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Abstract: In this paper, we introduce the concept of wsa-supplements and investigate the objects of
the class of short exact sequences determined by wsa-supplement submodules, where a submodule U
of a module M is called a wsa-supplement in M if there is a submodule V of M with U + V = M and
U ∩V is weakly semiartinian. We prove that a module M is weakly semiartinian if and only if every
submodule of M is a wsa-supplement in M. We introduce CC-rings as a generalization of C-rings
and show that a ring is a right CC-ring if and only if every singular right module has a crumbling
submodule. The class of all short exact sequences determined by wsa-supplement submodules is
shown to be a proper class which is both injectively and co-injