  

 Aforementioned formulations proposed for THLP assume that the modeled 

network MN is a complete network with arc distances (costs) satisfying the triangle 

inequality. We call this approach as the classical approach. In section 2.1.1, we give the 

single allocation THLP models in the literature based on the classical approach. There is 

not a model for the multiple allocation version of THLP in the literature, to represent 

the classical approach for MATHLP, we extend the model of Ernst and 

Krishnamoorthy [56] developed for multiple allocation p-hub median problem by 

adding necessary constraints to achieve a tree HLN and present this formulation in 

Section 2.1.2. 

2.1.1. Single Allocation Tree of Hubs Location Models based on 
the Classical Approach 

Contreras et al. [9] are the first to require a tree-like HLN topology in HLPs. They 

propose a MIP formulation for THLP. They consider a complete network G = (N, A) 

whose set of nodes, N = {1, . . . , n}, represents the set of origins and destinations of a 

certain product that is routed through G via some hub nodes. 𝑤&'  denote the demand of 

product from i to j for each pair of nodes i,j ∈ 𝑁. The total amount of flow originating 

from node 𝑖 is 𝑂& = ∑ 𝑤&''  and the total amount of flow sent to node 𝑗 is 𝐷' = ∑ 𝑤&'& . 

They denote the transportation cost of a unit of flow between i and j with 𝑐&' and α 

represent the discount factor for hub-to-hub journeys. Any node of N can be chosen to 

become a hub, and there is a fixed number p that must be chosen to be hubs. For each 

pair i,j ∈ 𝑁, if i and j are	non-hub nodes, the flow 𝑤&'  must go from i to j through one or 

more hubs. When i and j are hubs, the flow 𝑤&'  can go directly from i to j and it is also 

possible that the flow 𝑤&'  uses one or more intermediate hubs. Contreras et al. [9] 

require single allocation where every non-hub node i must be allocated to one single 

hub, so that all the incoming and outgoing traffic of that non-hub node is routed through 

this hub. Contreras et al. [9] aim to (1) locate 𝑝 hubs, (2) link them so as to define a tree, 
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(3) allocate every non-hub node to one single hub node in such a way that the overall 

transportation cost is minimized.	 

In order to represent the routes between origins and destinations, they use the 

variables with three indices, 𝑥&34 proposed by Ernst and Krishnamoorthy [57] for the 

single allocation p-hub median problem to represent the amount of flow with origin i 

traversing arc (k,m). They also define binary variables 𝑧&3	taking on the value of 1 if 

node i is allocated to hub k, 0 otherwise and 𝑦34	taking on the value of 1 if arc (k,m) 

links two hubs, 0 otherwise. They suppose that there is a network with a node set 

	𝑁	with 𝑛 nodes. Each unit of product that traverses (r,s) incurs a cost 𝑐9: ≥ 0 whereas 

when both r and s are hubs a discount factor 0≤ 𝛼 ≤1 is applied, and the per unit cost 

associated with arc (r,s) is 𝛼𝑐9:.  

With these definitions, the model proposed by Contreras et al. [9] is given below: 

 

𝑀𝑖𝑛	@@(𝑐&3
3∈B&∈B

𝑂&	 + 𝑐3&𝐷&	)𝑧&3	 +@@ @ 𝛼𝑐34𝑥&34
4∈B
4E3

3∈B&∈B

   (2.1) 

s.t.    

@𝑧&3 = 1
3∈B

  𝑖 ∈ 𝑁 (2.2) 

@𝑧33 = 𝑝
3∈B

	   (2.3) 

𝑧34 + 𝑦34 ≤ 	 𝑧44  𝑘,𝑚 ∈ 𝑁	;𝑚 > 𝑘 (2.4) 

𝑧43 + 𝑦34 ≤	 𝑧33   𝑘,𝑚 ∈ 𝑁	;𝑚 > 𝑘 (2.5) 

𝑥&34 + 𝑥&43 ≤ 	𝑂&𝑦34   𝑖, 𝑘, 𝑚 ∈ 𝑁	;𝑚 > 𝑘 (2.6) 

𝑂&𝑍&3 +	 @ 𝑥&43
4∈B
4E3

≤ 	 @ 𝑥&34
4∈B
4E3

+ @ 𝑤&4𝑧43
4∈B

  𝑖, 𝑘 ∈ 𝑁 ; 𝑖 ≠ 𝑘 (2.7) 

@ @ 𝑦34
4∈B

	
3∈B

= 𝑝 − 1   (2.8) 

𝑥&34 ≥ 0	 

 

 𝑖, 𝑘, 𝑚 ∈ 𝑁 (2.9) 

𝑧34, 𝑦34 ∈ {0,1}	 

 

 𝑘,𝑚 ∈ 𝑁 (2.10) 
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Objective function (2.1) minimizes the total transportation cost. Constraints (2.2) 

assign each non-hub node to a hub node and constraint (2.3) locates 𝑝 hubs. Constraints 

(2.4) and (2.5) guarantee that non-hub nodes are allocated to open hubs and hub links 

are possible between open hubs. Constraints (2.6) ensure that the flow between hubs 

will only move through the tree structure. Constraints (2.7) are the flow balance 

constraints. Finally, constraints (2.8) define a tree structure within the hubs by choosing 

𝑝 − 1 edges that are connected due to constraints (2.6) and (2.7). Constraints (2.9) and 

(2.10) define decision variables.  

Contreras et al. [22] develop a new formulation for the single allocation THLP. 

Their problem is just same as the problem defined by Contreras et al. [9]. Their aim is to 

develop a new formulation for this problem that yields tighter LP bounds than that in 

Contreras et al. [9]. For that reason, they use the variables 𝑥&'34 proposed by Campbell 

[17] for the single allocation p-hub median problem to represent the routes between 

origins and destinations. They define the binary variables 𝑥&'34 taking on the value of 1 

if the flow from i to j traverses arc (k,m) connecting hubs k and m, 0 otherwise.  

The model proposed by Contreras et al. [22] with the same definitions used in the 

formulation of Contreras et al. [9] is given below: 

 

𝑀𝑖𝑛	@@(𝑐&3
3∈B&∈B

𝑂&	 + 𝑐3&𝐷&	)𝑧&3	 +@@@ @ 𝛼
4∈B
4E3

𝑤&'𝑐34𝑥&'34
3Q∈B&∈B

 

  (2.11) 

s.t.    

@𝑧&3 = 1
3∈B

  𝑖 ∈ 𝑁 (2.12) 

@𝑧33 = 𝑝
3∈B

	   (2.13) 

	@ 𝑥&'34
4∈B
4E3

+	𝑧'3 −	 @ 𝑥&'43
4∈B
4E3

− 𝑧&3 = 0  𝑖, 𝑗, 𝑘 ∈ 𝑁	; 𝑖 ≠ 𝑗	𝑘 ≠ 𝑗 (2.14) 

𝑥&'34 + 𝑥&'43 ≤ 	𝑦34   𝑖, 𝑗, 𝑘 ∈ 𝑁	;𝑚 > 𝑘 (2.15) 

@ @ 𝑦34
4∈B
4R3

	
3∈B

= 𝑝 − 1  𝑖, 𝑘, 𝑚 ∈ 𝑁	;𝑚 > 𝑘 (2.16) 

𝑥&'34 ≥ 0	 
 

 𝑖, 𝑗, 𝑘, 𝑚 ∈ 𝑁 ; 𝑘 ≠ 𝑚 (2.17) 
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𝑧&3 ∈ {0,1}  𝑖, 𝑘 ∈ 𝑁 (2.18) 

𝑦34 ∈ {0,1}  𝑘,𝑚 ∈ 𝑁;	𝑚 > 𝑘 (2.19) 

Objective function (2.11) minimizes the total transportation cost. Constraints 

(2.12) assign each non-hub node to a hub node and constraint (2.13) locates 𝑝 hubs. 

Constraints (2.14) are the flow balance constraints. Constraints (2.15) guarantee that the 

flow between hubs will only move through the tree structure. Finally, constraints (2.16) 

define a tree structure within the hubs by choosing 𝑝 − 1 edges that are connected due 

to constraints (2.15). Constraints (2.17), (2.18) and (2.19) define decision variables. 

2.1.2. Multiple Allocation Tree of Hubs Location Models based on 
the Classical Approach 

We extend the model of Ernst and Krishnamoorthy [56] developed for multiple 

allocation p-hub median problem by adding necessary constraints to achieve a tree HLN 

to represent the classical approach for MATHLP since there is no model for MATHLP 

in the literature.  

Suppose that there is a complete network G = (N, A) with the set of nodes N = {1, 

. . . , n}. Node i generates a positive annual flow 𝑤&'  for at least one node j ∈ N − {i}. 

The total amount of flow originating from node 𝑖 is 𝑂& = ∑ 𝑤&''  and the total amount of 

flow sent to node 𝑗 is 𝐷' = ∑ 𝑤&'&  where 𝑤&'  is the demand of product from i to j for 

each pair of nodes i,j ∈ 𝑁. Let 𝑐&' denote the transportation cost of a unit of flow 

between i and j and α represent the discount factor for hub-to-hub journeys. Any node 

of N can be chosen to become a hub, and there is a fixed number p that must be chosen 

to be hubs. We require multiple allocation where every non-hub node i can be allocated 

to more than one hub. We aim to (1) locate 𝑝 hubs, (2) link them so as to define a tree, 

(3) allocate every non-hub node to at least one hub node in such a way that the overall 

transportation cost is minimized.		

Ernst and Krishnamoorthy [56] define𝑋&T'	 as the flow originating from 𝑖 ∈

𝑁	flowing from hub 𝑙	to node 𝑗, 𝑍&3	as the flow from node 𝑖 to hub 𝑘, 𝑌&3T  as the total 

amount of flow of commodity 𝑖 that is routed between hubs 𝑘 and 𝑙. 𝐻3	takes the value 

1 if node 𝑘 is a hub, 0 otherwise. In addition, we define 𝑦𝑦34  that takes the value 1 

when arc (𝑘,𝑚) links two hubs and 0 otherwise in order to define a tree-like hub level 

network. To create the tree structure on the hub network, we use the approach of 
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Contreras et al. [9] and Contreras et al. [22]. According to this approach, limiting the 

number of arcs connecting hub nodes to 𝑝 − 1 creates a tree structure on the hub 

network since the underlying network is a complete network.  

The proposed model for MATHLP based on classical approach is given below: 

Model CAM: The Model for the Classical Approach of MATHLP 

Min	@[		@𝑐&3
3&

𝑍&3 +	@@𝑐3T𝑌&3T
T3

+@@𝛼	𝑐T'
'T

𝑋&T' 		\ 
  (2.20) 

s.t.    

@𝐻3 = 𝑝
3

   (2.21) 

@𝑍&3 = 𝑂&
3

	  𝑖 ∈ 𝑁 (2.22) 

@𝑋&T' = 𝑊&'		
T

  𝑖, 𝑗 ∈ 𝑁 (2.23) 

@𝑌&3T +@𝑋&3'
'

−@𝑌&T3
T

− 𝑍&3	 = 0	
T

  𝑖, 𝑘 ∈ 𝑁 (2.24) 

𝑍&3 ≤ 	𝑂&𝐻3	  𝑖, 𝑘 ∈ 𝑁 (2.25) 

@𝑋&T' ≤ 𝐷'𝐻&	
&

  𝑙, 𝑗 ∈ 𝑁 (2.26) 

 
𝑦𝑦3T ≤ 	𝐻3	 
 

 𝑘, 𝑙 ∈ 𝑁 (2.27) 

𝑦𝑦3T ≤ 	𝐻T	 
 

 𝑘, 𝑙 ∈ 𝑁 (2.28) 

@@𝑦𝑦3T
T

= 𝑝 − 1
3

 

 

  (2.29) 

𝑌&T3 + 𝑌&3T ≤ 	𝑂&𝑦𝑦3T 	 
 

 𝑖, 𝑘, 𝑙 ∈ 𝑁 (2.30) 

𝐻3 ≤	@𝑦𝑦3T
T

+@𝑦𝑦T3
T

 

 

 𝑘 ∈ 𝑁 (2.31) 

𝐻3 ∈ {0,1}	 
 

 𝑘 ∈ 𝑁 (2.32) 

𝑌&3T ,	𝑋&T' , 𝑍&3	 ≥ 0	 
 

 𝑖, 𝑗, 𝑘, 𝑙 ∈ 𝑁 (2.33) 

𝑦𝑦3T ∈ {0,1}	 
 

 𝑘, 𝑙 ∈ 𝑁 (2.34) 
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Objective function (2.20) together with constraints (2.21) − (2.26) and (2.32) − 

(2.33) constitute the formulation of Ernst and Krishnamoorthy [56]. Objective function 

(2.20) minimizes the total transportation cost. Constraint (2.21) locates 𝑝  hubs. 

Constraints (2.22) and (2.23) satisfy the supply and demand requirements, respectively. 

Constraints (24) are the flow balance constraints. Constraints (2.25) and (2.26) ensure 

that flow incoming to and going from a hub node is possible only if that node is chosen 

as a hub. Constraints (2.32) and (2.33) define the decision variables. 

Constraints (2.27)  (2.31) and (2.34) ensure that the hubs are connected through a 

tree structure. Constraints (2.27) and (2.28) require that an arc (𝑘,𝑚) be chosen to form 

the tree structure between hubs if and only if both 𝑘  and 𝑚  are chosen as hubs. 

Constraint (2.29) limits the number of arcs connecting hub nodes to 𝑝 − 1. Constraints 

(2.30) allow flows between hubs only in arcs selected as a part of the tree structure. 

Constraints (2.31) guarantee that a selected hub must be connected by an arc which is a 

part of the tree structure. Constraints (2.34) define the new binary variables. 

In the next section, we will use Model CAM to represent the classical approach to 

be able to compare it with our proposed approach. 

2.2 Comparison of the Hub Networks for Different 
Modeling Approaches 
 

In this section, we investigate how the hub network topology and the total cost 

change depending on the modeling approach used under different assumptions. We 

compare two modeling approaches: (1) The classical approach: Modeled network MN 

is complete and its distances satisfy the triangle inequality. (2) The proposed approach: 

MN is the same as the real-world network RealN that may be complete or non-

complete. For comparison purposes, we use two different types of networks: a 7-node 

complete network whose distances do not satisfy the triangle inequality and a 30-node 

non-complete network. The complete network is the network used by Marin et al. [8] to 

show that some hub location models do not work correctly when the triangle inequality 

is not satisfied. The distance matrix of this complete network used is given below; 
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The non-complete network given in Figure 2.1 is the network that consists of 30 

cities in Turkey as the nodes and the roads between neighboring cities as the arcs. The 

distances are direct distances between the neighboring cities. We assume that a discount 

factor of 0.7 is applied to the hub arc costs. 

 

 

Figure 2.1. Non-complete transportation network consisting of 30 cities of Turkey. 

To represent the classical approach, we use the Model CAM, the extention of the 

model of Ernst and Krishnamoorthy [56] developed for multiple allocation p-hub 

median problem with additional constraints to achieve a tree HLN. We remark that the 

classical model needs as MN a complete network whose distances satisfy the triangle 

inequality to work correctly. In this regard, we apply the Floyd’s Algorithm [7] to the 

non-complete network to find all-pairs shortest path distances and construct a complete 

network in order to obtain a solution for the non-complete network using the classical 

model. To represent the proposed approach, we use our proposed model for MATHLP, 

whose details are given in Section 2.3. The proposed model can use any type of 

network, i.e., complete or non-complete, as MN. In this regard, the proposed model uses 

directly the non-complete network and complete network as MN.  
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Our first goal is to show that the classical model does not work correctly when a 

complete network whose distances do not satisfy the triangle inequality is used as MN. 

We solve both the proposed model and the classical model to optimality using the 

complete network given in Figure 2.2 (a) and setting p=3. Figure 2.2 (b) and Figure 2.2 

(c) indicate hub networks for the proposed model and the classical model on the original 

network, respectively. Filled circles and empty circles represent hub nodes and non-hub 

nodes, respectively. Solid lines and dashed lines indicate hub arcs and access arcs, 

respectively. Figure 2.2 (b) and 2.2 (c) show that both models produce an HLN with a 

tree structure. However, the selected hubs, the tree structures, and the resulting objective 

function values are different. In Figure 2.2 (b), HLN consists of nodes 2 through 6 with 

nodes 2, 4, and 6 being the hub nodes and nodes 3 and 5 being the non-hub nodes. The 

tree in Figure 2.2 (b) consists of non-hub nodes 3 and 5 as intermediate nodes between 

hub nodes, which may be possible when the triangle inequality is not satisfied (e.g., 

Marin et al. [8]). We can think of nodes 3 and 5 as transshipment points in HLN. These 

nodes receive service from their adjacent hub nodes.  Specifically, non-hub node 3 is 

assigned to hub nodes 2 and 4 while non-hub node 5 is assigned to hub nodes 4 and 6. 

Accordingly, dashed lines between hub nodes represent collection and distribution 

flows between non-hub nodes 3 and 5 and their adjacent hub nodes. Non-hub nodes 1 

and 7 are assigned to a single hub. In Figure 2.2 (c), HLN consists of the nodes 2, 3, and 

6 as the hub nodes. All non-hub nodes receive service from a single hub. The optimal 

objective function values for the proposed model and the classical model are 88 and 

1266, respectively. This difference results from the fact that the proposed model is 

allowed to find and use routes with less cost than that of direct arcs between nodes to 

send flows while the classical model uses only direct arcs. For example, to send flow 

from node 2 to node 6, the classical model uses the direct arc (2,6) with a cost of 100 

while the proposed model uses the path consisting of the arcs (2,3), (3,4), (4,5), and 

(5,6) with a cost of 4.  
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Figure 2.2. Tree structures obtained using a complete network whose distances do 
not satisfy the triangle inequality. (a), (b), and (c) represent the original complete 
network, the resulting hub network using the proposed model, and the resulting 
the hub network using the classical model.  
 

The case in Figure 2.2 occurs because the cost matrix of the modeled network MN 

does not satisfy the triangle inequality. Such cost matrices may occur especially in cases 

where the cost is independent of the distance or when the costs or weights represent 

something else, e.g., travel time, bus fares, telecommunication costs. To give a real-

world example, consider the map given in Figure 2.3 that represents a part of Marmara 

Region in Turkey. Suppose that a driver located at node 1 (Yalova) would like to go to 

Node 3 (Istanbul). The driver has two options: (a) going from 1 to 3 directly using the 

bridge or (b) going from 1 to 3 through node 2 (Izmit). Clearly, the direct distance 

following (a) is shorter than the indirect distance following (b). If the shortest path 

distance is used, (a) should be used. However, the cost of using (a) is almost twice the 

cost of using (b) because using the bridge is too costly. In this case, the lowest cost is 

not the direct path and hence the triangle inequality does not hold. 
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Figure 2.3 A real-world example showing that the triangle inequality does not 
hold.  

Our second goal is to show that the proposed model may find a better solution 

than the classical model even when the triangle inequality is satisfied. We will consider 

two cases: (1) The proposed model and the classical model find different flow routes 

even though their optimal hub set and the tree structure are the same. (2) The proposed 

model and the classical model find different optimal hub sets and hence different hub 

networks. 

For both cases, we solve the models to optimality using appropriate versions of 

the non-complete network in Figure 2.1 (non-complete version for the proposed model 

and complete version for the classical model). For Case 1, we allow all 30 nodes to be 

selected as hub nodes and set p=5. Figure 2.4 and Figure 2.5 indicate the resulting hub 

networks for the proposed model and the classical model, respectively. Nodes 3, 16, 19, 

21, and 25 are selected as the hub nodes by both models. Hub network in Figure 2.4 

directly gives the routing information on the real-world network RealN. For example, 

the route between hubs 3 and 21 is (3,1) - (1,2) - (1,21) with nodes 1 and 2 being 

transshipment points in HLN.  
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Figure 2.4. Optimal hub network obtained with the proposed model (𝑯=30, 𝒑=3). 
 

 
Figure 2.5. Optimal hub network obtained with the classical model (𝑯=30, 𝒑=3). 

In Figure 2.5, however, hub nodes 3 and 21 are connected by a single arc as 

expected and postprocessing is required to determine that the shortest-path arc (3,21) 

corresponds to the route consisting of the arcs (3,1)-(1,2)-(1,21) in RealN. Nevertheless, 

this should not be interpreted as that the routes between nodes are always the same in 

both models. Consider the routes between hub nodes 3, 16, and 19. In Figure 2.5, these 

nodes are connected to each other by direct arcs (16,19) and (19,3). Any flow sent from 

node 16 to node 3 follows the route consisting of the arcs (16,19) and (19,3). The direct 

arcs (16,19) and (19,3) in Figure 2.5 correspond to the routes  (16,26)-(26,6)-(6,18)-

(18,19) and (19,18)-(18,6)-(6,26)-(26,3) in RealN as shown in Figure 2.4, respectively. 

This means that flow sent from 16 to 3 covers the route (26,6)-(6,18)-(18,19) twice, one 

going from 16 to 19 and one going from 19 to 3. In Figure 2.4, however, flow from 

node 16 to node 3 follows the route (16, 26)-(26,3). That is, even though the tree 
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structures of both models seem to be the same in RealN (after postprocessing the 

solution of the classical model), the resulting flows are different. This also affects the 

assignments of origin and destination nodes to the hubs. As a result, the optimal 

objective function values for the proposed model and the classical model are 14,279,772 

and 14,297,370, respectively. 

For Case 2, we allow 20 nodes indexed between 1-20 to be selected as hub nodes 

and set p=8. Figure 2.6 and Figure 2.7 indicate the resulting hub networks for the 

proposed model and the classical model, respectively. The resulting hub networks are 

different because different optimal hub sets (2-6, 8, 12, and 16 for the proposed model 

and 1, 2, 4, 5, 6, 12, 16, and 20 for the classical model) are selected. The optimal 

objective function values for the proposed model and the classical model are 13,762,410 

and 13,795,031, respectively.  

We remark that the results in Case 1 and Case 2 are valid when we address 

MATHLP. When we relax the tree-HLN requirement, both approaches find solutions 

that are the same in RealN as long as arc distances (costs) satisfy the triangle inequality. 

This is also true for the single allocation version.  

To sum up, using the proposed approach in addressing MATHLP may allow to 

obtain better solutions that may result from different hub network topologies, 

assignments, flows, and costs. The approach may also provide more flexibility in 

modeling several real-life issues directly, e.g., arc capacities or disruptions.  

Figure 2.6. Optimal hub network obtained with the proposed model (𝑯=20, 𝒑=8) 
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Figure 2.7. Optimal hub network obtained with the classical model (𝑯=20, 𝒑=8) 

2.3 Problem Definition and Mathematical 
Formulation 

We define Multiple Allocation Tree of Hubs Location Problem (MATHLP) based 

on the modeling framework given by Akgün and Tansel (2018). Let  𝐺 = (𝑁,𝐸)	 be an 

undirected and connected network representing RealN with 𝑁 = {1, … , 𝑛} and 𝐸 being 

the node set and edge set, respectively. 𝑁  consists of supply/origin nodes 𝑆 , 

demand/destination nodes 𝐷, and transshipment nodes 𝑇. The nodes in 𝑆 generate a 

positive flow 𝑤&'  for at least one node 𝑗 ∈ 𝐷. The same node can be the element of both 

𝑆 and 𝐷.   

Table 2.1 Sets, indices, parameters, and decision variables of the proposed model. 
Sets, Indices, and Parameters 

G=(N,E) Undirected real-world network with node set N and edge set E, N=S ∪ D 
∪ T where S, D, and T are the set of supply, demand, and transshipment 
nodes 

𝐺∗ = (𝑁∗, 𝐸∗) Subnetwork of 𝐺 that can be used for inter-hub transportation, 𝐸∗ is the 
set of edges that can be used as hub arcs, 𝑁∗ is the set of nodes that are 
incident to 𝐸∗  

𝐺e = (𝑁, 𝐴) 
 
H 

Directed version of G=(N,E) obtained by replacing each edge {𝑖, 𝑗} ∈ 𝐸 
with a pair of directed arcs (𝑖, 𝑗)	and (𝑗, 𝑖) 
Set of nodes that can be hubs with 𝐻 ⊆ 𝑁∗  

𝐺h = (𝑁h, 𝐴h) Three-layer modeled network, 𝐺h = 𝐺i⋃𝐺k⋃𝐺l  with 𝐺i,  𝐺k,  and 	
𝐺l representing the supply (first), hub (second), and distribution (third) 
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layers of the network 
𝐺i = (𝑁i, 𝐴i)	  Supply layer network with 𝐺i = 𝐺e 
𝐺k = (𝑁k, 𝐴k) Hub layer network constructed from subnetwork of 𝐺′ that corresponds to 

𝐺∗ = (𝑁∗, 𝐸∗) 
𝐺l = (𝑁l, 𝐴l) 
i,j ∈ N 
1i 
2i 
3i 
(1i,1j) 
(2i,2j) 
(3i,3j) 

Distribution layer network with 𝐺k = 𝐺e 
Nodes in the network G=(N,E)  
Nodes in the supply layer 𝐺i 
Nodes in the hub layer 𝐺k 
Nodes in the distribution layer 𝐺l 
Arcs in the supply layer  
Arcs in the hub layer 
Arcs in the distribution layer  

𝐴ik Arcs connecting 𝐺i	and	𝐺k with 𝐴ik = {(1𝑖, 2𝑖): 𝑖 ∈ 𝐻} 
𝐴kl 
i,j ∈ N 

Arcs connecting 𝐺k	and	𝐺l with 𝐴kl = {(2𝑖, 3𝑖): 𝑖 ∈ 𝐻} 
Nodes in the network G=(N,E)  

k Commodity type indicating the origin node of the flow, 𝑘 = 𝑖 ∈ 𝑆 
𝑙&' Length of arc (𝑖, 𝑗) 

𝜒&', 	𝛼&',		𝛿&' Cost of moving one unit of flow per unit length along arc (i,j) for supply, 
hub, and distribution layers, respectively 

𝑐&' Cost of arc (𝑖, 𝑗) with 𝑐&' = 𝑙&'𝜒&' , 	𝑐&' = 𝑙&'𝛼&', and	𝑐&' = 	𝑙&'𝛿&' for 

supply, hub, and distribution layers, respectively 
𝑤&'  Flow	to	be	sent	from	𝑖 ∈ 𝑆 to 𝑗 ∈ 𝐷 

𝑊&  Total supply of commodity 𝑖, 𝑊& = ∑ 𝑤&''∈�  

𝑏�3  Amount of supply/demand of commodity 𝑘 at node 𝛽𝜖𝑁h 

𝐹����	�𝐹�&�� Forward (inward) star of a node	𝛽 ∈ (𝑁i ∪ 𝑁k ∪ 𝑁l). 

Decision Variables  
𝑥&'3  Amount of flow of commodity 𝑘 in arc (𝑖, 𝑗) 

𝑦k&  1, if a hub is located at node 𝑖 ∈ 𝐻 and 0, otherwise 
𝑠&' 1, if arc (𝑖, 𝑗)	belongs to the tree structure in 𝐺k and 0, otherwise 

 𝑡&' Flow variable used to construct the tree structure in 𝐺k and represents the 
amount of fictitious flow in arc (𝑖, 𝑗) 

Let 𝐺∗ = (𝑁∗, 𝐸∗) represent the subnetwork of 𝐺 that can be used for inter-hub 

transportation. 𝐸∗ is the set of edges that can be used as hub arcs for some reason, e.g., 

they have high capacities or more appropriate for construction. 𝑁∗ is the set of nodes 

that are incident to 𝐸∗. We define 𝐻 ⊆ 𝑁∗ as the set of nodes that can be hubs.  
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Let 𝑙&' denote the length of edge {𝑖, 𝑗} with 𝑙&' = 𝑙'&. The 𝜒&' , 	𝛼&',	and 	𝛿&' are the 

cost of moving one unit of flow per unit length along the edge {𝑖, 𝑗} for collection, 

transfer, and distribution, respectively, with 𝛼&' ≤ 𝜒&'  and 𝛼&' ≤ 𝛿&'  to achieve 

economies of scale.  

 MATHLP aims to (1) select 𝑝 nodes from hub set 𝐻, (2) determine the service 

routes between OD pairs that visit at least one hub node, (3) connect all hubs through a 

tree structure and require all flows to use this tree structure by using a multiple 

allocation strategy such that total transportation cost is minimized.    

 We formulate MATHLP using a three-layer network 𝐺h = (𝑁h, 𝐴h)  as the 

modeled network MN where the first, second, and third layers represent the 

collection/supply, transfer/hub, and distribution/demand layers, respectively. To 

construct 𝐺h, we use the directed version of 𝐺 = (𝑁,𝐸), 𝐺e = (𝑁, 𝐴), which is obtained 

by replacing each edge {𝑖, 𝑗} ∈ 𝐸 with a pair of directed arcs (𝑖, 𝑗)	and (𝑗, 𝑖)	such that 

𝑙&' = 𝑙'&.  

The supply layer network 𝐺i = (𝑁i, 𝐴i)	 and the distribution layer network 𝐺l =

(𝑁l, 𝐴l) are copies of 𝐺e = (𝑁,𝐴) while the hub layer network 𝐺k = (𝑁k, 𝐴k) is the 

subnetwork of 𝐺′ that corresponds to 𝐺∗ = (𝑁∗, 𝐸∗) with 𝑁4 = {𝑚1,𝑚2,… ,𝑚𝑛} and 

𝐴4 = {(𝑚𝑖,𝑚𝑗): (𝑖, 𝑗) ∈ 𝐴} where 𝑚 = 1,2,3. To exemplify, node 3 in RealN 𝐺  is 

represented as 13, 23, and 33 in 𝐺i, 𝐺k, and 𝐺l, respectively.  𝐺i	and	𝐺k are connected 

by arcs of the form  𝐴ik = {(1i, 2i): i ∈ 𝐻}		while 𝐺k	and	𝐺l are connected by arcs of 

the form 𝐴kl = {(2i, 3i): i ∈ 𝐻}.  Thus, 𝑁h = ⋃ 𝑁4l
4�i  and 𝐴h = ⋃ 𝐴4l

4�i ∪ 𝐴ik ∪

𝐴kl. Figure 2.8 shows a three-layer MN constructed using the structure of RealN 𝐺 

where 𝐸∗ = {{2,3}, {2,4}, {3,4}, {4,5}} , 𝑁∗ = {2,3,4,5} , 𝐻 = {3,4,5} , and 𝑆 = 𝐷 =

{1,2,3,4,5}. 

 We formulate MATHLP as a multicommodity flow problem with side constraints 

in 𝐺h. The flows 𝑤&'  with 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝐷 are sent from 1𝑖 ∈ 𝑁i to 3𝑗 ∈ 𝑁l through 𝐺h. 

We associate with each node 𝑖 ∈ 𝑆 a different commodity. 𝑊& = ∑ 𝑤&''∈�  is the total 

supply of commodity 𝑖 at node 1𝑖. We use the parameter 𝑏�3  to represent the amount of 

supply/demand of commodity 𝑘 at node 𝛽𝜖𝑁h.	𝑏�� = ∑ 𝑤�''��  for 𝛽 = 1𝑖 and 𝑖 ∈ 𝑆, 

	𝑏�3 = −𝑤3� = −𝑤3'  for 𝛽 = 3𝑗 and 𝑗𝜖𝐷, and 	𝑏�3 = 0 for all other nodes and 𝑘𝜖𝑆. 

𝐹����	�𝐹�&��	is the forward (inward) star of a node	𝛽 ∈ (Ni ∪ Nk ∪ Nl).  
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Figure 2.8. Three-layer MN 𝑮𝟎 constructed from RealN 𝑮 (Adapted from Akgün 
and Tansel, [6]). 

 We also associate with each arc (𝑖, 𝑗) a unit cost 𝑐&', where 𝑙&' is the length of arc 

(𝑖, 𝑗), as follows: 

𝑐&' =

⎩
⎪
⎨

⎪
⎧ 𝜒&' × 𝑙&'																						𝑓𝑜𝑟	(1𝑖, 1𝑗), (𝑖, 𝑗) ∈ 𝐴		

𝛼&' × 𝑙&'																						𝑓𝑜𝑟	(2𝑖, 2𝑗), (𝑖, 𝑗) ∈ 𝐴∗	
𝛿&' × 𝑙&'																						𝑓𝑜𝑟	(3𝑖, 3𝑗), (𝑖, 𝑗) ∈ 𝐴	

													0																	𝑓𝑜𝑟	(1𝑖, 2𝑖)		𝑜𝑟		(2𝑖, 3𝑖), 𝑖 ∈ 𝐻	
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  We define the following decision variables: (1) 𝑥&'3  is the amount of flow of 

commodity 𝑘 ∈ 𝑆 in arc (𝑖, 𝑗), (2) 𝑦k&  is a binary variable that takes on the value of 1 

when a hub is located at node 𝑖 ∈ 𝐻 and 0 otherwise, (3) 𝑠&' is a binary variable that 

takes on the value of 1 when arc (𝑖, 𝑗)	belongs to the tree structure in 𝐺k  and 0 

otherwise, and (4) 𝑡&' is a flow variable used to construct the tree structure in 𝐺k and 

represents the amount of fictitious flow in arc (𝑖, 𝑗).  

We construct the tree structure in 𝐺k by using a rooted spanning tree formulation 

based on single-commodity flows 𝑡&'. We define a node 𝜃 ∈ 𝑁k as the root/supply node 

from which one unit of fictitious flow is sent to each other node 𝑖 ∈ (𝑁k − 𝜃), i.e., a 

total of |𝑁k − 1| units of flow is sent from 𝜃. The arcs with positive flows 𝑡&'  are 

selected as the arcs of the tree by the variables 𝑠&'. 

We present the sets, indices, parameters, and decision variables used in the 

formulation of the problem in Table 2.1. With these definitions, the proposed model, 

Model MATHLP, is given below: 

Model MATHLP: Multiple Allocation Tree of Hubs Location Model 

𝑍∗ = Min	@ @ 𝑐&'𝑥&'3
(&,')���3� 

   (2.35) 

s.t.    

@ 𝑥�'3
'∈¡¢

£¤¥

− @ 𝑥'�3
'∈¡¢

¦§

= 𝑏�3  𝛽 ∈ (𝑁i ∪ 𝑁k ∪ 𝑁l), 𝑘 ∈ 𝑆 (2.36) 

@𝑦k&
&∈¨

= 𝑝   (2.37) 

𝑥(i&,k&)3 ≤ 𝑊3𝑦k&   𝑖 ∈ 𝐻, 𝑘 ∈ 𝑆 (2.38) 

𝑥(k&,l&)3 ≤ 𝑊3𝑦k&   𝑖 ∈ 𝐻, 𝑘 ∈ 𝑆 (2.39) 

@ 𝑡©'
'∈¡q

£¤¥

= |𝑁k − 1|
	
    (2.40) 

@ 𝑡�'
'∈¡¢

£¤¥

− @ 𝑡'�
'∈¡¢

¦§

= −1  𝛽 ∈ (𝑁k − q) (2.41) 

  𝛽 ∈ (𝑁k − q) (2.42) 
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@ 𝑠'�
	'∈¡¢

¦§

= 1  

@ 𝑠'©
'∈(¡ª

¦§⋂B¬)

= 0   (2.43) 

𝑡&' ≤ |𝑁k − 1|
	
𝑠&'  (𝑖, 𝑗) ∈ 𝐴k (2.44) 

𝑥&'3 ≤ 𝑊3(𝑠&' + 𝑠'&)	 
 

 (𝑖, 𝑗) ∈ 𝐴k, 𝑘 ∈ 𝑆 (2.45) 

𝑡&'	 ≥ 0	, 	𝑠&' 	 ∈ 	 {0,1} 
 

 (𝑖, 𝑗) ∈ 𝐴k (2.46) 

𝑥&'3 ≥ 0	 
 

 (𝑖, 𝑗) ∈ 𝐴h, 𝑘 ∈ 𝑆 (2.47) 

	𝑦k& 	 ∈ 	 {0,1}	 
 

 	𝑖 ∈ 𝐻 (2.48) 

The objective function (2.35) together with the constraints (2.36)− (2.39) 

constitute the formulation of Akgün and Tansel [6]. The objective function (2.35) 

minimizes the total transportation cost. Constraints (2.36) are the flow balance 

constraints for all the nodes in each layer of the network 𝐺h  and commodities. 

Constraint (2.37) requires 𝑝 hubs be selected. Constraints (2.38) and (2.39) ensure that 

the flow between layers is possible only through arcs (1𝑖, 2𝑖) and (2𝑖, 3𝑖) if a hub is 

located at node 𝑖, i.e, 𝑦k& = 1.  

Constraints (2.40)−(2.44) construct a spanning tree in 𝐺h. Constraint (2.40) sends 

|𝑁k − 1| units of fictitious flow from root node q. Constraints (2.41) are flow-balance 

constraints that ensure all nodes in 𝑁k − q	  receive one unit of fictitious flow. 

Constraints (2.42) require that there be exactly one incoming arc to each node 𝑖 ∈ (𝑁k −

𝜃).   Constraint (2.43) ensures that there is no incoming arc to root node q from the 

nodes in 𝑁k. Constraints (2.44) require an arc with a positive fictitious flow to be 

selected as an arc of the spanning tree in the hub layer. Constraints (2.45) allow 

commodity flows only on the arcs of the spanning tree and hence the arcs with positive 

commodity flows connect all hubs in a tree structure. Figure 2.9(a) illustrates an 

example of a tree spanning all nodes in the hub layer constructed by positive fictitious 

flows. Accordingly, Figure 2.9(b) gives the resulting tree structure connecting the hubs. 

Nodes 1 and 6 are the non-hub nodes serving as transition nodes to connect the hubs 

through a tree. Constraints (2.46)−(2.48) define the decision variables.  
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Figure 2.9. Illustration of  the tree spanning all nodes in the hub layer (a) and the 
resulting tree structure connecting the hubs (b). 

2.4 Proposed Solution Methodology 
MATHLP is difficult to solve using standard optimization software. 

Computational studies indicate that CPLEX-based algorithm can find optimal or near-

optimal solutions for problem instances defined on 81-node network with a run time of 

24 h. However, for larger size networks, CPLEX either cannot find a solution or the 

resulting optimality gaps increase up to 36%.  This has led us to develop a solution 

methodology based on Benders Decomposition (BD) [58], which has been used 

successfully in solving several variants of hub location problems including single 

allocation tree of hubs location problem (e.g., Camargo et al. [59], [60], [61], [62], [63], 

[64] Contreras et al. [65], [66], [67], Camargo and Miranda [68], Martins de Sá et al. 

[52], [48], [49], [42], Ghaffarinasab and Kara [69] , Mokhtar et al. [70], Taherkhani et 

al. [71]). However, in the application of BD algorithm even for small-size problems, the 

lower bound and the upper bound that we obtain from the algorithm were not close to 

each other. We have tried CPLEX’s automatic BD and encountered with the same 

convergence problem. We have incorporated several acceleration strategies, namely, 

strong cut generation, cut disaggregation, and a combination of two strategies, in order 

to improve the convergence of the BD algorithm. However, these strategies have not 

been successful as well. For this reason, we have developed Benders-type heuristics. Of 

several heuristics, the heuristic based on BD with strong cut generation and  the 

heuristic based on BD with combined strong cut generation and cut disaggregation 

have produced much better results than the other ones for all instances. In this regard, 

we present the development of these heuristics in this section. Computational studies 
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indicate that the proposed heuristics are efficient and can find solutions for large-size 

problems with up to 500 nodes. 

The BD approach partitions a difficult optimization problem into two simpler 

problems: an integer problem, named as the master problem (MP), and a linear problem, 

named as the subproblem (SP). The algorithm solves MP and SP iteratively and adds 

new constraints to the MP known as Benders cuts obtained from SP. The algorithm is 

terminated when the optimal objective function values of MP and SP are equal to each 

other.  

One main challenge arising in the application of the BD algorithm is the need to 

solve difficult integer MPs in large size problems. As the number of iterations increases 

in this type of problems, the number of cuts added to the MP also increases, which 

makes the MP more difficult to solve and hence the convergence of the BD algorithm is 

too slow due to time and memory limitations. This has led the researchers to develop 

algorithms referred to as Benders-type heuristics. In most Benders-type heuristics, 

researchers use (meta)heuristic algorithms or relaxations to solve MPs. According to 

Boschetti and Maniezzo [72] BD algorithm provides a rich framework for developing 

heuristics since it uses dual information to reduce search space, verifies solution quality 

and obtains multiple starting points for local search. In most Benders-type heuristics, 

researchers relax the MP or use some kind of meta-heuristics for the MPs. Poojari and 

Beasley [73], Lai et al. [74], Lai et al. [75] solve the MP using genetic algorithm. Jiang 

et al. [76] use a similar approach, based on tabu search. Boschetti and Maniezzo [72] 

solve both MP and the subproblem using Lagrangean relaxation. Another approach in 

Benders type heuristics is to solve LP relaxation of the MP and to use round-off 

heuristics to find an integer solution. Pacqueau et al. [77] use the BD algorithm to solve 

the linear relaxation and then fix some of the variables to their upper/lower bounds. 

Optimality is not guaranteed with Benders-type heuristics. However, for 

computationally intractable problems, efficient Benders-type heuristics are able to reach 

near optimal solutions.  

 In the following, we give the BD algorithm, strong cut generation, cut 

disaggregation, and finally the Benders-type heuristics where a relaxed version of MP 

obtained is solved after removing some complicating constraints. 
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2.4.1 Benders Decomposition for MATHLP 

As stated before, the BD algorithm decomposes the original problem into two 

simpler problems, namely, MP and SP, and solves MP and SP iteratively until their 

optimal objective function values are equal or a stopping criterion is reached. MP is a 

relaxed version of the original problem and involves the set of integer variables and 

associated constraints. SP is a linear program that is obtained by the dual problem 

formulated by fixing the values of integer variables in MATHLP.    

Let 𝒚 and 𝒔 represent the vector of integer variables 𝑦k& , 𝑖 ∈ 𝐻, and 𝑠&', (𝑖, 𝑗) ∈ 𝐴k, 

respectively. Let SPD represent the linear problem obtained by fixing the values of 

integer variables 𝒚 and 𝒔 in MATHLP to 𝒚𝒉 and 𝒔°, respectively, at iteration ℎ. When 𝒚 

and 𝒔 are fixed, the resulting SPD consists of (2.49)−(2.54) and  is a linear routing 

problem that finds the routes between OD pairs because the hubs and hub arcs in the 

tree structure are fixed. We find SP by taking the dual of SPD with the dual variables 

𝑒&3, 𝑓&3 , 	𝑔&3 , and 𝑡𝑡&'3	 defined for constraints (2.50) through (2.53), respectively. The 

resulting SP consists of (2.55)−(2.62).  

Model SPD: Linear Problem at Iteration h  

𝑚𝑖𝑛	@ @ 𝑐&'𝑥&'3
(&,')���3� 

   (2.49) 

s.t.    

@ 𝑥&'3
'∈¡¢

£¤¥

− @ 𝑥'&3
'∈¡¢

¦§

= 𝑏&3  	𝑖 ∈ (𝑁i ∪ 𝑁k ∪ 𝑁l), 𝑘 ∈ 𝑆 (2.50) 

𝑥(i&,k&)3 ≤ 𝑊3𝑦&°  𝑖 ∈ 𝐻, 𝑘 ∈ 𝑆 (2.51) 

𝑥(k&,l&)3 ≤ 𝑊3𝑦&°  𝑖 ∈ 𝐻, 𝑘 ∈ 𝑆 (2.52) 

𝑥&'3 ≤ 𝑊3		(𝑠&'° + 𝑠'&°)  (𝑖, 𝑗) ∈ 𝐴k (2.53) 

𝑥&'3 ≥ 0  (𝑖, 𝑗) ∈ 𝐴, 𝑘 ∈ 𝑆 (2.54) 

Model SP: Subproblem at Iteration h 

𝑀𝑎𝑥@@ 𝑏&3𝑒&3
&�B�3� 

						+		@@𝑊3𝑦&°𝑓&3
&�B�3� 

+@@𝑊3𝑦&°𝑔&3
&�B�3� 

 

	+			@ @ 𝑊3�𝑠&'° + 𝑠'&°	�𝑡𝑡&'3
µ��¬3� 

																																																		 

(2.55) 

s.t.    
𝑒&3 − 𝑒'3 ≤ 𝑙&'  (𝑖, 𝑗) ∈ (𝐴i ∪ 𝐴l), 𝑘 ∈ 𝑆 (2.56) 
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𝑒&3 − 𝑒'3 +	𝑡𝑡&'3 	≤ 𝑙&'  (𝑖, 𝑗) ∈ 𝐴k, 𝑘 ∈ 𝑆										 
 

(2.57) 

𝑒&3 − 𝑒'3 +	𝑓'3 	≤ 0  (𝑖, 𝑗) ∈ 𝐴ik, 𝑘 ∈ 𝑆										 
 

(2.58) 

𝑒&3 − 𝑒'3 +	𝑔&3 	≤ 0  (𝑖, 𝑗) ∈ 𝐴kl, 𝑘 ∈ 𝑆	 (2.59) 

𝑓&3, 𝑔&3 ≤ 0  𝑖 ∈ 𝐻, 𝑘 ∈ 𝑆 (2.60) 

𝑒&3			𝑓𝑟𝑒𝑒  𝑖 ∈ (𝑁i ∪ 𝑁k ∪ 𝑁l), 𝑘 ∈ 𝑆 (2.61) 

𝑡𝑡&'3 ≤ 0	  (𝑖, 𝑗) ∈ 𝐴k, 𝑘 ∈ 𝑆	 (2.62) 

We formulate MP by using the constraints associated with integer variables in 

MATHLP and adding Benders optimality cuts. A Benders optimality cut (2.63) can be 

derived from the objective function (2.55) of SP at iteration ℎ . In (2.63), 

𝑒&3° , 𝑓&3° , 𝑔&3° , and	𝑡𝑡&'3°  are the optimal values of the dual variables in SP at iteration ℎ and 

𝜂 is the under-estimator for the total cost. The resulting MP consists of (2.64)−(2.73).  

𝜂 ≥@@ 𝑏&3𝑒&3°

&�B�3� 

						+		@@𝑊3𝑓&3°𝑦&
&�B�3� 

		+ 	@@𝑊3𝑔&3° 𝑦&
&�B�3� 

 

+	@ @@𝑊3 ∗
3� '�B¬&�B¬

𝑡𝑡&'3° ∗ (𝑠'& + 𝑠'&) 
(𝟐. 𝟔𝟑) 

 
Model MP: Master Problem at Iteration h  

Min 𝜂 
                

(2.64) 

s.t.    

 

𝜂 ≥@@ 𝑏&3𝑒&3°

&�B�3� 

						+		@@𝑊3𝑓&3°𝑦&
&�B�3� 

		+ 	@@𝑊3𝑔&3° 𝑦&
&�B�3� 

	 

+@ @@𝑊3 ∗
3� '�B¬&�B¬

𝑡𝑡&'3° ∗ (𝑠'& + 𝑠'&) 

 

              

(2.65) 

	@𝑦k&
&∈¨

= 𝑝 
                

(2.66) 

 

@ 𝑡©'
'∈¡q

£¤¥

= |𝑁k − 1|
	
                (2.67) 

@ 𝑡�'
'∈¡¢

£¤¥

− @ 𝑡'�
'∈¡¢

¦§

= −1  𝛽 ∈ (𝑁k − q) (2.68) 
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@ 𝑠'�
	'∈¡¢

¦§

= 1 
 

𝛽 ∈ (𝑁k − q) 

(2.69) 

@ 𝑠'©
'∈(¡ª

¦§⋂B¬)

= 0   (2.70) 

𝑡&' ≤ |𝑁k − 1|
	
𝑠&'  (𝑖, 𝑗) ∈ 𝐴k (2.71) 

𝑡&'	 ≥ 0	, 	𝑠'& 	 ∈ 	 {0,1} 

 

 (𝑖, 𝑗) ∈ 𝐴k (2.72) 

	𝑦k& 	 ∈ 	 {0,1}	 

 

 	𝑖 ∈ 𝐻 (2.73) 

MP determines the locations of 𝑝 hubs and connects them in a tree structure 

through constraints (2.66) - (2.71) at each iteration. Given 𝒚° and 𝒔° at iteration ℎ, SPD 

is mainly a network flow problem. Because supply and demand quantities are equal and 

there are no capacity constraints in SPD, it is always feasible. Moreover, the objective 

function value of SPD is bounded because transportation costs are non-negative and 

finite, which means that SP, the dual of SPD, is feasible and has a bounded objective 

function value. Thus, at each iteration of the Benders algorithm, we obtain a feasible 

solution. This is why we do not need to generate and add Benders feasibility cuts, we 

add only Benders optimality cuts to MP. Otherwise, we would have to add feasibility 

cuts as well. 

MP is a relaxation of the original problem and hence its objective function value 

provides a lower bound to that of MATHLM. We improve this bound at each iteration 

by adding Benders optimality cut (45).  By construction, the objective function value of 

SP provides an upper bound on the objective function value of MATHLM. 

2.4.2 Acceleration Strategies for the BD Algorithm 

The performance of the BD Algorithm is mainly determined by the number of 

iterations and the time required to complete each iteration (e.g., Rahmaniani et al. [78]). 

The number of iterations may be high if the improvement rate of the LB is low, which 

results from weak Benders cuts. This also adversely affects the solution time of MP and 

memory requirements because the higher the number of cuts added to MP, the more 
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difficult it becomes to solve MP. In some cases, solving SP may take excessive time, 

too. All of these may cause poor convergence of the algorithm as we have experienced. 

There are several strategies employed in the literature to accelerate the progress of 

the BD Algorithm. In this study, we employ generating strong cuts and disaggregating 

the Benders cuts together. 

2.4.2.1 Generating Strong Cuts 

Magnanti and Wong ([79] suggest an approach to generate stronger optimality 

cuts based on the determination of a core point. To formalize the approach, let 𝐶µ and 

𝐶» represent two different cuts generated using (2.63) from two different solutions 

(𝒆µ, 𝒇µ, 𝒈µ, 𝒕𝒕µ)  and (𝒆», 𝒇», 𝒈», 𝒕𝒕») , respectively. Then, 𝐶µ  is stronger than or 

dominates 𝐶» if the right-hand-side value of 𝐶µ is greater than or equal to that of 𝐶» 

with a strict inequality for at least one point (𝒚, 𝒔). That is, the cut that gives a better 

bound is a dominating cut. A cut is pareto-optimal if it is not dominated by any other 

cuts. Accordingly, the solution (𝒆, 𝒇, 𝒈, 𝒕𝒕) is pareto-optimal if the cut defined by 

(𝒆, 𝒇, 𝒈, 𝒕𝒕) is pareto optimal.  

A pareto optimal solution (𝒆, 𝒇, 𝒈, 𝒕𝒕) can be obtained by solving an optimization 

problem that finds a pareto-optimal point among alternative optimal solutions using a 

core point. A core point (𝒚h, 𝒔h) is a point in the relative interior of the convex hull of 

𝒚 ∈ 𝑌 and 𝒔 ∈ 𝑆̅.   

To define the optimization problem to solve, let (𝒚°, 𝒔°) be the optimal solution of 

MP and 𝑧 Á°∗  be the optimal objective function value of SP at iteration ℎ. The optimal 

solution (𝒆𝟎, 𝒇𝟎, 𝒈𝟎, 𝒕𝒕𝟎) to the optimization problem PRT comprised of (2.74)−(2.78) 

is a pareto-optimal solution. The Benders cut obtained from the objective function 

(2.74) is a pareto-optimal cut. This cut is closest to the chosen core point (𝒚h, 𝒔h).  

Model PRT: Model to Find a Pareto-Optimal Solution 

𝑀𝑎𝑥@@ 𝑏&3𝑒&3
&�B�3� 

+ 	@@𝑊3𝑦&h𝑓&3
&�B�3� 

+@@𝑊3𝑦&h𝑔&3
&�B�3� 

			

+ @ @@𝑊3 ∗ �𝑠&'h + 𝑠'&h	�
3� '�B¬

∗ 𝑡𝑡&'3
&�B¬

								 

(2.74) 

s.t.  

@@ 𝑏&3𝑒&3
&�B�3� 

+@@𝑊3𝑦&°𝑓&3
&�B�3� 

+@@𝑊3𝑦&°𝑔&3
&�B�3� 

+	 

 

(2.75) 
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@ @@𝑊3 ∗ �𝑠&'° + 𝑠'&°	�
3� '�B¬&�B¬

∗ 𝑡𝑡&'3 = 𝑧 Á°∗ 																																																													 

𝑓&3, 𝑔&3 ≤ 0  𝑖 ∈ 𝐻, 𝑘 ∈ 𝑆 (2.76) 

𝑒&3			𝑓𝑟𝑒𝑒  𝑖 ∈ (𝑁i ∪ 𝑁k ∪ 𝑁l), 𝑘 ∈ 𝑆 (2.77) 

𝑡𝑡&'3 ≤ 0	  (𝑖, 𝑗) ∈ 𝐴k, 𝑘 ∈ 𝑆	 (2.78) 

The approach is based on the fact when SP has multiple optimal solutions, 

different cuts with different strengths may be defined. PRT generates the strongest cut 

possible. A pareto-optimal cut may be added at each iteration or periodically 

considering the tradeoff between additional computational burden and the reduction in 

the number of iterations. In this study, we add pareto-optimal cuts in each iteration. In 

the Benders Algorithm with pareto-optimal cuts, PRT is solved after solving SP and the 

cut generated using a given core point is added to MP. 

Finding a core point may be a challenge for some problems (e.g., Martins de Sa et 

al., 2013 [52]). Mercier et al. [80] state that using a core point that is not in the interior 

of the convex hull does not preclude finding a valid Benders cut. However, the further 

the core point is from the interior of the convex hull, the weaker the Benders cuts that 

are generated by this method. This demonstrates the importance of finding a good core 

point. Mercier et al. [80] state that values of binary variables close to 0 or 1 generate 

stronger cuts for different problem types. In this study, we conduct computational 

experiments by setting 𝒚	and 𝒔	to 0 and 1 to identify a good core point.  Computational 

results indicate that setting 𝒚 = 𝟏 and 𝒔 = 𝟎 yields stronger cuts. 

2.4.2.2 Disaggregating the Benders Cuts and Adding Multiple Cuts 

Another strategy to improve the progress of BD Algorithm is to add multiple cuts 

instead of just one cut at each iteration. We can achieve this by disaggregating Benders 

cuts (2.63) as proposed by Birge and Louveaux [81]. Disaggregation is possible because 

SP can be decomposed into smaller problems based on commodity type 𝑘. This allows 

us to add |𝑆|  cuts simultaneously. The resulting MP, MPM, is comprised of 

(2.66)−(2.73) and (2.79)−(2.80).  

Model MPM: Master Problem With Disaggregated Cuts at Iteration h  

𝑀𝑖𝑛	@𝜂3	
3∈ 

   (2.79) 

s.t.    
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In addition to Constraints (2.66) - (2.73)   

𝜂3 ≥ @ 𝑏&3𝑒&3°

ÃÄÅ�

		+		@ WÇ𝑓&3°yÃ
ÃÄÅ�

+ @WÇ𝑔&3° yÃ
ÃÄÅ�

+ @ @𝑊3 ∗
ÉÄÅ¬ÃÄÅ¬

𝑡𝑡&'3° ∗ (𝑠&' + 𝑠'&) 

 

∀	𝑘 ∈ 𝑆 (2.80) 

In the Benders Algorithm with multiple cuts, MPM rather than MP is solved.  

It may be possible to disaggregate (29) further, e.g., based on commodity type 𝑘 

and node 𝑖. However, the number of cuts in this case is 3𝑛k and solving MPM even for 

small-size problems becomes computationally very expensive. This is why we prefer to 

disaggregate based on 𝑘.   

2.4.2.3 Combining Strong Cut Generation and Multiple Cuts  

 We use the strategies explained in 2.4.2.1 and 2.4.2.2 simultaneously. In doing 

that, we first find the pareto-optimal cut and then disaggregate this pareto-optimal cut 

into multiple cuts. This requires solving PRT to find a pareto-optimal solution after 

solving SP and then disaggregating the cut as given in MPM.  

2.4.3 Benders-Type Heuristic Approach 

Computational experiments with the BD-based algorithms with or without 

acceleration strategies indicate that they are not promising to be used to solve large-

scale problem instances. We observe that the progress of the algorithms is limited due to 

difficulty in solving the master problems. This leads us to develop two Benders-Type 

heuristics that facilitate the solution of the master problems and keeping the rest of the 

algorithms essentially the same. 

Our approach is based on obtaining (𝒚°, 𝒔°)  at iteration ℎ  in two steps: (1) 

determining the hubs to locate by solving a relaxed master problem and (2) finding the 

tree structure connecting the located hubs  by solving a rooted spanning tree 

formulation. We adopt this approach because we observe that the constraints  

(2.67)−(2.71) that ensure the tree structure in the master problems increase the solution 

time of the master problems significantly or make them almost impossible to solve for 

large-size problems. 

 The master problems that need to be solved in the heuristic algorithms can be 

stated by eliminating the variables 𝒔° and associated terms from the formulations. We 
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define two relaxed master problems, RelMP to be used while adding a single cut and 

MCMP to be used while adding multiple cuts.  

Model RelMP: Relaxed Master Problem with a Single Cut 

Min 𝜂  (2.81) 
s.t.   

𝜂 ≥@@𝑏&3𝑒&3°
ÃÄÅ�ÇÄË

						+ 		@@WÇ𝑓&3°yÃ
ÃÄÅ�ÇÄË

		+ 	@@WÇ𝑔&3° yÃ
ÃÄÅ�ÇÄË

				 

 

(2.82) 

@𝑦k&
&∈¨

= 𝑝  (2.83) 
 
 

ykÃ	ϵ	{0,1}	 
		 

∀	𝑖 ∈ 𝐻 (2.84) 

Model MCMP: Relaxed Master Problem with Multiple Cuts 

𝑀𝑖𝑛	@𝜂3	
3∈ 

                 
(2.85) 

s.t.   

In addition to (2.83)-(2.84) 
 

  

𝜂3 ≥ @ 𝑏&3𝑒&3°
ÃÄÅ�

		+ 		@WÇ𝑓&3°yÃ
ÃÄÅ�

+ @WÇ𝑔&3° yÃ
ÃÄÅ�

				 

 
∀	𝑘 ∈ 𝑆 

               
(2.86) 

 RelMP and MCMP solved at iteration h determine the values of 𝒚° where 𝑝 of the 

variables are 1 and the remaining are zero. To determine the tree structure among the 

given hub locations 𝑖  with 𝑦k& = 1, we solve a rooted spanning tree formulation, 

SPTree, based on single commodity flows 𝑡&'. We define one of the hub locations, say 

node 𝜃, as the root/supply node from which one unit of fictitious flow is sent to other 

hub locations, i.e., a total of 𝑝 − 1 units of flow is sent from 𝜃. After solving SPTree, 

for the arcs with 𝑡&' > 0, we set 𝑠&' = 1. The solution (𝒚°, 𝒔°)	is then fed into SP.  

Model SPTree: Rooted Spanning Tree Formulation Restricted to Hub Locations 

𝑚𝑖𝑛	𝑍∗ =@ @ 𝑐&'𝑡&'
(&,')∈��3∈ 

   (2.87) 

s.t.    

@ 𝑡©'
'∈¡q

£¤¥

= 𝑝 − 1   (2.88) 
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@ 𝑡�'
'∈¡¢

£¤¥

− @ 𝑡'�
'∈¡¢

¦§

= −1  𝛽 ∈ (𝐻 − 𝜃) (2.89) 

@ 𝑡�'
'∈¡¢

£¤¥

− @ 𝑡'�
'∈¡¢

¦§

= 0  𝛽 ∈ (𝑁k − 𝐻) (2.90) 

𝑡&'	 ≥ 0  (𝑖, 𝑗) ∈ 𝐴k (2.91) 

Given the relaxed master problems (RelMP and MCMP) and SPTree, we define 

two Benders-Type Heuristic algorithms, BDHEUR1 and BDHEUR2, that are mainly 

different in the acceleration strategies employed and the master problem solved. In 

BDHEUR1, we only generate strong cuts. In the application of the algorithm, we first 

determine a pareto-optimal cut as explained in Section 2.4.2.2 and then add it to RelMP. 

In BDHEUR2, we use two strategies together, generating strong cuts and  

disaggregating Benders cuts. In the application of the algorithm, we determine a pareto-

optimal cut, disaggregate this cut into multiple cuts as explained in Section 2.4.2.3, and 

add them to MCMP. We outline the steps of BDHEUR1 below. The steps of 

BDHEUR2 are the same as BDHEUR1 except that we solve MCMP instead of RelMP, 

i.e., replace RelMP with MCMP. In the application of the algorithms, we solve SP and 

SPTree to optimality and RelMP/MCMP until an optimality gap of 10% is achieved. 

Moreover, for the test problems on PMED400 and PMED500, we set a time limit of 1 h 

and 5 h, respectively, for the Model PRT that finds a pareto-optimal cut because we 

observe that strong cuts are obtained within that time limit. 

 In the algorithm, UB and  𝑧 Á∗  represent the upper bound and the optimal objective 

function value for SP, respectively.  

Algorithm BDHEUR1: Benders-Type Heuristic 1 Employing Strong Cut 

Generation. 

Step 1: (Initialization) 
Set 𝒚° and 𝒔° to an initial feasible integer solution. 
Set time limit.  
Set UB = +ꝏ 
Set ℎ = 0 
Find a core point (𝒚h, 𝒔h) for strong cut generation  
Step 2: Solve SP (2.55)−(2.62) 
Step 3: Set UB=min(UB, 𝑧 Á∗ ) 
Step 4: Solve PRT (2.74)−(2.78) to choose a strong cut  
Step 5: Add cut(s) to RelMP (2.81)−(2.84)  
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Step 6: Solve RelMP (2.81)−(2.84) to get 𝑦  
Step 7: Solve SPTree (2.87)−(2.91) to get 𝒔  
Step 8: Set h=h+1 
Step 9: Set 𝒚° = 𝒚	and	𝒔𝒉 = 𝒔 
Step 11: If elapsed time > time limit, stop. Otherwise, go to Step 2  

2.5 Computational Experiments 
We conduct computational experiments to test the performance of the proposed 

model and solution methodologies. Specifically, we observe the performance of 

MATHLP using CPLEX, Gurobi, Gurobi with NoRel Heuristic, and LocalSolver and 

Benders-type heuristics. We prefer the aforementioned solvers and algorithms because 

they are known to be effective for difficult MIP problems. In the application of Gurobi 

with NoRel heuristic, which may be useful for models where the root relaxation is quite 

expensive, the NoRel heuristic first tries to find a high-quality feasible solution in the 

allocated time and then Gurobi implements the branch and cut algorithm with the 

feasible solution found by the NoRel heuristic [82]. Localsolver is an innovative 

optimization solver combining exact and heuristic techniques and finds high-quality 

solutions for large-scale optimization problems [83]. However, LocalSolver cannot find 

feasible solutions even for small-size instances. Gurobi with NoRel heuristic performs 

much better than Gurobi for all instances in finding feasible solutions. Because of this, 

we only present the results obtained by CPLEX and Gurobi with NoRel Heuristic 

against the results obtained by Benders-type heuristics. 

We define test problems on TR81, PMED200, PMED300, PMED400, and 

PMED500 networks. TR81 is defined by Akgün and Tansel [6] and the non-complete 

transportation network of Turkey including all 81 cities of Turkey. The edges on TR81 

are defined only between adjacent cities. The length of the edges on TR81 are assumed 

to be the direct distances from the high-way transportation network of Turkey. 

PMED200 through PMED500 are the non-complete networks used for the p-median 

problem instances (e.g., Beasley [84]) with the numbers indicating the number of nodes. 

Different test problems are created on the networks by changing |𝐻| and 𝑝 where 𝐸∗ =

𝐸, 𝑁∗ = 𝑁 and 𝐻 ⊆ 𝑁∗. For all test problems, 	𝑤&'  is uniformly distributed with the 

interval (10,30). For all arcs, 𝜒&' and 𝛿&'	are taken as 1 whereas 𝛼&' is taken as 0.7. In all 

problems, 𝑆 = 𝐷 = 𝑁.  
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We code the models and the algorithms using GAMS and conduct the 

experiments on a PC with 3.6 GHz Intel Core i7-7700CPU processor and 32 GB of 

RAM for TR81, PMED200, PMED300 instances and on a server with Intel® Xeon® 

CPU E5-2683 V4 @ 2.1 GHz 64 core processor and 256 GB of RAM for PMED400 

and PMED500 instances due to memory requirements. The runtime for the solvers and 

the algorithms is set to 24 h (86,400 secs). In using Gurobi with NoRel heuristic, we 

assign 12 h for the NoRel heuristic and 12 h for the branch and cut algorithm because 

we obtain high-quality feasible solutions with this setting. 

In the tables, we present (1) the runtime (𝑇) in CPU secs, the lower bound (LB), 

the objective function value of the best integer solution at the end of runtime (BP) 

obtained by CPLEX or Gurobi with NoRel heuristic, and the relative optimality gap 

(Gap%) between LB and BP for MATHLP and (2) the best integer solution achieved 

either from CPLEX or Gurobi with NoRel heuristic (BP*); the number of iterations (# of 

iters), LB, and UB achieved by the heuristic algorithms.	 

2.5.1 Computational experiments for MATHLP using CPLEX 

and Gurobi with NoRel heuristic 

Table 2.2 gives the results obtained solving MATHLP by CPLEX and Gurobi 

with NoRel heuristic. In solving MATHLP using CPLEX, we use two different 

parameter settings that differ only in the value of mipemhasis parameter. The 

mipemphasis parameter value tells CPLEX what the balance between finding better 

feasible solutions and proving optimality should be in solving a model. We use two 

values of mipemphasis parameter, namely, “balance feasibility and optimality” and 

“feasibility” because our focus is to find better feasible solutions. With regard to finding 

BP values, no setting dominates the other one. In this regard, we present the results of 

the setting under which better BP value is obtained for each instance in Table 2.2.  

In Table 2.2, bold and italic values indicate the same or better BP and LB values 

for each instance. Gurobi with NoRel heuristic (CPLEX) mostly finds better BP (LB) 

values than CPLEX (Gurobi with NoRel heuristic); however, it cannot find a solution 

for Problem 30. The last column indicates the best BP values, BP*. Table 2.2 shows that 

as the problem size increases, the optimality gaps increases considerably indicating that 

it becomes more difficult to solve large-scale problems.  
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Table 2.2 Test results for MATHLP using CPLEX and Gurobi with NoRel 
heuristic. 

            CPLEX Gurobi with NoRel Heuristic   

Pr. 
Id 

N
et

w
or

k 
|N| |H| p T 

(secs) LB BP Gap 
(%) LB BP Gap 

(%) BP* 

1 

TR
81

 

81 30 3 84840 113261890 113261890 0.0 113120288 113261890 0.0 113261890 
2 81 30 5 86400 100804000 103530000 2.7 102044941 103530000 1.4 103530000 
3 81 50 3 86400 107115000 112944470 5.4 105087303 112944470 7.0 112944470 
4 81 50 5 86400 96404800 103014691 6.9 95881444 102883188 6.8 102883188 
5 81 50 8 86400 91322400 97216421 6.5 91015050 96098414 5.3 96098414 
6 81 50 10 86400 89545200 93852241 4.8 88953013 93793657 5.2 93793657 
7 81 60 3 86400 102576000 112944470 10.1 100724739 112944470 10.8 112944470 
8 81 60 5 86400 95209200 103426356 8.6 94446443 102940709 8.3 102940709 
9 81 60 8 86400 89687000 96185436 7.2 90368120 96098414 6.0 96098414 

10 81 60 10 86400 89205300 94098044 5.5 88302192 93793657 5.9 93793657 
11 81 81 3 86400 99773300 113067656 13.3 98948604 113067656 12.5 113067656 
12 81 81 5 86400 93627400 102909588 9.9 93297541 102883188 9.3 102883188 
13 81 81 8 86400 89710800 98401597 9.7 89309497 96184127 7.1 96184127 
14 81 81 10 86400 86910600 94461872 8.7 87454873 93710445 6.7 93710445 
15 

PM
ED

20
0 200 200 3 86400 69962197 83921015 20.0 70242011 82844187 15.2 82844187 

16 200 200 5 86400 67681170 81743444 20.8 67065627 77314463 13.2 77314463 
17 200 200 8 86400 65226836 74061217 13.5 64502322 72475694 11.0 72475694 
18 200 200 10 86400 63947068 72858377 13.9 63309299 71176399 11.0 71176399 
19 

PM
ED

30
0 300 300 3 86400 100542251 152379779 34.0 102105607 129512902 21.2 129512902 

20 300 300 5 86400 93990900 148400000 36.3 99812107 126641742 21.2 126641742 
21 300 300 8 86400 97915345 118263997 17.2 97631794 117762104 17.1 117762104 
22 300 300 10 86400 96342738 111688878 13.7 97046000 112496864 13.7 111688878 
23 

PM
ED

40
0 400 400 3 86400 129405098 2521891782 94.9 126492232 188065072 32.0 188065072 

24 400 400 5 86400 126975841 159334212 20.3 125777210 217002369 42.0 159334212 
25 400 400 8 86400 125823824 191544185 34.3 124213039 185954774 33.0 185954774 
26 400 400 10 86400 125305399 152776681 18.0 123575853 164174581 24.0 152776681 
27 

PM
ED

50
0 500 500 3 86400 172189807 3954137863 95.7 169677900 288398427 41.2 288398427 

28 500 500 5 86400 172544439 3920051544 95.6 163650171 267833441 38.8 267833441 
29 500 500 8 86400 171012235 3952102853 95.7 159240544 238740589 33.3 238740589 
30 500 500 10 86400 169673118 4094682459 95.9 160733186 no solution - 4094682459 

2.5.2 Computational Experiments with the Benders-type 

Heuristics  

 We initiate the algorithms with an initial solution (𝒚, 𝒔) where 𝒚 is found by 

setting its first 𝑝 elements to 1 and the remaining to 0 and 𝒔 is found by solving SPTree. 

We use a core point with 𝒚h = 1 and 𝒔h = 0 since computational results indicate that 

this core point yields stronger cuts. 



43 
 

Table 2.3 presents the results. In the table, we give GapHeur (%) defined as 

100×(𝑈𝐵 - 𝐵𝑃∗)/𝐵𝑃∗ in order to compare the solutions of the heuristics to BP*, the best 

solution found by either CPLEX or Gurobi with NoRel heuristic. A positive (negative) 

value indicates that the UB achieved by the heuristic algorithm is worse (better) than 

BP*. Instances with bold UB values are the ones for which a heuristic can either find 

the same solution or a better solution than CPLEX or Gurobi with NoRel heuristic.  

Italic (normal or bold) UB values are used to show the heuristic that produces a 

better UB than the other heuristic. BDHEUR1 produces better UB values for 8 

problems (4, 6, 9, 10, 11,  24-26) while BDHEUR2 produces better UB values for 19 

problems (2, 5, 8, 12-23, 27-30). For the remaining problems, they find the same 

solutions. UB values found by BDHEUR1 (BDHEUR2) are on the average 0.39% 

(5.2%) better than those of BDHEUR2 (BDHEUR1). Considering these results, we can 

conclude that BDHEUR2 performs better than BDHEUR1. In this regard, we will 

continue our analysis with BDHEUR2. 

For TR81 instances, GapHeur values change from 0% to 3% with an average of 

1.6%. The heuristic can find a solution equivalent to BP* for three instances (problems 

1, 3, and 7) out of 14 instances. For the remaining instances for which BP* values are 

better, GapHeur values change from 0.1% to 3%. 

For PMED200 instances, GapHeur values range from −0.3% to 1.8% with an 

average of 0.6%. The heuristic can find a better solution for one instance (problem 15) 

and the same solution for one instance (problem 16) out of 4 instances. For PMED300 

instances, GapHeur values change from −2% to 3.9% with an average of 1.5%. The 

heuristic can find a better solution for one instance (problem 21) out of 4 instances. For 

PMED400 instances, GapHeur values change from −17% to −0.2% with an average of 

-7.5%. For PMED500 instances, GapHeur values change from −94.8% to −7.3% with 

an average of −31.8%. The heuristic can find a better solution for all instances. 

 The results show that, as the network size gets larger, CPLEX or Gurobi with 

NoRel heuristic find a solution with high optimality gaps. On the other hand, the 

heuristics can find solutions either close to or better than those found by CPLEX or 

Gurobi with NoRel heuristic, i.e., Benders-type heuristic algorithms are effective in 

finding good solutions.  
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Table 2.3 Test results for the instances using BDHEUR (T=24h)  
 

Pr. 
Id. Network |N| |H| p BP* 

BDHEUR1 BDHEUR2 
# of 
Iters UB GapHeur 

(%) 
# of 
Iters UB GapHeur 

(%) 
1 TR81 81 30 3 113261890 4287 113261890 0.0 854 113261890 0.0 
2 TR81 81 30 5 103530000 2670 105345943 1.8 520 105027039 1.4 
3 TR81 81 50 3 112944470 3018 112944479 0.0 368 112944479 0.0 
4 TR81 81 50 5 102883188 1415 105242582 2.3 514 105297298 2.3 
5 TR81 81 50 8 96098414 1229 98468128 2.5 636 98340058 2.3 
6 TR81 81 50 10 93793657 1175 95893977 2.2 1326 96563871 3.0 
7 TR81 81 60 3 112944470 2539 112944479 0.0 284 112944479 0.0 
8 TR81 81 60 5 102940709 1422 105242582 2.2 446 104985323 2.0 
9 TR81 81 60 8 96098414 815 98911891 2.9 574 98970843 3.0 
10 TR81 81 60 10 93793657 709 95947980 2.3 1048 96141575 2.5 
11 TR81 81 81 3 113067656 1878 112944479 -0.1 245 113203327 0.1 
12 TR81 81 81 5 102883188 659 105692069 2.7 115 104534769 1.6 
13 TR81 81 81 8 96184127 555 98815936 2.7 547 98015933 1.9 
14 TR81 81 81 10 93710445 499 96494930 3.0 1114 96046631 2.5 

  
  

        Max 3.0 
 

Max 3.0       
  Min -0.1 

 
Min 0.0 

              Average 1.8   Average 1.6 
15 PMED200 200 200 3 82844187 335 86751752 4.7 199 82579184 -0.3 
16 PMED200 200 200 5 77314463 180 84192026 8.9 232 77297928 -0.6 
17 PMED200 200 200 8 72475694 132 79995083 10.4 200 73794169 1.8 
18 PMED200 200 200 10 71176399 135 78755379 10.6 165 71904326 1.0 

              Max 10.6   Max 1.8       
  Min 4.7 

 
Min -0.3 

              Average 8.7   Average 0.6 
19 PMED300 300 300 3 129512902 30 146804453 13.4 35 134514203 3.9 
20 PMED300 300 300 5 126641742 34 137386549 8.5 36 130470514 3.0 
21 PMED300 300 300 8 117762104 34 132241629 12.3 40 115380696 -2.0 
22 PMED300 300 300 10 111688878 34 128240795 14.8 42 112950607 1.1 

      
   

  Max 14.8 
 

Max 3.9       
  Min 8.5 

 
Min -2.0 

              Average 12.2   Average 1.5 
23 PMED400 400 400 3 188065072 23 177360845 -5.7 23 165976456 -11.7 
24 PMED400 400 400 5 159334212 23 156768212 -1.6 23 157830551 -0.9 
25 PMED400 400 400 8 185954774 23 154057167 -17.2 23 154424692 -17.0 
26 PMED400 400 400 10 152776681 23 151006447 -1.2 23 152523259 -0.2    

        Max -1.2   Max -0.2       
  Min -17.2 

 
Min -17.0 

              Average -6.4   Average -7.5 
27 PMED500 500 500 3 288398427 5 260076970 -9.8 5 242867355 -15.8 
28 PMED500 500 500 5 267833441 5 249145118 -7.0 5 242398659 -9.5 
29 PMED500 500 500 8 238740589 5 234735216 -1.7 5 221405699 -7.3 
30 PMED500 500 500 10 4094682459 5 231288249 -94.4 5 214659947 -94.8    

        Max -1.7   Max -7.3       
  Min -94.4 

 
Min -94.8 

              Average -28.2   Average -31.8 
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2.6 Conclusion 
In this chapter, we present the Multiple Allocation Tree of Hubs Location Problem 

where the hub-level network is required to have a tree topology and transportation cost 

of sending flows between OD pairs is minimized. Most studies in the literature assume a 

complete network with costs satisfying the triangle inequality to formulate the problem. 

If the underlying real-life network is not complete or complete but its distances do not 

satisfy the triangle inequality, a preprocessing on the underlying network is 

implemented to construct a complete network whose costs satisfy the triangle 

inequality.  

Unlike the previous studies, we have defined the problem on non-complete 

networks and developed a modeling approach that does not require any specific cost and 

network structure. The modeling approach allows us to use the structure of the real 

physical network directly in the formulation of the problem. We have shown that the 

proposed modeling approach may produce better solutions than a modeling approach 

that uses a complete network structure whose costs satisfy the triangle inequality, which 

may result from the differences in the selection of the hubs, the flow routes between 

hubs, and the assignments of non-hub nodes to hub nodes. The proposed approach may 

also provide more flexibility in modeling several characteristics real-life hub networks, 

e.g., the interactions between location and routing decisions, arcs with different costs 

and capacities, different topology and service level requirements. 

In the study, we have solved the proposed model by CPLEX-based algorithm and 

Gurobi-based algorithm with NoRel heuristic and developed BD-based heuristic 

algorithms using two acceleration strategies, namely, strong cut generation and cut 

disaggregation. We have conducted computational experiments using networks with up 

to 500 nodes. As the network size gets larger, the resulting optimality gaps are high for 

the solutions found by CPLEX or Gurobi with NoRel heuristic. On the other hand, the 

heuristic can find solutions either close to or better than those found by CPLEX and 

Gurobi with NoRel heuristic for all instances, i.e., Benders-type heuristic algorithms are 

effective in finding good solutions.   

In the future, we may incorporate other acceleration strategies not considered in 

this study, e.g., reduction of the model size and selection of good initial cuts, to improve 

the progress of exact Benders algorithms or Benders-type heuristics. We may develop 

hybrid algorithms utilizing metaheuristics and Benders decomposition to improve the 
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effectiveness of the heuristic algorithms. A problem specific branch-and-bound 

algorithm may be developed as well.  
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Chapter 3 

MULTIPLE ALLOCATION ARC 
CAPACITATED HUB LOCATION 
PROBLEM 

In this chapter, we consider Multiple Allocation Arc Capacitated Hub Location 

Problem (MACHLP) that imposes an upper limit on the flow traversing some of the 

arcs in the network. The objective of the problem is to minimize the total transportation 

cost needed to transport the given flow between OD pairs via hub nodes with locating 𝑝 

hubs and satisfying the capacity constraints defined on the arcs.  

Most hub location problems are known to be NP-hard (e.g., Carello et al. [32]; 

Alumur and Kara [1]; Contreras and O’Kelly [4]). MACHLP is NP-hard as well since 

MACHLP can be transformed into the uncapacitated multiple allocation hub location 

problem known to be NP-hard [85].  

In Section 3.1, we give the related literature for MACHLP. We propose a new 

MIP model for MACHLP that is built upon the problem setting adopted by Akgün and 

Tansel [6]. We use the 3-layered framework introduced before. In Chapter 3.2 we 

discuss the advantages of using the proposed modeling approach. In Section 3.3, we 

define the problem and present the details of the MIP model. The proposed model is 

defined on non-complete networks but can also be used with complete networks. We 

solve the model by the CPLEX-based algorithm and Gurobi-based algorithm with 

NoRel heuristic. In Section 3.4, we develop a heuristic approach based on Simulated 

Annealing (SA) algorithm. In Section 3.5, we present the computational tests conducted 

to assess the performance of the proposed heuristic using instances defined on different 

networks with the number of nodes changing from 81 to 400. In Section 3.6, we 

conclude the chapter. 
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3.1 Literature Review 
Capacity constraints on the hub networks may be imposed both on the nodes and 

the arcs of the network. However, most studies incorporate capacity constraints only on 

the nodes. In these studies, an upper limit is imposed on the incoming or outgoing flow 

at the hub nodes. A motivating example for hub capacitated HLP is the postal delivery 

application. In postal delivery, the volume of mail that hubs can sort is limited by time 

constraints resulting in capacity restriction on the hub nodes. Hub capacitated versions 

of HLPs with single allocation strategy are studied by Campbell [17], Ernst and 

Krishnamoorthy [18], Labbé et al. [21], Correia et al. [23], Contreras et al. [24], [25]. 

Capacitated versions of HLPs with multiple allocation strategy are studied by Campbell 

[17], Ebery et al. [19], Boland et al. [20], and Marín [86].  

Carello et al. [32], Yaman and Carello [87], and Yaman [47] study the single 

allocation hub capacitated HLPs with modular link capacities. They consider fixed costs 

of installing hubs and fixed costs of installing the required capacity on each edge to 

route the traffic. They install a number of links with fixed capacity on the edges and 

determine the capacity required to route the traffic on an edge. Their aim is to design the 

hub network by minimizing the sum of hub costs and link costs. These problems appear 

to be a design rather than an allocation problem. In this regard, these problems are 

different from the problem that we address. Our problem MACHLP deviates from these 

studies by minimizing the total transportation cost by satisfying the capacity constraints 

defined apriori on the arcs. 

Contreras and O’Kelly [4] and Alumur et al. [25] state that the capacity 

constraints may arise not only at the hub facilities but also at the arcs of the network, 

and arc capacities are important in some settings of HLPs in which amount of flow 

traversing the arcs has an upper limit. Bryan [26] is the first to introduce a model in 

which capacities are associated with the hub arcs rather than with the hub nodes. He 

states that large amounts of flow traveling across the same hub arc can create practical 

problems and, moreover, physical constraints can place a limit on the amount of flow 

that can be handled on any single hub arc. Bryan [26] modifies the model (FLOWLOC) 

developed by Bryan and O’Kelly [88] to include capacitated hubs arcs by adding the 

required constraints. The FLOWLOC model is a multiple allocation HLP model with 

the objective of minimizing the total flow cost. It allows unit costs to vary with the 

amount flow traversing the hub arcs instead of assuming a fixed discount for the hub 
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arcs. For this purpose, the model includes a piecewise linearization of a nonlinear cost 

function in which costs increase at a decreasing rate as flows increase. With the 

computational experiments carried out, Bryan and O’Kelly [88] conclude that only a 

few of the hub arcs amass large amounts of flow when they use the FLOWLOC model. 

For that reason, Bryan [26] proposes that a capacitated network may be required to 

prevent congestion problems on the heavily traveled hub arcs and modifies the 

FLOWLOC model by incorporating the hub arc capacities. In the computational 

experiments, Bryan [26] uses a data set based on airline passenger travel with 100 

nodes. He uses fixed hub locations to be able to examine the effects of capacity 

constraints and also compares alternative sets of hub locations while maintaining 

reasonable computation times. In order to examine the effect on network design as the 

capacity changes, several different capacity levels are examined. Hub arc flows from the 

uncapacitated version of the model are used as a guide in determining the upper and 

lower bounds for the capacity levels. As expected, total network cost per unit flow 

increases as the capacity level decreases and heavily traveled hub arcs are avoided with 

the hub arc capacities. 

Sasaki and Fukushima [27] present a new formulation of a one-stop capacitated 

hub-and-spoke model that involves arc capacity constraints as well as hub capacity 

constraints. They state that arc capacity may represent the number of available aircrafts 

for the airline company on that arc. For the computational experiments, they use the 

CAB data set that contains the data of 25 US cities with the highest traffic of airline 

passengers in 1970. Rodríguez-Martín and Salazar-González [28] consider capacities 

both on the arcs and hubs. They propose two exact solution methods. One of the 

methods is a branch-and-cut algorithm based on a two-level nested decomposition 

scheme that performs better than the other method based on standard Benders 

decomposition. They evaluate and compare these algorithms on instances with up to 25 

commodities and 10 potential hubs. For large instances, they develop a hybrid heuristic 

based on solving a sequence of linear programs. They conduct computational 

experiments on instances with 25 commodities and a number of hubs ranging from 30 

to 50 to test the performance of their proposed heuristic. They conclude that they are 

able to obtain near-optimal solutions. Lin et al. [29] study capacitated p-hub median 

problem in which they consider both node and arc capacity constraints. They make an 

application to a Chinese air cargo network with the number of nodes equivalent to 40.  
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The aforementioned formulations proposed for arc capacitated hub location 

problems assume that the modeled network MN is a complete network with arc 

distances (costs) satisfying the triangle inequality. We call this approach as the classical 

approach. In section 3.1.1, we give arc capacitated HLP models in the literature based 

on the classical approach.  

3.1.1 Arc Capacitated Hub Location Models based on Classical 
Approach 

Bryan [26] is the first to introduce a model in which capacities are associated with 

the hub arcs. Sasaki and Fukushima [27], Rodríguez-Martín and Salazar-González [28] 

and Lin et al. [29] also incorporate arc capacities in HLPs, but the problem given by 

Bryan [26] is closer to the problem that we address. For that reason, we give the model 

proposed by Bryan [26] in this section. We also make some modifications to this model 

to make it address exactly our problem. We call this modified model CAMARC and use 

it in Section 3.2 to be able to compare our proposed approach with the classical 

approach. 

Bryan [26] considers a complete network G = (N, A) whose set of nodes, N = {1, . 

. . , n}, represents the set of origins and destinations nodes. Indices i,j,k,m refer to 

locations while q refers to different levels of costs corresponding to different flow 

volumes. Bryan [26] allows unit costs to vary with the amount flow traversing the hub 

arcs instead of assuming a fixed discount for the hub arcs. For this purpose, the model 

includes a piecewise linearization of a nonlinear cost function in which costs increase at 

a decreasing rate as flows increase. For this purpose, 𝑎Ò and 𝐹𝐶Ò represent interhub 

discount factor (the slopes of the piece-wise lines) and fixed cost (the intercepts of the 

piece-wise lines) respectively. Bryan [26] denote 𝑤&'  as the demand of product from i 

to j for each pair of nodes i,j ∈ 𝑁 and 𝑐&' as the transportation cost of a unit of flow 

between i and j. Bryan [26] defines  𝑋&'34	 as the proportion of flow from i to j that is 

routed via hubs k and m, respectively, 𝑅&34  as the total flow originating from node 𝑖 on 

the hub arc (𝑘,𝑚). 	𝑍3	takes the value 1 if node 𝑘 is a hub, 0 otherwise and 	𝑌Ò34	takes 

the value 1 if the flow on interhub link (k,m) will be charged 𝐹𝐶Ò, 0 otherwise. 

 

With these definitions, the model proposed by Bryan [26] is given below: 
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Min ∑ ∑ ∑ ∑ 𝑤&'43'& �𝑐&3 + 𝑐'4�𝑋&'34 + ∑ ∑ ∑ 𝑐3443Ò (𝑎Ò𝑅&34+𝐹𝐶Ò	𝑌Ò34	) (3.1) 

s.t.    

@𝑍3	
3

= p   (3.2) 

@@𝑋&'34 = 1
43

  ∀	𝑖, 𝑗 (3.3) 

@𝑋&'34
4

− 𝑍3 ≤ 0  ∀	𝑖, 𝑗, 𝑘 (3.4) 

@𝑋&'34
3

− 𝑍4 ≤ 0  ∀	𝑖, 𝑗, 𝑚 (3.5) 

@𝑅Ò34
Ò

=@@𝑤&'
'&

𝑋&'34   ∀	𝑘,𝑚, 𝑘 ≠ 𝑚 (3.6) 

𝑅Ò34 − 	𝑌Ò34	@@𝑤&'
'&

≤ 0  ∀	𝑘,𝑚, 𝑘 ≠ 𝑚 (3.7) 

𝑋3434 ≥ 𝑍3 + 𝑍4 − 1  ∀	𝑘,𝑚 (3.8) 

@	𝑌Ò34	
Ò

− 𝑋3434 = 0  ∀	𝑘,𝑚, 𝑘 ≠ 𝑚 (3.9) 

@𝑅Ò34
&

≤ 	𝐶𝐴𝑃  ∀	𝑘,𝑚 (3.10) 

𝑋&'34 ≥ 0  ∀	𝑖, 𝑗, 𝑘, 𝑚 (3.11) 

𝑅Ò34 ≥ 0  ∀	𝑞, 𝑘,𝑚 (3.12) 

ZÇ	ϵ	{0,1}  ∀	𝑘 (3.13) 

	𝑌Ò34		ϵ	{0,1}  ∀	𝑞, 𝑘,𝑚 (3.14) 

 

The objective function (3.1) minimizes the total transportation cost. Constraint 

(3.2) locates 𝑝 hubs and Constraints (3.3) ensure that every pair of nodes (i,j) is 

allocated to a path via hub nodes k and m. Constraints (3.4) and (3.5) guarantee that the 

flow will not be routed via hubs k and m unless k and m are actually hubs. Constraints 

(3.6) calculate the total amount of flow traveling across each hub arc. When total 
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transportation cost is calculated, the amount of flows on each hub arc is multiplied by 

the corresponding slope (𝑎Ò) and the fixed cost (𝐹𝐶Ò) is then added. Constraints (3.7) 

ensure that the correct fixed cost is associated with its corresponding hub arc discount. 

Constraints (3.8) require two hubs to utilize their own hub arc when interacting with 

each other, while Constraints (3.9) say that exactly one	𝑌Ò34	must be equal one if both k 

and m are hubs. Constraints (3.8) and (3.9) force all hub arcs to be open and used. 

Constraints (3.10) state that the amount of flow traveling across a hub arc must be less 

than or equal to the capacity of the arc. Lastly, Constraints (3.11)−(3.14) define 

decision variables. 

To obtain CAMARC, three main changes are made in the model of Bryan [26]. 

Specifically, (1) unit costs varying with the amount of flow traversing the hub arcs is 

replaced with fixed discount factor (𝛼)	for the hub arcs, (2) access arc capacities are 

incorporated in addition to hub arc capacities, and (3) complete hub-level network 

requirement is relaxed. Since we use a fixed discount factor, we do not use the decision 

variable 	𝑌Ò34	. In CAMARC, three decision variables are used; (1)	𝑋&'34,	(2)	𝑍3, and 

(3)	𝑅&34 .  

The model for the classical approach of MACHLP with the same definitions used 

in the formulation of Bryan [26] is given below: 

Model CAMARC: The Model for the Classical Approach of MACHLP 

Min ∑ ∑ ∑ ∑ 𝑤&'43'& �𝑐&3 + 𝑐'4�𝑋&'34 + ∑ ∑ ∑ 𝛼𝑐3443& 𝑅&34    (3.15) 

s.t.    

@𝑍3	
3

= 𝑝   (3.16) 

@@𝑋&'34 = 1
43

  ∀	𝑖, 𝑗 (3.17) 

@𝑋&'34
4

− 𝑍3 ≤ 0  ∀	𝑖, 𝑗, 𝑘 (3.18) 

@𝑋&'34
3

− 𝑍4 ≤ 0  ∀	𝑖, 𝑗, 𝑚 (3.19) 
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@𝑅&34
&

=@@𝑤&'
'&

𝑋&'34   ∀	𝑘,𝑚, 𝑘 ≠ 𝑚 (3.20) 

@𝑅&34
&

≤ 	 𝑐𝑎𝑝34  ∀	𝑘,𝑚 (3.21) 

@@𝑤&'
4'

𝑋&'34 ≤ 	 𝑐𝑎𝑝&3   ∀	𝑖, 𝑘 (3.22) 

@@𝑤&'
3&

𝑋&'34 ≤ 	 𝑐𝑎𝑝&3   ∀	𝑗, 𝑚 (3.23) 

𝑋&'34 ≥ 0  ∀	𝑖, 𝑗, 𝑘, 𝑚 (3.24) 

𝑅&34 ≥ 0  ∀	𝑖, 𝑘,𝑚 (3.25) 

ZÇ	ϵ	{0,1}  ∀	𝑘 (3.26) 

The objective function (3.15) minimizes the total transportation cost. Constraint 

(3.16) locates 𝑝 hubs and Constraints (3.17) ensure that every pair of nodes (i,j) is 

allocated to a path via hub nodes k and m. Constraints (3.18) and (3.19) guarantee that 

the flow will not be routed via hubs k and m unless k and m are actually 

hubs. Constraints (3.20) calculate the total amount of flow traveling across each hub 

arc. Constraints (3.21) state that the amount of flow traveling across a hub arc must be 

less than or equal to the capacity of the arc. Constraints (3.22) and (3.23) impose an 

upper limit on the flow on collection and distribution arcs respectively. Lastly, 

Constraints (3.24)−(3.26) define decision variables. 

3.2 Comparison of the Hub Networks for Different 
Modeling Approaches 

In this section, we investigate how the total cost, hub locations, and flow route 

between OD pairs change depending on the modeling approach used under different 

assumptions. We compare two modeling approaches: (1) The classical approach: 

Modeled network MN is complete and its distances satisfy the triangle inequality. (2) 

The proposed approach: MN is the same as the real-world network RealN that may be 

complete or non-complete. Before proceeding further we would like to clarify the 

classical approach more. To our knowledge, all studies on arc capacitated hub location 

problems assume that the modeled network MN is a complete network with arc 

distances (costs) satisfying the triangle inequality. However, arc capacities on a non-
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complete RealN may not be easily incorporated when a complete MN is used because 

an arc in a complete MN may actually correspond to a shortest path consisting of 

several arcs with different capacities and not necessarily a single arc in RealN.  

 

Figure 3.1 A non-complete network RealN with different arc capacities. 

 As an example, consider the non-complete network in Figure 3.1 where the 

numbers on the arcs represent the arc capacities. When a complete MN is created from 

this RealN by an algorithm (e.g., Floyd [7]), the arc (1,4) in MN actually corresponds to 

the shortest path consisting of arcs (1,2), (2,3), and (3,4) in RealN and hence the amount 

of flow that can be sent from node 1 to node 4 cannot exceed 50. In this case, to 

incorporate arc capacities in RealN into MN, one may be tempted to assign a capacity of 

50 to arc (1,4) in MN. Similarly, a capacity of 50 may be assigned to arcs (1,3), (2,3), 

(2,4), (3,2), (3,1), (4,1), and (4,2) in MN. However, this assignment of arc capacities is 

not correct because this approach will allow 400 units to be sent between nodes 2 and 3 

in MN, while the actual capacity is just 50 in RealN. In this regard, it is not easy to 

correctly represent the arc capacities in RealN with the current approach. Path-based 

formulation may be developed; however, finding all paths is computationally too 

expensive. For this reason, we adopt an approach where RealN is used as a part of MN, 

which allows us to easily incorporate arc capacities. 

For comparison purposes, we use an 8-node non-complete network that consists 

of 8 cities in the Eagean region of Turkey as the nodes and the roads between 

neighboring cities as the arcs given in Figure 3.2. We assume that a discount factor of 

0.7 is applied to the hub arc costs. We create different instances using different 

capacities for the arcs. We assume that all the arcs have the same capacity. We also 

assume that the shortest path arcs created for the complete network have the same 

capacity. In all instances, p=3 and 𝑤&'’s are drawn from a uniform distribution with the 

interval [10,30]. 
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Figure 3.2 Non-complete transportation network consisting of 8 cities of Eagean 
Region of Turkey. 

We use CAMARC to represent the classical approach. We remark that the 

classical model needs as MN a complete network whose distances satisfy the triangle 

inequality to work correctly. In this regard, we apply the Floyd’s Algorithm [7] to the 

non-complete network to find all-pairs shortest path distances and construct a complete 

network to obtain a solution for the non-complete network using the classical model. To 

represent the proposed approach, we use our proposed model for MACHLP, whose 

details are given in Section 3.3. The proposed model can use any type of network, i.e., 

complete or non-complete, as MN. In this regard, the proposed model uses directly the 

non-complete network and complete network as MN. We consider two cases: (1) Case 

1: All hub arcs are assumed to have the same capacity, (2) Case 2: All hub and access 

arcs are assumed to have the same capacity. 

In Case 1, we impose arc capacities only on hub arcs. We determine the capacities 

after finding the optimal flow values on hub arcs when there are no arc capacities. Table 

3.1 shows the objective function values and hub nodes obtained by MACHLP and 

CAMARC for different capacity values. Please note that we assign the same capacity to 

all arcs in each instance in Table 3.1. When there are no arc capacities and arc capacities 

are not restrictive, i.e., 70, the same optimal objective function values and hub sets are 

obtained by MACHLP and CAMARC. When arc capacities are restrictive, i.e., 

changing from 60 to 10, the optimal objective function values of MACHLP are better 

than those of CAMARC even though the same hub set is found by both models. 
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Table 3.1 Objective function values achieved and hub nodes located with the 
proposed Model MACHLP and Model CAM_ArcCap when hub arc capacities are 
imposed. 

  MACHLP CAMARC 

Capacity of 
each arc 

Objective 
Function 

Value 
Hub Nodes  

Objective 
Function 

Value 
Hub Nodes  

No Capacity 230138 2,3,5 230138 2,3,5 
70 231584 1,4,5 231584 1,4,5 
60 231780 1,4,5 232008 1,4,5 
50 232607 1,4,5 234042 1,4,5 
40 234506 1,4,5 236762 1,4,5 
30 237524 1,4,5 240822 1,4,5 
20 242655 1,5,6 244771 1,5,6 
10 246637 1,5,6 247847 1,5,6 

When we examine the solution of both models, we observe that the difference in 

the objective function values results from the fact that CAMARC can use only direct 

paths between hubs while MACHLP can use alternative paths connecting hubs. As an 

example, consider the HLNs in Figure 3.3 obtained by both models when the hub arc 

capacities are set to 40. When hub arc capacities are 40, nodes 1,4, and 5 are chosen as 

hubs with both of the models. CAMARC use the shortest path distances to connect the 

hubs and create the HLN as given in Figure 3.3 (b). On the other hand, MACHLP can 

also use alternative paths connecting hubs, e.g., arcs (1,2) and (2,5) to connect the hubs 

1 and 5 as given in Figure 3.3 (a). In this case, when the capacities of arcs (1,5) and (5,1) 

are not enough for the flow between hubs 1 and 5, MACHLP also use the capacities of 

the arcs (1,2) and (2,5) to reach from hub 1 to hub 5 or use the capacities of the arcs (5,2) 

and (2,1) to reach from hub 5 to hub 1. 

 



57 
 

 

Figure 3.3 Hub Level Network (HLN) obtained using MACHLP and CAMARC 
when hub arc capacities are 40. 

In case 2, we impose arc capacities on both hub arcs and access arcs and solve to 

optimality assigning capacities changing from 60 to 160 to all arcs. We assign the 

capacity values considering the solutions obtained when there are no constraints. Table 

3.2 shows the objective function values and hub nodes found by MACHLP and  

CAMARC. 

Table 3.2 Objective function values achieved and hub nodes located with the 
proposed Model MACHLP and Model CAM_ArcCap when hub and access arc 
capacities are imposed. 

  MACHLP CAMARC 

Capacity of each 
arc 

Objective 
Function 

Value 
Hub Nodes  

Objective 
Function 

Value 
Hub Nodes  

No Capacity 224024 2,3,5 224024 2,3,5 
160 224024 2,3,5 224024 2,3,5 
140 224024 2,3,5 224884 2,3,5 
120 230862 2,3,5 233278 2,3,5 
100 237834 1,5,6 245537 2,3,5 
80 247603 2,3,8 259089 3,5,6 
60 Infeasible NA 300790 3,5,6 

When there are no arc capacities or when arc capacities are not restrictive, i.e., 

160, both approaches give the same objective function value and hub set. When arc 

capacities change from 100 to 140, the optimal objective function values of MACHLP 
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are better than those of CAMARC even though the same hub sets are found by both 

models. When arc capacities are 80 and 100, the optimal objective function values and 

hub sets obtained by both models are different. The objective function values of 

MACHLP  are better than those of CAMARC. When the arc capacity is 60, MACHLP 

cannot find a feasible solution while CAMARC finds a solution. When we examine the 

solutions of both models, we observe that the differences result from the facts that 

CAMARC can use only direct paths while MACHLP can use alternative paths as in 

Case1 and CAMARC uses the capacities of the arcs more than once. As an example, 

consider the flows of commodity 7 originating from node 7 in Figure 3.4 obtained by 

both models when all the arc capacities are set to 120. Red arcs indicate the flow routes 

and numbers on the red arcs show the amount of flow. The total amount of flow 

originating from node 7 is 140. Since arc capacities are 120, MACHLP sends 120 units 

of flow from node 7 to hub 5 directly and sends the remaining 20 units of flow from 

node 7 to hub 5 on an alternative path (7,8) and (8,5) as shown in Figure 3.4 (a). On the 

other hand, CAMARC sends 120 units of flow from node 7 to hub 5 and sends the 

remaining 20 units of flow from node 7 to hub 2 directly. The direct path (7,2) in MN 

actually corresponds to the shortest path consisting of the arcs (7,5) and (5,2). Since the 

capacity of (7,5) is already used, CAMARC uses its capacity again while sending flows 

on (7,2). 

 

Figure 3.4 Flow routes of commodity 7 originating from node 7 using MACHLP 
and CAMARC when all arc capacities are 120 
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The examples in this section indicate that incorporating arc capacities in RealN is 

not possible with the classical approach even when all arcs are assigned the same 

capacity unless RealN is a complete network with arc distances satisfying the triangle 

inequality. On the other hand, the proposed approach allows incorporating capacities 

easily. When capacities are restrictive, the proposed approach may find better solutions. 

Moreover, in some cases, the classical approach may not satisfy the arc capacity 

constraints. 

3.3 Problem Definition and Mathematical 
Formulation  

We define Multiple Allocation Arc Capacitated Hub Location Problem 

(MACHLP) based on the modeling framework given by Akgün and Tansel [6] who 

propose a problem setting and modeling framework that allows non-complete or 

complete RealN with any cost structure to be used as MN for the multiple allocation p-

hub median problem. The proposed problem setting and modeling framework are 

discussed in Section 2. However, for the purposes of easy reference and integrality of 

the section, we repeat the relevant parts here as well. 

We consider an undirected and connected network 𝐺 = (𝑁,𝐸) (RealN) with node 

set 𝑁	 = 	 {1, . . . , 𝑛} and edge set 𝐸. Node set 𝑁	has subsets as 𝑆 ⊆ 𝑁 and 𝐷 ⊆ 𝑁 that are 

supply (demand) nodes and demand (destination) nodes respectively. The same node 

can be the element of both 𝑆 and 𝐷.  A node 𝑖 ∈ 𝑆 generates flows 𝑤&'  > 0 for some 𝑗 ∈

𝐷. We define 𝐺∗ = (𝑁∗, 𝐸∗)  as the subnetwork of 𝐺 where inter-hub transportation is 

possible.	𝐸∗	stands for the set of edges that can be used as hub arcs and 𝑁∗ stands for 

the set of nodes that are incident to 𝐸∗. 𝐻 ⊆ 𝑁∗ is the set of nodes that are appropriate 

to be chosen as hubs.  

We define 𝑙&' as the length of edge {𝑖, 𝑗} with 𝑙&' = 𝑙'&. The 𝜒&', 	𝛼&',	and 	𝛿&' stand 

for the cost of moving one unit of flow per unit length along the edge {𝑖, 𝑗} for 

collection, transfer, and distribution, respectively. To achieve economies of scale from 

inter-hub transportations, the cost of moving one unit of flow per unit length along an 

inter-hub edge is defined less than the cost of moving one unit of flow per unit length 

along collection and distribution edges as 𝛼&' ≤ 𝜒&' and 𝛼&' ≤ 𝛿&'. 

We formulate the problems using a three-layer network in which first, second and 

third layers represent collection/supply, transfer/hub and distribution/demand layers, 
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respectively as Akgün and Tansel [6]. We construct the modeled network MN as 𝐺h =

(𝑁h, 𝐴h)  using the directed version of 𝐺 = (𝑁, 𝐸) , 𝐺e = (𝑁,𝐴) . 	 We create 

the	supply	layer	network	𝐺i = (𝑁i, 𝐴i) and the distribution layer network 𝐺l = (𝑁l, 𝐴l) 

by exactly copying 𝐺e = (𝑁, 𝐴). The hub layer network 𝐺k = (𝑁k, 𝐴k) is the subnetwork 

of 𝐺′  that corresponds to 𝐺∗ = (𝑁∗, 𝐸∗)  with 𝑁4 = {𝑚1,𝑚2,… ,𝑚𝑛}  and 𝐴4 =

{(𝑚𝑖,𝑚𝑗): (𝑖, 𝑗) ∈ 𝐴}  where 𝑚 = 1,2,3  representing the layers of the network. We 

assume that in MACHLP, capacity constraints may not arise on all arcs of the network. 

For that reason, we define 𝐴ÝÞß ⊆ 𝐴i ∪ 𝐴k ∪ 𝐴l as the set of arcs with capacity limits. 

 MACHLP aims to (1) select p nodes from hub set H, (2) determine the service 

routes between OD pairs that visit at least one hub node by satisfying the capacity 

requirement on the amount of allowable flow on the arcs 𝐴	(collection arcs 𝐴i,	inter-hub 

arcs 𝐴k and distribution arcs 𝐴l) such that total transportation cost is minimized with 

using a multiple allocation strategy. 

We define 𝑤&'’s as the flows with 𝑖 ∈ 𝑆 and 𝑗 ∈ 𝐷 sent from 1𝑖 ∈ 𝑁i to 3𝑗 ∈ 𝑁l 

through 𝐺h.	𝑊&  is the total supply of commodity 𝑖 at node 1𝑖 defined as 𝑊& = ∑ 𝑤&''∈� . 

The 𝑏�3  is the amount of supply/demand of commodity 𝑘 at node 𝛽𝜖𝑁h.	𝐹����	�𝐹�&��	is 

the forward (inward) star of a node	𝛽 ∈ (𝑁i ∪ 𝑁k ∪ 𝑁l). 

The unit cost of each arc 𝑐&' is defined as; 

𝑐&' =

⎩
⎪
⎨

⎪
⎧ 𝜒&' × 𝑙&'																						𝑓𝑜𝑟	(1𝑖, 1𝑗), (𝑖, 𝑗) ∈ 𝐴		

𝛼&' × 𝑙&'																						𝑓𝑜𝑟	(2𝑖, 2𝑗), (𝑖, 𝑗) ∈ 𝐴∗	
𝛿&' × 𝑙&'																						𝑓𝑜𝑟	(3𝑖, 3𝑗), (𝑖, 𝑗) ∈ 𝐴	

													0																	𝑓𝑜𝑟	(1𝑖, 2𝑖)		𝑜𝑟		(2𝑖, 3𝑖), 𝑖 ∈ 𝐻	

 

To incorporate arc capacities, we define 𝑐𝑎𝑝&' as the capacity on the amount of 

allowable flow on arc (𝑖, 𝑗) 	 ∈ 	𝐴àµá. 

The decision variables used in the formulation are (1) 𝑥&'3  that presents the 

amount of flow of commodity 𝑘 ∈ 𝑆 in arc (𝑖, 𝑗) and (2) 𝑦k&  that takes on the value of 1 

when a hub is located at node 𝑖 ∈ 𝐻 and 0 otherwise.  

With these definitions, the proposed model for MACHLP is given below: 

Model MACHLP: Model Multiple Allocation Arc Capacitated Hub Location 
Model 

𝑍∗ = Min	@ @ 𝑐&'𝑥&'3
(&,')���3� 

   (3.27) 
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s.t.   (3.28) 

@ 𝑥�'3
'∈¡¢

£¤¥

− @ 𝑥'�3
'∈¡¢

¦§

= 𝑏�3  𝛽 ∈ (𝑁i ∪ 𝑁k ∪ 𝑁l), 𝑘 ∈ 𝑆 (3.29) 

@𝑦k&
&∈¨

= 𝑝   (3.30) 

𝑥(i&,k&)3 ≤ 𝑊3𝑦k&   𝑖 ∈ 𝐻, 𝑘 ∈ 𝑆 (3.31) 

𝑥(k&,l&)3 ≤ 𝑊3𝑦k&   𝑖 ∈ 𝐻, 𝑘 ∈ 𝑆 (3.32) 

@𝑋µ3
3∈ 

≤ 𝑐𝑎𝑝µ  ∀	𝑎 ∈ 𝐴𝑐𝑎𝑝 	⊆ 𝐴1 ∪ 𝐴2 ∪ 𝐴l (3.33) 

𝑥&'3 ≥ 0	 
 

 (𝑖, 𝑗) ∈ 𝐴h, 𝑘 ∈ 𝑆 (3.34) 

	𝑦k& 	 ∈ 	 {0,1}	 
 

 	𝑖 ∈ 𝐻 (3.35) 

 

Objective function (17) together with constraints (18)-(23) constitute the 

formulation of multiple allocation p-hub median problem developed by Akgün and 

Tansel [6]. We add constraints (69) to the formulation of  Akgün and Tansel [6] to 

develop the formulation of MACHLP. Constraints (69) state that the amount of flow 

traveling on an arc cannot exceed the capacity of that arc 𝑐𝑎𝑝µ.  

3.4 Proposed Solution Methodology 
MACHLP is an NP-hard problem and is difficult to solve using standard 

optimization software. Computational studies indicate that CPLEX-based algorithm and 

Gurobi-based algorithm with NoRel heuristic cannot find optimal solutions for problem 

instances defined on 81-node network with a run time of 24 h. Because we may have 

problems on larger networks in real-life applications, we propose a solution 

methodology based on Simulated Annealing (SA) for solving large-size problem 

instances.  

SA algorithm was developed in 1953 by Metropolis et al. [89]. SA is an effective 

metaheuristic in solving combinational optimization problems and is commonly used to 

solve HLPs. Ernst and Krishnamoorthy [90] propose a solution methodology based on 

SA algorithm for single assignment p-hub median problem. For small-size problems, 

they propose a BB algorithm in which they derive an upper bound using their SA 

algorithm. They use their proposed algorithm for instances with 50 nodes. For the 
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instances of larger problems with 100 and 200 nodes, they are able to obtain solutions 

using the SA algorithm. These instances are the ones for which they can not obtain any 

solution with exact methods. Ernst and Krishnamoorthy [57] develop heuristic 

algorithms based on SA algorithm and random descent (RDH) for capacitated single 

assignment p-hub median problem. They solve instances with up to 200 nodes. They 

compare the performance of the SA algorithm and that of RDH and show that SA 

generally performs slightly better than RDH for large problems. Abdinnour-Helm [91] 

implements a SA-based heuristic approach for the single assignment p-hub median 

problem. He solves instances with 80 nodes. Chen [92] proposes a hybrid heuristic 

based on the SA algorithm and tabu list for single allocation hub location problem. He 

conducts computational experiments using instances with up to 200 nodes. He can 

obtain optimal solutions for all small-scaled problems and for large-scaled problems 

obtain the best-known solutions with smaller CPU time. Jabalameli et al. [93] address 

the single allocation maximal covering hub location problem and propose an efficient 

SA-based heuristic to solve it. Computational results for the instances with up to 50 

nodes prove the efficiency of the proposed heuristic both in terms of solution quality 

and CPU time. Ghaffarinasab et al. [94] present SA-based heuristic approaches for the 

competitive single and multiple allocation HLPs.  They conduct computational 

experiments for the instances with 25 and 81 nodes. For all the instances, they can 

obtain optimal solutions. However, for the larger instances where the optimal solutions 

are not known, they cannot prove the optimality of the solutions obtained by the SA.  

3.4.1 The Overall SA Procedure 

 The SA algorithm starts with an initial solution and initial temperature T0. The 

algorithm proceeds by moving from the current solution to a neighboring solution. In 

order to initiate the algorithm, we determine an initial solution by selecting the first p 

elements of the hub set H as hub nodes and the remaining nodes as non-hub nodes. This 

initial solution generation is a quick way to produce a feasible solution. This initial 

solution is set as the ‘besthubset’ at the beginning of the algorithm. To obtain the 

objective function value of the solution, we run MACHLP by fixing the values of 

decision variables corresponding to the selected hubs. This objective function value is 

set as the ‘bestbound’. We use an operator called ‘Swap_One_Hub’ for generating 

neighboring solutions as in Ghaffarinasab et al. [94]. This operator randomly selects a 

hub node and a non-hub node in the current solution. The selected hub node becomes a 
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non-hub and the selected non-hub node becomes a hub in the new, neighboring solution. 

In order to find the objective function value of the neighboring solution, we again use 

MACHLP by fixing the values of location variables corresponding to hub nodes. If the 

new solution is infeasible (the infeasibility may result from arc capacities), another 

solution is obtained by using the ‘Swap_One_Hub’ operator. If the objective function of 

the new solution is better than the previous solution, the current solution is replaced by 

the new solution. We compare the objective function value of the new solution with 

‘bestbound’ and if it is better, the ‘besthubset’ and ‘bestbound’ are updated. If the 

objective function of the new solution is worse than the previous solution, we do not 

reject that solution directly. The algorithm calculates a probability as 𝑒â∆ä/æ where ∆E 

is the difference of objective function values between the current solution and the new 

solution and T is the current temperature. We generate a number between 0 and 1 

randomly. If the generated number is less than 𝑒â
∆ç
è 	we accept the new solution and 

update the temperature as T= δT where δ is the coefficient that controls the cooling 

schedule. In other words, with the probability of 𝑒â
∆ç
è , the algorithm accepts the new 

solution. As the algorithm proceeds, the temperature is reduced slowly. As the 

temperature is reduced, the probability of accepting the worse solutions decreases. In 

the early iterations of the algorithm, there is a high probability to accept a worse 

solution in order not to get stuck in local optimum solution. In the final stages, there is 

less probability to accept a bad solution so that the algorithm converges to a good 

solution. The critical point in the algorithm is not to reduce the temperature too fast so 

that you can get stuck in local optimum solution or too slow so that you can not reach 

good quality solutions. The algorithm continues similarly until the stopping criterion is 

reached. In this study, we use TimeLimit as the stopping criterion. However, a final 

temperature or an iteration count may be used as well.  

Algorithm SA-Heuristic: 

Step 1: (Initialization) 

Generate a random initial solution for the location of hubs.  

Set an initial temperature T0. 

Set TimeLimit.  

Set the location of the hubs as ‘besthubset’  

Set ℎ = 0 
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Step 2: Run MACHLP (3.27)−(3.35) with the values of location decision variables 

fixed. Set this objective function value as ‘bestbound’.  

Step 3: Use Swap_One_Hub operator: First, select a hub node and a non-hub node in 

the current solution and assign the selected hub node as non-hub node and the selected 

non-hub node as a hub node in the new solution.  

Step 4: Run MACHLP (3.27)−(3.35) with the values of location decision variables 

fixed. 

If MACHLP is infeasible go to Step 3, otherwise; 

Compare this objective function value with the objective function value of the 

previous solution.  

 

If it is better, accept the new solution.  

If the objective function of the new solution is better than ‘bestbound’, update 

‘bestbound’, ‘besthubset’, and the temperature as T=δT, set h=h+1, go to Step3, 

otherwise; update the temperature as T=δT, set h=h+1, go to Step3 without updating 

‘bestbound’ and ‘besthubset’ 

 

If it is worse, keep the ‘bestbound’ and ‘besthubset’. Calculate 𝑒â∆ä/æ and generate a 

number between 0 and 1 randomly. 

If the generated number < 𝑒â∆ä/æ	accept the new solution, update the temperature as 

T=δT, set h=h+1, go to Step3, otherwise; reject the new solution, keep the existing 

solution, update the temperature as T=δT, set h=h+1, go to Step3. 

Step 5: Repeat Steps 3-4 until the ‘Timelimit’ is reached. 
 

3.5 Computational Experiments 
We conduct computational experiments to test the performance of the proposed 

models and solution methodologies. We test the performance of MACHLP using 

CPLEX, Gurobi, and Gurobi with NoRel Heuristic that are known to be efficient solvers 

for the MIP problems. When Gurobi is used with NoRel Heuristic, NoRel heuristic first 

tries to find a high-quality feasible solution in the allocated time and then Gurobi 

implements the branch and cut algorithm with the feasible solution found by the NoRel 

heuristic. Gurobi with NoRel Heuristic can be useful on models where root relaxation is 
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quite expensive since since it  searches for high-quality feasible solutions before solving 

the root relaxation [82]. We observe that Gurobi with NoRel Heuristic finds much better 

feasible solutions than Gurobi for all instances. For that reason, we do not present the 

results obtained by Gurobi and only present the results obtained by CPLEX and Gurobi 

with NoRel Heuristic. 

We define test problems on TR81, PMED100, PMED200, PMED300, and 

PMED400 networks. TR81 defined by Akgün and Tansel [6] is the non-complete 

transportation network of  Turkey including all 81 cities of Turkey. The edges on TR81 

are defined only between adjacent cities. The length of the edges on TR81 are assumed 

to be the direct distances from the high-way transportation network of Turkey. 

PMED100 through PMED400 are the non-complete networks used for the p-median 

problem instances (e.g., Beasley [84] ) with the numbers indicating the number of 

nodes. Different test problems are created on the networks by changing 𝑝 and cap(i,j) 

where 𝐸∗ = 𝐸, 𝑁∗ = 𝑁  and 𝐻 ⊆ 𝑁∗ . For all the test problems, 	𝑤&'  is uniformly 

distributed with the interval (10,30). For all arcs, 𝜒&' and 𝛿&'	are taken as 1 whereas 𝛼&' 

is taken as 0.7. In all problems, 𝑆 = 𝐷 = 𝑁.  

To determine 𝐴àµá, the set of arcs with limited capacities, we use the flow values 

on the arcs in the best solution obtained by running CPLEX to solve MACHLP without 

capacity constraints for 24 h. We sort the arcs in each layer (collection, hub, 

distribution) considering the flow values from the highest to the lowest and set the first 

20% of the arcs on the sorted list as 𝐴àµá. The flow values of the arcs in 𝐴àµá are 

considered as an upper limit on the amount of flow traversing the corresponding arcs, 

which we define as maxarccap. We set the arc capacities of the corresponding arcs, i.e., 

𝑐𝑎𝑝&', 20%, 50%, and 80% of maxarccap to obtain different problem instances. 

We code the models and the algorithms using GAMS and conduct the 

experiments on a PC with 3.6 GHz Intel Core i7-7700CPU processor and 32 GB of 

RAM for TR81, PMED100, PMED200, PMED300 instances and on a server with 

Intel® Xeon® CPU E5-2683 V4 @ 2.1 GHz 64 core processor and 256 GB of RAM for 

PMED400 instances due to memory requirements.  

3.5.1 Computational Experiments for MACHLP using CPLEX 
and Gurobi with NoRel Heuristic 

We conduct computational experiments for two different cases. In the first case, 

we impose arc capacities only on the hub arcs. In the second case, we impose arc 
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capacities both on the hub arcs and access arcs. In both cases, the capacitated arcs are 

determined as described above. Table 3.3 and Table 3.4 give the results obtained by 

solving MACHLP using CPLEX and Gurobi with NoRel heuristic for these cases, 

respectively. The runtime of all instances is 24 h. When we use Gurobi with NoRel 

heuristic, we assign 12 h for the NoRel heuristic. After 12 h, Gurobi starts the branch 

and cut algorithm with the feasible solution found by NoRel heuristic and uses the 

remaining 12 h for branch and cut. Different time limits are also tried for NoRel 

heuristic; however, we can obtain high-quality solutions with this time setting.  

In the tables, we present the runtime (𝑇) in CPU secs, the lower bound (LB), the 

objective function value of the best integer solution at the end of runtime (BP) obtained 

by CPLEX or Gurobi with NoRel heuristic, and the relative optimality gap (Gap%) 

between LB and BP, and the best integer solution achieved either by CPLEX or Gurobi 

with NoRel heuristic (BP*). In the tables, bold and italic values indicate the same or 

better BP and LB values for each instance.  

Table 3.3 shows that Gurobi with NoRel heuristic mostly finds better BP values 

than CPLEX for TR81, PMED100, and PMED200 instances whereas CPLEX mostly 

finds better BP values than Gurobi with NoRel heuristic for PMED300 and PMED400 

instances. The average gap for the small-size instances (TR81 and PMED100) is 

ranging from 3.7% to 7.5% whereas the average gap for the large-size instances 

(PMED200, PMED300 and PMED400) is ranging from 14.4% to 23.9%. As the 

network size gets larger, the number of capacitated arcs increases and arc capacities 

become more restrictive, resulting in higher optimality gaps. 

Table 3.4 shows that Gurobi with NoRel heuristic mostly finds better BP values 

than CPLEX for all instances except PMED300 instances. The average gap for the 

small-size instances (TR81 and PMED100) is ranging from 7.2% to 13.2% whereas the 

average gap for the large-size instances (PMED200, PMED300 and PMED400) is 

ranging from 22.5% to 69.1%. The results show that, as the network size gets larger and 

as the number of arcs with capacities increases, i.e., when we impose capacities on both 

access and hub arcs rather than only on hub arcs, optimality gaps increase. 
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Table 3.3 Test results for MACHLP using CPLEX and Gurobi with NoRel 
heuristic with hub arc capacities. 
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CPLEX Gurobi with NoRel Heuristics  
 
 

BP* 
 
  

LB UB Gap 
(%) LB UB Gap (%) 

1 

TR
81

 

81 3 20 86400 102945951 112890530 9.7 98772886 112890530 12.5 112890530 
2 81 3 50 86400 102811383 113092521 10.0 98923941 113092521 12.5 113092521 
3 81 3 80 86400 102848053 113420833 10.3 98846960 113899711 13.2 113420833 
4 81 5 20 86400 96071305 101824824 5.7 93081273 101630907 8.4 101630907 
5 81 5 50 86400 96123674 102076752 5.8 93438095 101838411 8.2 101838411 
6 81 5 80 86400 96452760 102943176 8.0 93598954 102286195 8.4 102286195 
7 81 8 20 86400 91001266 93859641 3.1 89535609 93859641 4.6 93859641 
8 81 8 50 86400 91264410 94832303 3.8 89744040 94896754 5.4 94832303 
9 81 8 80 86400 92114134 96205262 4.3 90662508 96065406 5.6 96065406 
10 81 10 20 86400 89256910 90996970 1.9 87732680 90996970 3.5 90996970 
11 81 10 50 86400 89234894 91929070 2.9 87875082 91612434 4.0 91612434 
12 81 10 80 86400 89763880 93066574 3.6 88583710 92807614 4.5 92807614 
       Average 5.4  Average 7.5  
13 

PM
ED

10
0 

100 3 20 86400 31782543 32930289 3.5 30005567 32930289 8.8 32930289 
14 100 3 50 86400 31858910 32939139 3.3 30155918 32939139 8.4 32939139 
15 100 3 80 86400 32004919 32969502 2.9 30080649 32969502 8.7 32969502 
16 100 5 20 86400 28909200 30622886 5.6 28486360 30622886 6.9 30622886 
17 100 5 50 86400 28922934 30724600 5.9 28695781 30706921 6.5 30706921 
18 100 5 80 86400 28962741 30837964 6.1 28777851 30800113 6.5 30800113 
19 100 8 20 86400 27747579 28412960 2.3 27376398 28412960 3.6 28412960 
20 100 8 50 86400 27776810 28638604 3.0 27328632 28638604 4.5 28638604 
21 100 8 80 86400 27855993 28891436 3.6 27456902 28891436 4.9 28891436 
22 100 10 20 86400 27087666 27715709 2.3 26737125 27715709 3.5 27715709 
23 100 10 50 86400 27119451 28007152 3.2 26730025 27964398 4.4 27964398 
24 100 10 80 86400 27243841 28272424 3.6 26897481 28227890 4.7 28227890 
       Average 3.7  Average 5.9  
25 

PM
ED

20
0 

200 3 20 86400 68757637 88409107 22.2 66748355 88409107 24.5 88409107 
26 200 3 50 86400 68554486 87770593 21.9 68828454 82761876 16.8 82761876 
27 200 3 80 86400 68774183 89375366 23.1 68554153 89375366 23.3 89375366 
28 200 5 20 86400 66116031 85524862 22.7 66076587 76824557 13.9 76824557 
29 200 5 50 86400 66235691 81788733 19.3 65965218 77140939 14.4 77140939 
30 200 5 80 86400 66184537 85942385 23.0 66183518 77175834 14.2 77175834 
31 200 8 20 86400 64087284 77909694 17.7 63766287 71409434 10.7 71409434 
32 200 8 50 86400 64066832 88458636 27.6 63865576 71397604 10.5 71397604 
33 200 8 80 86400 63566448 73265967 13.2 63887723 72347091 11.6 72347091 
34 200 10 20 86400 62581616 72591859 22.2 61531446 69552738 11.5 69552738 
35 200 10 50 86400 62827030 72583918 19.4 62698139 70202498 10.6 70202498 
36 200 10 80 86400 62940237 70732885 11.0 62734262 70451517 10.9 70451517 
       Average 20.2  Average 14.4  
37 

PM
ED

30
0 

300 3 20 86400 100039256 126904538 21.2 101162865 130958127 22.7 126904538 
38 300 3 50 86400 99795546 126904538 21.4 101309492 127442389 20.5 126904538 
39 300 3 80 86400 99942282 126904538 21.3 101140916 129265963 21.8 126904538 
40 300 5 20 86400 98368346 119755392 17.9 98332583 119295140 17.6 119295140 
41 300 5 50 86400 98397675 119755392 17.8 98583762 119288148 17.4 119288148 
42 300 5 80 86400 96961998 119783476 19.1 98625828 122740251 19.6 119783476 
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43 300 8 20 86400 95213553 112850544 15.6 96909585 113591891 14.6 112850544 
44 300 8 50 86400 95700525 112850544 15.2 96829462 113434988 14.6 112850544 
45 300 8 80 86400 95166765 112591330 15.5 97035546 114366263 15.2 112591330 
46 300 10 20 86400 92057452 112126767 17.9 95702271 109773739 12.8 109773739 
47 300 10 50 86400 94287150 110088775 14.4 95440976 110331974 13.5 110088775 
48 300 10 80 86400 94414605 110350594 14.4 95778008 112492561 14.8 110350594 
       Average 17.6  Average 17.0  
49 

PM
ED

40
0 

400 3 20 86400 128655781 172247869 25.3 130632203 178185447 26.6 172247869 
50 400 3 50 86400 129217406 172247869 25.0 131114396 162536528 19.3 162536528 
51 400 3 80 86400 128778160 171645514 25.0 131135000 188758266 30.5 171645514 
52 400 5 20 86400 126078000 159291000 20.9 128089009 165348673 22.5 159291000 
53 400 5 50 86400 126068781 158639802 20.5 127495090 166888998 23.6 158639802 
54 400 5 80 86400 127277784 159891522 20.4 126513881 168055183 24.7 159891522 
55 400 8 20 86400 124825000 150321000 17.2 124041193 164813376 24.7 150321000 
56 400 8 50 86400 125458768 151895521 17.4 123534699 157033380 21.3 151895521 
57 400 8 80 86400 124936045 149557957 16.5 123155435 157608234 21.8 149557957 
58 400 10 20 86400 123019000 147057000 16.4 124039776 173500823 28.5 147057000 
59 400 10 50 86400 123428000 148308000 16.8 122244814 149314586 18.1 148308000 
60 400 10 80 86400 124373734 149717000 16.9 122096730 163732832 25.4 149717000 
       Average 19.8  Average 23.9  

Table 3.4 Test results for MACHLP using CPLEX and Gurobi with NoRel 
heuristic with hub and access arc capacities. 
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CPLEX Gurobi with NoRel Heuristics  
 
 

BP* 
 
  

LB UB Gap 
(%) LB UB Gap 

(%) 

61 

TR
81

 

81 3 20 86400 103526953 114914918 11.0 99655975 115281313 13.5 114914918 
62 81 3 50 86400 104416477 117071754 12.1 99734529 115694288 13.7 115694288 
63 81 3 80 86400 105220416 118046785 12.2 100596696 117011966 14.0 117011966 
64 81 5 20 86400 96071305 101824824 5.7 93506453 102965309 9.1 101824824 
65 81 5 50 86400 96466020 105117294 8.2 93339294 104498908 10.6 104498908 
66 81 5 80 86400 98523400 106022593 7.1 94928043 106022593 10.4 106022593 
67 81 8 20 86400 91210840 95748062 4.7 89748708 94742442 5.2 94742442 
68 81 8 50 86400 91849206 97417496 5.7 89971897 96915551 7.1 96915551 
69 81 8 80 86400 93841975 99094584 7.0 92086213 98836098 6.8 98836098 
70 81 10 20 86400 89024967 92040568 3.3 87820889 91981590 4.5 91981590 
71 81 10 50 86400 89666623 94601963 5.2 88172666 93892359 6.0 93892359 
72 81 10 80 86400 91816969 95753742 4.1 90308654 95753742 5.6 95753742 
        7.2   8.8  
73 

PM
ED

10
0 

100 3 20 86400 30778970 34287262 10.2 29973516 34157981 12.3 34157981 
74 100 3 50 86400 30247451 36543053 17.2 29905880 36071269 17.0 36071269 
75 100 3 80 86400 32350494 37884305 14.6 30858409 37884305 18.5 37884305 
76 100 5 20 86400 28924711 31556850 8.3 28734286 31556347 8.9 31556347 
77 100 5 50 86400 29114625 33609757 13.4 28430677 33301518 14.6 33301518 
78 100 5 80 86400 30989826 35878431 13.6 29872326 35878431 16.7 35878431 
79 100 8 20 86400 27868285 29394313 5.2 27325774 29253295 6.5 29253295 
80 100 8 50 86400 27619903 30862630 10.5 27594765 30844544 10.5 30844544 
81 100 8 80 86400 29172254 32802869 11.1 28645243 32988664 13.1 32802869 
82 100 10 20 86400 27242125 28335970 3.9 25145322 28335970 11.2 28335970 
83 100 10 50 86400 26877733 29744519 9.6 28807415 33622974 14.3 29744519 
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84 100 10 80 86400 28275715 32014511 11.7 31006734 36669754 15.4 32014511 
        10.7   13.2  
85 

PM
ED

20
0 

200 3 20 86400 68798258 92679549 25.8 68790221 87950587 21.7 87950587 
86 200 3 50 86400 68249315 113305564 39.8 68660539 96173074 28.6 96173074 
87 200 3 80 86400 70062038 107833727 35.0 69779371 94955419 26.5 94955419 
88 200 5 20 86400 66584867 95067609 30.0 66193354 85427037 22.5 85427037 
89 200 5 50 86400 66901631 94079140 28.9 66427391 85992946 22.7 85992946 
90 200 5 80 86400 68534169 92759870 26.1 67828920 92082116 26.3 92082116 
91 200 8 20 86400 65240463 76882178 15.1 63893749 77472013 17.5 76882178 
92 200 8 50 86400 64581472 88040609 26.7 64365814 84224024 23.5 84224024 
93 200 8 80 86400 67389398 91566807 26.4 66574756 88885932 25.1 88885932 
94 200 10 20 86400 63171148 78523829 19.6 62745677 73763549 14.9 73763549 
95 200 10 50 86400 63716795 95711583 33.4 63318400 79379925 20.2 95711583 
96 200 10 80 86400 66401974 94781986 29.9 65560105 82581387 20.6 82581387 
        28.0   22.5  
97 

PM
ED

30
0 

300 3 20 86400 99066880 140643156 29.6 100551924 158715823 36.6 140643156 
98 300 3 50 86400 100029467 141991514 29.6 98958009 181219781 45.3 141991514 
99 300 3 80 86400 102853759 154420261 33.4 102438975 162566454 36.9 154420261 
100 300 5 20 86400 97481250 150142080 35.1 97900651 150416020 34.9 150142080 
101 300 5 50 86400 98308505 142235824 30.9 97137470 147335327 34.0 142235824 
102 300 5 80 86400 100726631 141216710 28.7 98824717 158495066 37.6 141216710 
103 300 8 20 86400 94528300 124436000 24.0 94741260 149052657 36.4 124436000 
104 300 8 50 86400 95894711 129374170 25.9 94863801 147125287 35.5 129374170 
105 300 8 80 86400 98493520 132672564 25.8 96920872 156144691 37.9 132672564 
106 300 10 20 86400 93227083 116758410 20.2 94461289 141942302 33.5 116758410 
107 300 10 50 86400 94138066 125892543 25.2 94182626 126429640 25.5 125892543 
108 300 10 80 86400 96985961 126327965 23.2 94911748 133525381 28.9 126327965 
        27.6   35.2  
109 

PM
ED

40
0 

400 3 20 86400 127706003 3608530345 96.5 129101086 243230077 47.2 243230077 
110 400 3 50 86400 126122232 2637792689 95.2 130190004 285158797 54.3 285158797 
111 400 3 80 86400 126122232 2637792689 95.2 132504697 236120100 43.8 236120100 
112 400 5 20 86400 126805640 172253818 26.4 125980900 202268343 37.7 172253818 
113 400 5 50 86400 128192803 206850078 38.0 126630071 218983603 42.1 206850078 
114 400 5 80 86400 131554972 2569061646 94.9 127401700 250749067 52 250749067 
115 400 8 20 86400 124446872 200542266 37.9 123257052 193667054 36.3 193667054 
116 400 8 50 86400 126735799 180416522 29.8 124027978 216698126 42.7 180416522 
117 400 8 80 86400 131433916 4021263142 96.7 126332881 210938589 40.1 210938589 
118 400 10 20 86400 123852655 166750263 25.7 122092256 189330359 35.8 166750263 
119 400 10 50 86400 122692282 4248884252 97.1 122421613 196846174 37.8 196846174 
120 400 10 80 86400 129019523 3959976011 96.7 122798697 218859960 43.8 218859960 
        69.1   42.8  

 

3.5.2 Computational Experiments with the Proposed SA-based 
Solution Methodology 

We find the initial solution and the corresponding objective function value as 

described in Section 3.4. We set the initial temperature T0 to 10000000 after observing 

the quality of solutions with a set of trial tests. T0 affects the probability 𝑒â∆ä/æ, the 

probability of accepting worse solutions. ∆E is the difference of objective function 



70 
 

values between the current solution and the new solution and this difference is mostly in 

the values of millions. If T is a small number, the probability 𝑒â∆ä/æ  becomes very 

small. However, in the early iterations of the algorithm, we would like it to accept the 

worse solutions not to get stuck in local optimum solution. For that reason, instead of 

small values of T0 we use a large value 10000000 that gives us good quality solutions. 

For cooling schedule δ, we use two different values, 0.99 and 0.95. We set TimeLimit to 

24 h with a focus on high-quality solutions rather than shorter solution times 

considering the strategic nature of MACHLP. However, we observe that the best 

solutions are found in about 12 h for most of the instances. Figure 3.5 shows how the 

UB values change as time passes for the PMED300 test instances defined with arc 

capacities both on hub and access arcs.  

 
Figure 3.5. UB values achieved with the proposed SA based solution methodology 
as time passes for the test instances on PMED300. 

Table 3.5 (3.6) presents the results of the proposed SA-based heuristics for 

different test instances of MACHLP with only hub arc capacities (with both hub and 

access arc capacities). In the tables, we give GapHeur (%) defined as 100×(𝑈𝐵 - 

𝐵𝑃∗)/𝐵𝑃∗ in order to compare the heuristic solution UB to BP*, the best solution found 

by either CPLEX or Gurobi with NoRel heuristic. A positive (negative) value indicates 

that the UB achieved by the heuristic algorithm is worse (better) than BP*. Instances 



71 
 

with bold UB values are the ones for which the heuristic can either find the same 

solution or a better solution than CPLEX or Gurobi with NoRel heuristic.  

The results indicate that average GapHeur values with the cooling factor δ=0.95. 

for PMED100 and PMED300 instances when only hub arc capacities are imposed 

(Table 3.5). For all other test instances in Table 3.5 and Table 3.6, average GapHeur 

values with δ=0.95 are better than those with δ=0.99. In this regard, we will continue 

our analysis with the parameter setting δ=0.95.  

Table 3.5 shows that, the proposed heuristic finds the same solution as CPLEX or 

Gurobi with NoRel heuristic for 13 instances out of 24 TR81 and PMED100 instances. 

However for PMED200, PMED300 and PMED400 instances, the proposed heuristic 

finds a solution equivalent to or better than BP* for 31 instances out of 36. For 

PMED400 instances, average GapHeur is the lowest with a value of −1.9% which 

shows that as the network size gets larger, the heuristic can find solutions better than 

those found by CPLEX or Gurobi with NoRel heuristic. 

Table 3.6 indicates that, the proposed heuristic finds the same solution as CPLEX 

or Gurobi with NoRel heuristic for 17 instances out of 24 TR81 and PMED100 

instances. However for PMED200, PMED300 and PMED400 instances, the proposed 

heuristic finds a solution better than BP* for all the 36 instances except two of them. For 

PMED200 instances, GapHeur values range from −1.3% to −22.7% with an average of 

−8.4%. The heuristic can find a better solution for all the PMED200 instances. For 

PMED200 instances, GapHeur values range from –0.2% to −13% with an average of 

−4.7%. The heuristic can find a better solution for all the PMED300 instances like 

PMED200 instances. For PMED400 instances, GapHeur values change from 7.6% to 

−30.3% with an average of −10.8%. The heuristic cannot find a better solution for two 

instances (Pr. Id 116 and 11) out of 12 PMED400 instances. As network size increases, 

the proposed heuristic is able to find much better solutions than the solutions achieved 

with CPLEX or Gurobi with NoRel heuristic. 

 The results show that, as the network size gets larger and as the number of arcs 

with capacities increases, i.e., when we impose capacities on both access and hub arcs 

rather than only on hub arcs, CPLEX or Gurobi with NoRel heuristic find a solution 

with high optimality gaps. On the other hand, the proposed heuristic can find solutions 

either close to or better than those found by CPLEX or Gurobi with NoRel heuristic, 

which shows the efficiency of the proposed heuristic to find high-quality solutions. 
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Table 3.5 Test results for MACHLP using the proposed SA-based heuristics with 
hub arc capacities (T=24h)  
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BP* UB when δ=0.99 GapHeur 
(%) UB when δ=0.95 GapHeur 

(%) 

1 

TR
81

 

81 3 20 112890530 112988100 0.1 112988100 0.1 
2 81 3 50 113092521 113217000 0.1 113217000 0.1 
3 81 3 80 113420833 113472500 0.0 113472500 0.0 
4 81 5 20 101630907 101591900 0.0 101591900 0.0 
5 81 5 50 101838411 102345000 0.5 102345000 0.5 
6 81 5 80 102286195 102286200 0.0 102286200 0.0 
7 81 8 20 93859641 98188900 4.6 93859640 0.0 
8 81 8 50 94832303 98488100 3.9 95034380 0.2 
9 81 8 80 96065406 99434450 3.5 96065410 0.0 
10 81 10 20 90996970 91095720 0.1 91495800 0.5 
11 81 10 50 91612434 94760650 3.4 94760650 3.4 
12 81 10 80 92807614 92866590 0.1 92866590 0.1 
      Max 4.6 Max 3.4 
      Min 0.0 Min 0.0 
      Average 1.4 Average 0.4 
13 

PM
ED

10
0 

100 3 20 32930289 32930289 0.0 32930289 0.0 
14 100 3 50 32939139 32939139 0.0 32939139 0.0 
15 100 3 80 32969502 32969502 0.0 32969502 0.0 
16 100 5 20 30622886 32106400 4.8 30622886 0.0 
17 100 5 50 30706921 32141520 4.7 30706921 0.0 
18 100 5 80 30800113 32188456 4.5 30800113 0.0 
19 100 8 20 28412960 28412960 0.0 28412960 0.0 
20 100 8 50 28638604 28638604 0.0 31653670 10.5 
21 100 8 80 28891436 29635738 2.6 31771380 10.0 
22 100 10 20 27715709 27775585 0.2 27715709 0.0 
23 100 10 50 27964398 28007542 0.2 27988478 0.1 
24 100 10 80 28227890 29801188 5.6 30115991 6.7 
      Max 5.6 Max 10.5 
      Min 0.0 Min 0.0 
      Average 1.9 Average 2.3 
25 

PM
ED

20
0 

200 3 20 88409107 82761876 -6.4 82761876 -6.4 
26 200 3 50 82761876 82761876 0.0 82761876 0.0 
27 200 3 80 89375366 82761876 -7.4 82761876 -7.4 
28 200 5 20 76824557 76514167 -0.4 76514167 -0.4 
29 200 5 50 77140939 76533753 -0.8 76533753 -0.8 
30 200 5 80 77175834 76565576 -0.8 76565576 -0.8 
31 200 8 20 71409434 71334036 -0.1 71334036 -0.1 
32 200 8 50 71397604 71371852 0.0 71371852 0.0 
33 200 8 80 72347091 71437881 -1.3 71437881 -1.3 
34 200 10 20 69552738 69639444 0.1 69525782 0.0 
35 200 10 50 70202498 69902498 -0.4 69626947 -0.8 
36 200 10 80 70451517 69792291 -0.9 69792291 -0.9 
      Max 0.1 Max 0.0 
      Min -7.4 Min -7.4 
      Average -1.5 Average -1.6 
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37 

PM
ED

30
0 

300 3 20 126904538 126904538 0.0 126904538 0.0 
38 300 3 50 126904538 126904538 0.0 128159829 1.0 
39 300 3 80 126904538 126904538 0.0 126904538 0.0 
40 300 5 20 119295140 118513751 -0.7 119374121 0.1 
41 300 5 50 119288148 118513751 -0.6 119374121 0.1 
42 300 5 80 119783476 119092250 -0.6 118866634 -0.8 
43 300 8 20 112850544 112281042 -0.5 111644121 -1.1 
44 300 8 50 112850544 112288763 -0.5 111641119 -1.1 
45 300 8 80 112591330 112490053 -0.1 112694443 0.1 
46 300 10 20 109773739 108745773 -0.9 108622588 -1.0 
47 300 10 50 110088775 108423976 -1.5 108655305 -1.3 
48 300 10 80 110350594 108617127 -1.6 108862157 -1.3 
      Max 0.0 Max 1.0 
      Min -1.6 Min -1.3 
      Average -0.6 Average -0.4 
49 

PM
ED

40
0 

400 3 20 172247869 163765348 -4.9 163765348 -4.9 
50 400 3 50 162536528 163765348 0.8 163765348 0.8 
51 400 3 80 171645514 163793379 -4.6 163793379 -4.6 
52 400 5 20 159291000 155155800 -2.6 155116513 -2.6 
53 400 5 50 158639802 155667145 -1.9 155212330 -2.2 
54 400 5 80 159891522 167775982 4.9 155520422 -2.7 
55 400 8 20 150321000 158720000 5.6 148986483 -0.9 
56 400 8 50 151895521 148477092 -2.3 149147770 -1.8 
57 400 8 80 149557957 148846650 -0.5 149568864 0.0 
58 400 10 20 147057000 145888433 -0.8 145888433 -0.8 
59 400 10 50 148308000 146288037 -1.4 146120442 -1.5 
60 400 10 80 149717000 146712600 -2.0 146692757 -2.0 
      Max 5.6 Max 0.8 
      Min -4.9 Min -4.9 
      Average -0.8 Average -1.9 

 

Table 3.6 Test results for MACHLP using the proposed SA-based heuristics with 
hub and access arc capacities (T=24h)  
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TR
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81 3 20 114914918 115762300 0.7 114914900 0.0 
62 81 3 50 115694288 116593200 0.8 116593200 0.8 
63 81 3 80 117011966 120498000 3.0 117495200 0.4 
64 81 5 20 101824824 102881000 1.0 102881000 1.0 
65 81 5 50 104498908 105050700 0.5 105077000 0.6 
66 81 5 80 106022593 106772400 0.7 106772400 0.7 
67 81 8 20 94742442 94664910 -0.1 94664910 -0.1 
68 81 8 50 96915551 100403700 3.6 96772750 -0.1 
69 81 8 80 98836098 102673900 3.9 98836100 0.0 
70 81 10 20 91981590 92189660 0.2 91957650 0.0 
71 81 10 50 93892359 93884420 0.0 93824300 -0.1 
72 81 10 80 95753742 100115000 4.6 95753740 0.0 
      Max 4.6 Max 1.0 
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      Min -0.1 Min -0.1 
      Average 1.6 Average 0.3 
73 

PM
ED

10
0 

100 3 20 34157981 34157981 0.0 34157981 0.0 
74 100 3 50 36071269 36071269 0.0 36071269 0.0 
75 100 3 80 37884305 37884305 0.0 37884305 0.0 
76 100 5 20 31556347 34383958 9.0 31556347 0.0 
77 100 5 50 33301518 33301518 0.0 33301518 0.0 
78 100 5 80 35878431 35718658 -0.4 37794415 5.3 
79 100 8 20 29253295 32327704 10.5 32327704 10.5 
80 100 8 50 30844544 30664118 -0.6 30664118 -0.6 
81 100 8 80 32802869 32988664 0.6 32802869 0.0 
82 100 10 20 28335970 28326930 0.0 28324510 0.0 
83 100 10 50 29744519 29542474 -0.7 29583921 -0.5 
84 100 10 80 32014511 31545144 -1.5 31476793 -1.7 
      Max 10.5 Max 10.5 
      Min -1.5 Min -1.7 
      Average 1.4 Average 1.1 
85 

PM
ED

20
0 

200 3 20 87950587 86811528 -1.3 86811528 -1.3 
86 200 3 50 96173074 87964453 -8.5 87964453 -8.5 
87 200 3 80 94955419 90769904 -4.4 90769904 -4.4 
88 200 5 20 85427037 76515205 -10.4 76515204 -10.4 
89 200 5 50 85992946 76521679 -11.0 76521679 -11.0 
90 200 5 80 92082116 76537222 -16.9 76537222 -16.9 
91 200 8 20 76882178 86195094 12.1 74734122 -2.8 
92 200 8 50 84224024 87963257 4.4 77765212 -7.7 
93 200 8 80 88885932 82388929 -7.3 82153312 -7.6 
94 200 10 20 73763549 71975139 -2.4 71301223 -3.3 
95 200 10 50 95711583 74219984 -22.5 73955861 -22.7 
96 200 10 80 82581387 78896072 -4.5 78997931 -4.3 
      Max 12.1 Max -1.3 
      Min -22.5 Min -22.7 
      Average -6.1 Average -8.4 
97 

PM
ED

30
0 

300 3 20 140643156 137893377 -2.0 137893377 -2.0 
98 300 3 50 141991514 141366577 -0.4 141758889 -0.2 
99 300 3 80 154420261 150996461 -2.2 148634916 -3.7 
100 300 5 20 150142080 130814258 -12.9 130548934 -13.0 
101 300 5 50 142235824 135594227 -4.7 132836398 -6.6 
102 300 5 80 141216710 138067286 -2.2 136909483 -3.1 
103 300 8 20 124436000 124426170 0.0 121656760 -2.2 
104 300 8 50 129374170 124028838 -4.1 123265563 -4.7 
105 300 8 80 132672564 140704046 6.1 126142428 -4.9 
106 300 10 20 116758410 119615011 2.4 112221735 -3.9 
107 300 10 50 125892543 122997368 -2.3 115067938 -8.6 
108 300 10 80 126327965 121032083 -4.2 121828034 -3.6 
      Max 6.1 Max -0.2 
      Min -12.9 Min -13.0 
      Average -2.2 Average -4.7 
109 

PM
ED

40
0 

400 3 20% 243230077 186316093 -23.4 186316093 -23.4 
110 400 3 50% 285158797 198884325 -30.3 198884325 -30.3 
111 400 3 80% 236120100 198804444 -15.8 198891600 -15.8 
112 400 5 20% 172253818 171575551 -0.4 168785289 -2.0 
113 400 5 50% 206850078 181032300 -12.5 176149487 -14.8 
114 400 5 80% 250749067 185380026 -26.1 183609478 -26.8 
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115 400 8 20% 193667054 173492484 -10.4 157445600 -18.7 
116 400 8 50% 180416522 194093410 7.6 194093410 7.6 
117 400 8 80% 210938589 205193956 -2.7 205193956 -2.7 
118 400 10 20% 166750263 162259100 -2.7 162259100 -2.7 
119 400 10 50% 196846174 199449959 1.3 199449959 1.3 
120 400 10 80% 218859960 216223226 -1.2 216223226 -1.2 
      Max 7.6 Max 7.6 
      Min -30.3 Min -30.3 
      Average -9.7 Average -10.8 

3.6 Conclusion 
In this chapter, we present Multiple Allocation Hub Arc Capacitated p-hub 

Median Problem (MACHLP) in which we impose an upper limit on the flow traversing 

the arcs. MACHLP minimizes transportation cost of sending flows between OD pairs 

by locating p hubs and satisfying the capacity requirements. Capacity constraints on the 

hub networks may be imposed both on the nodes and arcs of the network. However, 

most studies incorporate capacity constraints on the nodes and few studies address arc 

capacities with some restrictive assumptions. However, arc capacities are important in 

some settings of HLPs, e.g., bridges, subways, canals and straits are examples of the 

infrastructure that create capacities on the arcs of a tranportation network.  

Studies addressing arc capacities assume that the modeled network MN is a 

complete network with arc distances (costs) satisfying the triangle inequality. If the 

underlying real-life network is not complete or complete but its distances do not satisfy 

the triangle inequality, a preprocessing on the underlying network is implemented to 

construct a complete network whose costs satisfy the triangle inequality. However, arc 

capacities on a non-complete RealN may not be easily incorporated when a complete 

MN is used because an arc in a complete MN may actually correspond to a shortest path 

consisting of several arcs with different capacities and not necessarily a single arc in 

RealN. We develope a modeling approach that does not require any specific cost and 

network structure and that uses RealN to be used as MN. The proposed approach allows 

us to incorporate capacities on any arc of the network with our modelin approach. 

In the this chapter, we solve the proposed model by CPLEX-based algorithm and 

Gurobi-based algorithm with NoRel heuristic and develop a SA-based heuristic 

algorithm. We conduct computational experiments using networks with up to 400 

nodes. We create test instances by defining capacities on different arcs, i.e., on only hub 

arcs, and both hub and access arcs and changing arc capacities. As the network size gets 

larger, the number of capacitated arcs increases and arc capacities become more 
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restrictive resulting in high optimality gaps for the solutions found by CPLEX or Gurobi 

with NoRel heuristic. However, the heuristic can find solutions either close to or better 

than those found by CPLEX and Gurobi with NoRel heuristic for those instances. 

In the study, we only incorporate arc capacities; however we may easily 

incoporate hub capacities as well. The SA-based heuristic algorithm is effective in 

finding good solutions especially for large-size problems but other heuristic algorithms 

based on different metaheuristics, e.g., tabu search and genetic algorithm, may also be 

developed. Exact solution algorithms such as a problem specific branch-and-bound 

algorithm may be developed as well.  
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Chapter 4 

CONCLUDING REMARKS AND 
FUTURE DIRECTIONS 

4.1 Conclusions 

In this dissertation, we study two different hub location problems, namely, 

Multiple Allocation Tree of Hubs Location Problem (MATHLP) that result from 

incorporating a tree topology requirement for the hub network and Multiple Allocation 

Arc Capacitated Hub Location Problem (MACHLP) that result from imposing 

capacities on the arcs.  

The models developed for HLPs in the literature assume that the underlying 

network is a complete network with arc distances (costs) satisfying the triangle 

inequality. If the real-world network is not complete or complete but its distances do not 

satisfy the triangle inequality (e.g., bus fares) as is the case for most real-life networks, a 

preprocessing is required to construct a complete network by an algorithm (e.g., Floyd 

[7]) that finds the shortest path lengths between all OD pairs in RealN. Even though this 

approach has gained acceptance, this may cause several modeling and computational 

disadvantages. For example, the interactions between location and routing decisions, 

arcs with different costs and capacities, different topology and service level 

requirements may not be modeled. Considering these issues, Akgün and Tansel [6] 

propose a problem setting and modeling framework that allows (non-complete or 

complete) real-world network with any cost structure to be directly used. For that 

reason, we study MATHLP and MACHLP built upon the problem setting adopted by 

Akgün and Tansel.  

To our knowledge, all studies about tree of hubs location problem address the 

single allocation version of the problem whereas we study the multiple allocation 

version. Considering multiple allocation is essential in some cases of THLP, e.g., public 

transportation networks. We also deviate from the literature by using a new modeling 
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framework that allows real-world network with any cost structure to be used. We show 

through examples that the proposed modeling approach may produce better solutions 

than the classical approach, which may result from the differences in the selected hubs, 

the flow routes between origin-destination points, and the assignment of non-hub nodes 

to hub nodes. We solve the proposed model by CPLEX-based algorithm and Gurobi-

based algorithm with NoRel heuristic and develop BD-based heuristic algorithms using 

two acceleration strategies, namely, strong cut generation and cut disaggregation. We 

conduct computational experiments using networks with up to 500 nodes. As the 

network size gets larger, the resulting optimality gaps are high for the solutions found 

by CPLEX or Gurobi with NoRel heuristic. On the other hand, the heuristic can find 

solutions either close to or better than those found by CPLEX and Gurobi with NoRel 

heuristic for all instances. 

Capacity constraints on the hub networks may be imposed both on the nodes and 

arcs of the network. However, most studies in the literature incorporate capacity 

constraints on the nodes. Few studies address arc capacities assuming that the 

underlying network is a complete network with arc distances (costs) satisfying the 

triangle inequality. However, arc capacities on a non-complete real-world network may 

not be easily incorporated when a complete network is created from a real-world 

network. With the modeling approach we use, we can easily incorporate capacities on 

any of the arcs of the underlying network. We show through examples that using this 

proposed modeling approach is critical in the presence of arc capacities because the 

classical approach does not guarantee optimal even feasible solutions. We solve the 

proposed model by CPLEX-based algorithm and Gurobi-based algorithm with NoRel 

heuristic and develop an SA-based heuristic algorithm. We conduct computational 

experiments using networks with up to 400 nodes. We create test instances by defining 

capacities on different arcs and changing the amount of the capacity on the arcs. As the 

network size gets larger, as the number of arcs with capacities and the amount of 

capacity on the arcs increase the resulting optimality gaps are high for the solutions 

found by CPLEX or Gurobi with NoRel heuristic. On the other hand, the heuristic can 

find solutions either close to or better than those found by CPLEX and Gurobi with 

NoRel heuristic for all instances. 
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4.2 Societal Impact and Contribution to Global 

Sustainability 

United Nations Department of Economic and Social Affairs [95] provide 

Sustainable Development Goals (SDGs) that are an urgent call for taking action by all 

countries in a global partnership. Among these SDGs there are two goals, namely, 

‘building resilient infrastructure, promote inclusive and sustainable industrilization and 

foster innovation’ and ‘making cities and human settlements inclusive, resilient and 

sustainable’. According to these two goals, it is utmost importance that urban and public 

transportation systems, gas, water and electricity distribution systems, and 

telecommunication network systems are smart, resilient and sustainable.  

The application areas of the problems MATHLP and MACHLP that we study in 

this dissertation range from the optimization of fiber internet backbone to the exact 

configuration of the physical road network of the transportation networks of the cargo 

companies, from the improvement of computer or wireless communication networks to 

the establishment of smart electricity, water or gas distribution networks in the most 

efficient way, from efficient airway and railway transportation systems to smart public 

transportation systems with different transportation modes. MATHLP and MACHLP 

are directly applicable to a wide range of systems that serve to achieve the goals of 

building resilient infrastructure, sustainable transportation systems, sustainable cities 

and human settlements. 

We propose a new modelling approach for the problems MATHLP and MACHLP 

that allows us to use the structure of the real physical network directly in the 

formulation of the problems. This approach provides more flexibility in modeling 

several characteristics of real-life hub networks. The developed models will find more 

application areas because they better represent real life problems. Moreover, one main 

challenge arising in real-life applications is the problem size. Mostly it is not possible to 

solve them with the standard optimization softwares. However, we are able to solve 

large-size problems that arise in real life with our proposed solution methodologies. 

 



80 
 

4.3 Future Prospects 

We consider both problems MATHLP and MACHLP in a multiple allocation 

framework as p-hub median problems. In the future, we may adapt our approach to 

different types of hub location problems, e.g., p-hub center problem, hub location 

problem with fixed costs or hub covering problem as well. We may also adapt our 

approach to the single allocation framework. We assume that all the data is already 

known. However, the amount of flow generated between demand points has stochastic 

nature. For future research, we can incorporate stochasticity into our problems. The 

inclusion of stochasticity in the problems may lead to more robust solutions.  

For MATHLP, in the future, we may incorporate other acceleration strategies not 

considered in this study, e.g., reduction of the model size and selection of good initial 

cuts, to improve the progress of exact Benders algorithms or Benders-type heuristics. 

We may develop hybrid algorithms utilizing metaheuristics and Benders decomposition 

to improve the effectiveness of the heuristic algorithms. A problem specific branch-and-

bound algorithm may be developed as well.  

For MACHLP, we only incorporate arc capacities but in the future we may also 

incorporate hub capacities besides arc capacities in the problem. We may also study 

MACHLP as multimodal hub location problem in which different transportation modes 

are used to design the hub networks. The proposed SA-based heuristic algorithm is 

effective in finding good solutions for MACHLP but other heuristic algorithms may 

also be developed. Exact solution algorithms as a problem specific branch-and-bound 

algorithm may be developed as well.  

  



81 
 

BIBLIOGRAPHY 
[1] S. Alumur and B. Y. Kara, “Network hub location problems: The state of the 

art,” Eur. J. Oper. Res., vol. 190, no. 1, pp. 1–21, 2008, doi: 

10.1016/j.ejor.2007.06.008. 

[2] J. F. Campbell and M. E. O’Kelly, “Twenty-five years of hub location research,” 

Transp. Sci., vol. 46, no. 2, pp. 153–169, 2012, doi: 10.1287/trsc.1120.0410. 

[3] R. Z. Farahani, M. Hekmatfar, A. B. Arabani, and E. Nikbakhsh, “Hub location 

problems: A review of models, classification, solution techniques, and 

applications,” Comput. Ind. Eng., vol. 64, no. 4, pp. 1096–1109, 2013, doi: 

10.1016/j.cie.2013.01.012. 

[4] I. Contreras and M. O’Kelly, “Location Science,” in Location Science, 2015. 

[5] E. V. Marianov and Z. Drezner, “Contributions to Location Analysis,” 2019. 

[6] İ. Akgün and B. Tansel, “P-Hub Median Problem for Non-Complete Networks,” 

Comput. Oper. Res., vol. 95, pp. 56–72, 2018, doi: 10.1016/j.cor.2018.02.014. 

[7] R. W. Floyd, “Algorithm 97: Shortest path,” Commun. ACM, vol. 5, no. 6, p. 

345, 1962, doi: 10.1145/367766.368168. 

[8] A. Marín, L. Cánovas, and M. Landete, “New formulations for the uncapacitated 

multiple allocation hub location problem,” Eur. J. Oper. Res., vol. 172, no. 1, pp. 

274–292, 2006, doi: 10.1016/j.ejor.2004.09.047. 

[9] I. Contreras, E. Fernández, and A. Marín, “The Tree of Hubs Location Problem,” 

Eur. J. Oper. Res., vol. 202, no. 2, pp. 390–400, 2010, doi: 

10.1016/j.ejor.2009.05.044. 

[10] J. G. Klincewicz, “Hub location in backbone/tributary network design: A 

review,” Locat. Sci., vol. 6, no. 1–4, pp. 307–335, 1998, doi: 10.1016/S0966-

8349(98)00042-4. 

[11] J. Zhou, J. Peng, G. Liang, and T. Deng, “Layout optimization of tree-tree gas 

pipeline network,” J. Pet. Sci. Eng., vol. 173, no. October 2018, pp. 666–680, 

2019, doi: 10.1016/j.petrol.2018.10.067. 

[12] J. Sabattin, G. Fuertes, M. Alfaro, L. Quezada, and M. Vargas, “Optimization of 

large electric power distribution using a parallel genetic algorithm with dandelion 



82 
 

strategy,” Turkish J. Electr. Eng. Comput. Sci., vol. 26, no. 5, pp. 2648–2660, 

2018, doi: 10.3906/elk-1801-261. 

[13] W. Zhong, Z. Juan, F. Zong, and H. Su, “Hierarchical hub location model and 

hybrid algorithm for integration of urban and rural public transport,” Int. J. 

Distrib. Sens. Networks, vol. 14, no. 4, 2018, doi: 10.1177/1550147718773263. 

[14] V. R. Vuchic, Urban Transit Systems and Technology. John Wiley & Sons Inc, 

Hoboken, New Jersey., 2007. 

[15] A. Ceder and A. Ceder, Public Transit Planning and Operation. 2007. 

[16] G. M. Rehan and H. S. Mahmoud, “The integration between transportation 

solutions, economic development and community development as an approach 

for sustainability - A case study of Curitiba, Brazil,” World Acad. Sci. Eng. 

Technol., vol. 73, no. 1, pp. 705–711, 2011. 

[17] J. F. Campbell, “Integer programming formulations of discrete hub location 

problems,” Eur. J. Oper. Res., vol. 72, no. 2, pp. 387–405, 1994, doi: 

10.1016/0377-2217(94)90318-2. 

[18] A. T. Ernst and M. Krishnamoorthy, “Solution algorithms for the capacitated 

single allocation hub location problem,” Ann. Oper. Res., vol. 86, pp. 141–159, 

1999, doi: 10.1023/a:1018994432663. 

[19] J. Ebery, M. Krishnamoorthy, A. Ernst, and N. Boland, “Capacitated multiple 

allocation hub location problem: Formulations and algorithms,” Eur. J. Oper. 

Res., vol. 120, no. 3, pp. 614–631, 2000, doi: 10.1016/S0377-2217(98)00395-6. 

[20] N. Boland, M. Krishnamoorthy, A. T. Ernst, and J. Ebery, “Preprocessing and 

cutting for multiple allocation hub location problems,” Eur. J. Oper. Res., vol. 

155, no. 3, pp. 638–653, 2004, doi: 10.1016/S0377-2217(03)00072-9. 

[21] M. Labbé, H. Yaman, and E. Gourdin, A branch and cut algorithm for hub 

location problems with single assignment, vol. 102, no. 2. 2005. 

[22] I. Contreras, E. Fernández, and A. Marín, “Tight bounds from a path based 

formulation for the tree of hub location problem,” Comput. Oper. Res., vol. 36, 

no. 12, pp. 3117–3127, 2009, doi: 10.1016/j.cor.2008.12.009. 

[23] I. Correia, S. Nickel, and F. Saldanha-da-Gama, “The capacitated single-



83 
 

allocation hub location problem revisited: A note on a classical formulation,” 

Eur. J. Oper. Res., vol. 207, no. 1, pp. 92–96, 2010, doi: 

10.1016/j.ejor.2010.04.015. 

[24] I. Contreras, J. A. Díaz, and E. Fernández, “Branch and price for large-scale 

capacitated hub location problems with single assignment,” INFORMS J. 

Comput., vol. 23, no. 1, pp. 41–55, 2011, doi: 10.1287/ijoc.1100.0391. 

[25] S. A. Alumur, J. F. Campbell, I. Contreras, B. Y. Kara, V. Marianov, and M. E. 

O’Kelly, “Perspectives on modeling hub location problems,” Eur. J. Oper. Res., 

vol. 291, no. 1, pp. 1–17, 2021, doi: 10.1016/j.ejor.2020.09.039. 

[26] D. Bryan, “Extensions to the hub location problem: Formulations and numerical 

examples,” Geogr. Anal., vol. 30, no. 4, pp. 315–330, 1998, doi: 10.1111/j.1538-

4632.1998.tb00405.x. 

[27] M. Sasaki and M. Fukushima, “On the hub-and-spoke model with arc capacity 

conatraints,” J. Oper. Res. Soc. Japan, vol. 46, no. 4, pp. 409–428, 2003, doi: 

10.15807/jorsj.46.409. 

[28] I. Rodríguez-Martín and J. J. Salazar-González, “Solving a capacitated hub 

location problem,” Eur. J. Oper. Res., vol. 184, no. 2, pp. 468–479, 2008, doi: 

10.1016/j.ejor.2006.11.026. 

[29] C. C. Lin, J. Y. Lin, and Y. C. Chen, “The capacitated p-hub median problem 

with integral constraints: An application to a Chinese air cargo network,” Appl. 

Math. Model., vol. 36, no. 6, pp. 2777–2787, Jun. 2012, doi: 

10.1016/J.APM.2011.09.063. 

[30] F. Kaveh, R. Tavakkoli-Moghaddam, C. Triki, Y. Rahimi, and A. Jamili, A new 

bi-objective model of the urban public transportation hub network design under 

uncertainty, vol. 296, no. 1–2. Springer US, 2021. 

[31] B. Kayışoğlu and İ. Akgün, “Multiple allocation tree of hubs location problem 

for non-complete networks,” Comput. Oper. Res., vol. 136, no. July, 2021, doi: 

10.1016/j.cor.2021.105478. 

[32] G. Carello, F. Della Croce, M. Ghirardi, and R. Tadei, “Solving the hub location 

problem in telecommunication network design: A local search approach,” 

Networks, vol. 44, no. 2, pp. 94–105, 2004, doi: 10.1002/net.20020. 



84 
 

[33] D. S. Johnson, J. K. Lenstra, and A. H. G. R. Kan, “The complexity of the 

network design problem,” Networks, vol. 8, no. 4, pp. 279–285, 1978, doi: 

10.1002/net.3230080402. 

[34] S. A. Alumur, B. Y. Kara, and O. E. Karasan, “The design of single allocation 

incomplete hub networks,” Transp. Res. Part B Methodol., vol. 43, no. 10, pp. 

936–951, Dec. 2009, doi: 10.1016/J.TRB.2009.04.004. 

[35] S. Nickel, A. Schöbel, and T. Sonneborn, “Hub Location Problems in Urban 

Traffic Networks,” pp. 95–107, 2001, doi: 10.1007/978-1-4757-3357-0_6. 

[36] S. S. Mohri, H. Karimi, A. A. Kordani, and M. Nasrollahi, “Airline hub-and-

spoke network design based on airport capacity envelope curve: A practical 

view,” Comput. Ind. Eng., vol. 125, no. July, pp. 375–393, 2018, doi: 

10.1016/j.cie.2018.09.010. 

[37] H. Calik, S. A. Alumur, B. Y. Kara, and O. E. Karasan, “A tabu-search based 

heuristic for the hub covering problem over incomplete hub networks,” Comput. 

Oper. Res., vol. 36, no. 12, pp. 3088–3096, Dec. 2009, doi: 

10.1016/J.COR.2008.11.023. 

[38] S. Alumur and B. Y. Kara, “A hub covering network design problem for cargo 

applications in Turkey,” J. Oper. Res. Soc., vol. 60, no. 10, pp. 1349–1359, 2009, 

doi: 10.1057/jors.2008.92. 

[39] M. G. Yoon and J. Current, “The hub location and network design problem with 

fixed and variable arc costs: Formulation and dual-based solution heuristic,” J. 

Oper. Res. Soc., vol. 59, no. 1, pp. 80–89, 2008, doi: 

10.1057/palgrave.jors.2602307. 

[40] S. A. Alumur, B. Y. Kara, and O. E. Karasan, “Multimodal hub location and hub 

network design,” Omega, vol. 40, no. 6, pp. 927–939, 2012, doi: 

10.1016/j.omega.2012.02.005. 

[41] E. Martins de Sá, R. Morabito, and R. S. de Camargo, “Benders decomposition 

applied to a robust multiple allocation incomplete hub location problem,” 

Comput. Oper. Res., vol. 89, pp. 31–50, 2018, doi: 10.1016/j.cor.2017.08.001. 

[42] E. Martins de Sá, R. Morabito, and R. S. de Camargo, “Efficient Benders 

decomposition algorithms for the robust multiple allocation incomplete hub 



85 
 

location problem with service time requirements,” Expert Syst. Appl., vol. 93, pp. 

50–61, 2018, doi: 10.1016/j.eswa.2017.10.005. 

[43] J. F. Campbell, A. T. Ernst, and M. Krishnamoorthy, “Hub arc location 

problems: Part I - Introduction and results,” Manage. Sci., vol. 51, no. 10, pp. 

1540–1555, 2005, doi: 10.1287/mnsc.1050.0406. 

[44] J. F. Campbell, A. T. Ernst, and M. Krishnamoorthy, “Hub Arc location 

problems: Part II - Formulations and optimal algorithms,” Manage. Sci., vol. 51, 

no. 10, pp. 1556–1571, 2005, doi: 10.1287/mnsc.1050.0407. 

[45] J. F. Campbell, “Designing hub networks with connected and isolated hubs,” 

Proc. Annu. Hawaii Int. Conf. Syst. Sci., pp. 1–10, 2010, doi: 

10.1109/HICSS.2010.138. 

[46] M. Labbé and H. Yaman, “Solving the hub location problem in a star-star 

network,” Networks, vol. 51, no. 1, pp. 19–33, 2008, doi: 10.1002/net.20193. 

[47] H. Yaman, “Star p-hub median problem with modular arc capacities,” Comput. 

Oper. Res., vol. 35, no. 9, pp. 3009–3019, Sep. 2008, doi: 

10.1016/J.COR.2007.01.014. 

[48] E. Martins De Sá, I. Contreras, and J. F. Cordeau, “Exact and heuristic 

algorithms for the design of hub networks with multiple lines,” Eur. J. Oper. 

Res., vol. 246, no. 1, pp. 186–198, 2015, doi: 10.1016/j.ejor.2015.04.017. 

[49] E. Martins de Sá, I. Contreras, J.-F. Cordeau, R. S. de Camargo, and G. De 

Miranda, “The Hub Line Location Problem,” vol. 8, no. 2, pp. 142–168, 2015. 

[50] C. ho Lee, H. bong Ro, and D. wan Tcha, “Topological design of a two-level 

network with ring-star configuration,” Comput. Oper. Res., vol. 20, no. 6, pp. 

625–637, Aug. 1993, doi: 10.1016/0305-0548(93)90117-2. 

[51] I. Contreras, M. Tanash, and N. Vidyarthi, “Exact and heuristic approaches for 

the cycle hub location problem,” Ann. Oper. Res., vol. 258, no. 2, pp. 655–677, 

2017, doi: 10.1007/s10479-015-2091-2. 

[52] E. M. De Sá, R. S. De Camargo, and G. De Miranda, “An improved Benders 

decomposition algorithm for the tree of hubs location problem,” Eur. J. Oper. 

Res., vol. 226, no. 2, pp. 185–202, 2013, doi: 10.1016/j.ejor.2012.10.051. 



86 
 

[53] S. Sedehzadeh, R. Tavakkoli-Moghaddam, A. Baboli, and M. Mohammadi, 

“Optimization of a multi-modal tree hub location network with transportation 

energy consumption: A fuzzy approach,” J. Intell. Fuzzy Syst., vol. 30, no. 1, pp. 

43–60, 2016, doi: 10.3233/IFS-151709. 

[54] L. S. Pessoa, A. C. Santos, and M. G. C. Resende, “A biased random-key genetic 

algorithm for the tree of hubs location problem,” Optim. Lett., vol. 11, no. 7, pp. 

1371–1384, 2017, doi: 10.1007/s11590-016-1082-9. 

[55] V. Blanco and A. Marín, “Upgrading nodes in tree-shaped hub location,” 

Comput. Oper. Res., vol. 102, pp. 75–90, 2019, doi: 10.1016/j.cor.2018.10.007. 

[56] A. T. Ernst and M. Krishnamoorthy, “Exact and heuristic algorithms for the 

uncapacitated multiple allocation p-hub median problem,” Eur. J. Oper. Res., 

vol. 104, no. 1, pp. 100–112, 1998, doi: 10.1016/S0377-2217(96)00340-2. 

[57] A. T. Ernst and M. Krishnamoorthy, “Efficient algorithms for the uncapacitated 

single allocations-Hub median problem,” Rech. - Transp. - Secur., vol. 62, no. 3, 

pp. 139–154, 1999. 

[58] J. F. Benders, “Partitioning procedures for solving mixed-variables programming 

problems,” Numer. Math., vol. 4, no. 1, pp. 238–252, 1962, doi: 

10.1007/BF01386316. 

[59] R. S. de Camargo, G. Miranda, and H. P. Luna, “Benders decomposition for the 

uncapacitated multiple allocation hub location problem,” Comput. Oper. Res., 

vol. 35, no. 4, pp. 1047–1064, Apr. 2008, doi: 10.1016/J.COR.2006.07.002. 

[60] R. S. De Camargo, G. De Miranda, and H. P. L. Luna, “Benders decomposition 

for hub location problems with economies of scale,” Transp. Sci., vol. 43, no. 1, 

pp. 86–97, 2008, doi: 10.1287/trsc.1080.0233. 

[61] R. S. De Camargo, G. De Miranda, and H. P. L. Luna, “Benders decomposition 

for hub location problems with economies of scale,” Transp. Sci., vol. 43, no. 1, 

pp. 86–97, 2009, doi: 10.1287/trsc.1080.0233. 

[62] R. S. De Camargo, G. De Miranda, and R. P. M. Ferreira, “A hybrid Outer-

Approximation/Benders Decomposition algorithm for the single allocation hub 

location problem under congestion,” Oper. Res. Lett., vol. 39, no. 5, pp. 329–337, 

2011, doi: 10.1016/j.orl.2011.06.015. 



87 
 

[63] R. S. de Camargo, G. de Miranda, M. E. O’Kelly, and J. F. Campbell, 

“Formulations and decomposition methods for the incomplete hub location 

network design problem with and without hop-constraints,” Appl. Math. Model., 

vol. 51, pp. 274–301, 2017, doi: 10.1016/j.apm.2017.06.035. 

[64] R. S. de Camargo, G. de Miranda, and A. Løkketangen, “A new formulation and 

an exact approach for the many-to-many hub location-routing problem,” Appl. 

Math. Model., vol. 37, no. 12–13, pp. 7465–7480, 2013, doi: 

10.1016/j.apm.2013.02.035. 

[65] I. Contreras, J. F. Cordeau, and G. Laporte, “Stochastic uncapacitated hub 

location,” Eur. J. Oper. Res., vol. 212, no. 3, pp. 518–528, Aug. 2011, doi: 

10.1016/J.EJOR.2011.02.018. 

[66] I. Contreras, J. F. Cordeau, and G. Laporte, “Benders decomposition for large-

scale uncapacitated hub location,” Oper. Res., vol. 59, no. 6, pp. 1477–1490, 

2011, doi: 10.1287/opre.1110.0965. 

[67] I. Contreras, J. F. Cordeau, and G. Laporte, “Exact solution of large-scale hub 

location problems with multiple capacity levels,” Transp. Sci., vol. 46, no. 4, pp. 

439–459, 2012, doi: 10.1287/trsc.1110.0398. 

[68] R. S. De Camargo and G. Miranda, “Single allocation hub location problem 

under congestion: Network owner and user perspectives,” Expert Syst. Appl., vol. 

39, no. 3, pp. 3385–3391, 2012, doi: 10.1016/j.eswa.2011.09.026. 

[69] N. Ghaffarinasab and B. Y. Kara, “Benders Decomposition Algorithms for Two 

Variants of the Single Allocation Hub Location Problem,” Networks Spat. Econ., 

vol. 19, no. 1, pp. 83–108, 2019, doi: 10.1007/s11067-018-9424-z. 

[70] H. Mokhtar, M. Krishnamoorthy, and A. T. Ernst, “The 2-allocation p-hub 

median problem and a modified Benders decomposition method for solving hub 

location problems,” Comput. Oper. Res., vol. 104, pp. 375–393, 2019, doi: 

10.1016/j.cor.2018.09.006. 

[71] G. Taherkhani, S. A. Alumur, and M. Hosseini, “Benders decomposition for the 

profit maximizing capacitated hub location problem with multiple demand 

classes,” Transp. Sci., vol. 54, no. 6, pp. 1446–1470, 2020, doi: 

10.1287/trsc.2020.1003. 



88 
 

[72] M. Boschetti and V. Maniezzo, “Benders decomposition, Lagrangean relaxation 

and metaheuristic design,” J. Heuristics, vol. 15, no. 3, pp. 283–312, 2009, doi: 

10.1007/s10732-007-9064-9. 

[73] C. A. Poojari and J. E. Beasley, “Improving benders decomposition using a 

genetic algorithm,” Eur. J. Oper. Res., vol. 199, no. 1, pp. 89–97, 2009, doi: 

10.1016/j.ejor.2008.10.033. 

[74] M. C. Lai, H. S. Sohn, T. L. Tseng, and C. Chiang, “A hybrid algorithm for 

capacitated plant location problem,” Expert Syst. Appl., vol. 37, no. 12, pp. 8599–

8605, 2010, doi: 10.1016/j.eswa.2010.06.104. 

[75] M. C. Lai, H. S. Sohn, T. L. Tseng, and D. L. Bricker, “A hybrid Benders/genetic 

algorithm for vehicle routing and scheduling problem,” Int. J. Ind. Eng.  Theory 

Appl. Pract., vol. 19, no. 1, pp. 33–46, 2012. 

[76] W. Jiang, L. Tang, and S. Xue, “A hybrid algorithm of tabu search and benders 

decomposition for multi-product production distribution network design,” Proc. 

2009 IEEE Int. Conf. Autom. Logist. ICAL 2009, no. 70728001, pp. 79–84, 2009, 

doi: 10.1109/ICAL.2009.5262971. 

[77] R. Pacqueau, F. Soumis, and L.-N. Hoang, “A Fast and Accurate Algorithm for 

Stochastic Integer Programming, Applied to Stochastic Shift Scheduling,” 

TPublication G-2012-29,Groupe d’etudes recherch ́e en Anal. Decis. (GERAD), 

Univ. Montr. Montr. QC, Canada., 2012, [Online]. Available: 

http://www.gerad.ca/fichiers/cahiers/G-2007-21.pdf. 

[78] R. Rahmaniani, T. G. Crainic, M. Gendreau, and W. Rei, “The Benders 

decomposition algorithm: A literature review,” Eur. J. Oper. Res., vol. 259, no. 

3, pp. 801–817, Jun. 2017, doi: 10.1016/J.EJOR.2016.12.005. 

[79] T. L. Magnanti and R. T. Wong, “Accelerating Benders Decomposition: 

Algorithmic Enhancement and Model Selection Criteria.,” Oper. Res., vol. 29, 

no. 3, pp. 464–484, 1981, doi: 10.1287/opre.29.3.464. 

[80] A. Mercier, J. F. Cordeau, and F. Soumis, “A computational study of Benders 

decomposition for the integrated aircraft routing and crew scheduling problem,” 

Comput. Oper. Res., vol. 32, no. 6, pp. 1451–1476, 2005, doi: 

10.1016/j.cor.2003.11.013. 



89 
 

[81] J. R. Birge and F. V. Louveaux, “A multicut algorithm for two-stage stochastic 

linear programs,” Eur. J. Oper. Res., vol. 34, no. 3, pp. 384–392, Mar. 1988, doi: 

10.1016/0377-2217(88)90159-2. 

[82] “NoRelHeurWork.” 

https://www.gurobi.com/documentation/9.1/refman/norelheurwork.html 

(accessed Oct. 20, 2021). 

[83] “LocalSolver: Overview.” https://www.localsolver.com/product.html (accessed 

Oct. 20, 2021). 

[84] J. E. B Easley, “Or-library: Distributing test problems by electronic mail,” J. 

Oper. Res. Soc., vol. 41, no. 11, pp. 1069–1072, 1990, doi: 

10.1057/jors.1990.166. 

[85] H. W. Hamacher, M. Labbé, S. Nickel, and T. Sonneborn, “Adapting polyhedral 

properties from facility to hub location problems,” Discret. Appl. Math., vol. 145, 

no. 1 SPEC. ISS., pp. 104–116, 2004, doi: 10.1016/j.dam.2003.09.011. 

[86] A. Marín, “Formulating and solving splittable capacitated multiple allocation hub 

location problems,” Comput. Oper. Res., vol. 32, no. 12, pp. 3093–3109, Dec. 

2005, doi: 10.1016/J.COR.2004.04.008. 

[87] H. Yaman and G. Carello, “Solving the hub location problem with modular link 

capacities,” Comput. Oper. Res., vol. 32, no. 12, pp. 3227–3245, 2005, doi: 

10.1016/j.cor.2004.05.009. 

[88] M. E. O’Kelly and D. L. Bryan, “Hub location with flow economies of scale,” 

Transp. Res. Part B Methodol., vol. 32B, no. 8, pp. 605–616, 1998, doi: 

10.1016/S0191-2615(98)00021-6. 

[89] N. Metropolis, A. Rosenbluth, M. Rosenbluth, A. Teller, and E. Teller, “Equation 

of State Calculations by Fast Computing Machines,” J. Chem. Phys., vol. 21, 

1953, doi: 10.1016/j.ejor.2004.07.022. 

[90] A. T. Ernst and M. Krishnamoorthy, “Efficient algorithms for the uncapacitated 

single allocation p-hub median problem,” Locat. Sci., vol. 4, no. 3, pp. 139–154, 

Oct. 1996, doi: 10.1016/S0966-8349(96)00011-3. 

[91] S. Abdinnour-Helm, “Using simulated annealing to solve the p-Hub median 

problem,” Int. J. Phys. Distrib. Logist. Manag., vol. 31, no. 3, pp. 203–220, 2001, 



90 
 

doi: 10.1108/09600030110389532. 

[92] J. F. Chen, “A hybrid heuristic for the uncapacitated single allocation hub 

location problem,” Omega, vol. 35, no. 2, pp. 211–220, Apr. 2007, doi: 

10.1016/J.OMEGA.2005.05.004. 

[93] M. S. Jabalameli, F. Barzinpour, A. Saboury, and N. G. Nasab, “A simulated 

annealing-based heuristic for the single allocation maximal covering hub location 

problem,” Int. J. Metaheuristics, vol. 2, no. 1, p. 15, 2012, doi: 

10.1504/ijmheur.2012.048213. 

[94] N. Ghaffarinasab, A. Motallebzadeh, Y. Jabarzadeh, and B. Y. Kara, “Efficient 

simulated annealing based solution approaches to the competitive single and 

multiple allocation hub location problems,” Comput. Oper. Res., vol. 90, pp. 

173–192, 2018, doi: 10.1016/j.cor.2017.09.022. 

[95] “THE 17 GOALS | Sustainable Development.” https://sdgs.un.org/goals 

(accessed Jan. 05, 2022). 

 

  



91 
 

CURRICULUM VITAE 

SELECTED PUBLICATIONS AND PRESENTATIONS 

J1) B. Kayışoğlu and İ. Akgün, “Multiple allocation tree of hubs location problem for 

non-complete networks,” Comput. Oper. Res., vol. 136, no. July, 2021, doi: 

10.1016/j.cor.2021.105478. 

C1) Kıdır S., Işılak R., Doğan Z., Kayışoğlu B., Akgün İ., " Trim Loss Problem in 

Cardvoard Production", 39th Operations Research and Industrial Engineering (YAEM) 

Congress, Başkent University, ANKARA, TURKEY, 12-14 June 2019.  

C2) Kapar Y., İnce F., Şahin N., Uysal S.Z., Kayışoğlu B., Akgün İ., " Scheduling 

Problem in Textile Industry to Minimize Two-Dimensional Trim Loss and Machine 

Setting Time", 39th Operations Research and Industrial Engineering (YAEM) Congress, 

Başkent University, ANKARA, TURKEY, 12-14 June 2019. 

C3) Ünal B., Demirci M., Kayışoğlu B., Akgün İ., "Distribution Center Location 

Problem", 39th Operations Research and Industrial Engineering (YAEM) Congress, 

Başkent University, ANKARA, TURKEY, 12-14 June 2019.  

C4) Kayışoğlu B., Akgün İ., "A New Mathematical Model for Multiple Allocation 

Tree-of- Hubs Location Problem", 29th European Conference on Operational Research 

(EURO 2018), VALENCIA, SPAIN, 8-11 July 2018.  

2001 – 2006 
B.Sc., Industrial Engineering, Middle East Technical University, 

Ankara, TURKEY 

2006 – 2011 Oracle Inventory and Production Planning Module Specialist, IT 
Department, Yataş, Kayseri, TURKEY 

2013 – 2014 
M.Sc., Industrial Engineering, Erciyes University,  

Kayseri, TURKEY 

2013 – present 
Research Assistant, Industrial Engineering, Abdullah Gül 

University, Kayseri, TURKEY 



92 
 

C5) Kayışoğlu B., Akgün İ., " A New Mathematical Model for Single Allocation Tree-

of- Hubs Location Problem ", 38th Operations Research and Industrial Engineering 

(YAEM) Congress, Anadolu University, ESKİŞEHİR, TURKEY, 26-29 June 2018.  

C6) Kayışoğlu B., Akgün İ., " Multi-Objective Facility Location of Service Points in 

Case of a Disaster", 35th Operations Research and Industrial Engineering (YAEM) 

Congress, Middle East Technical University, ANKARA, TURKEY, 09-11 September 

2015.  

C7) Kayışoğlu B., Özbakır L., " Classification of Lung Cancer with Cost Sensitive Data 

Mining Methodologies ", 34th Operations Research and Industrial Engineering 

(YAEM) Congress, Uludağ University, BURSA, TURKEY, 25-27 June 2014.  


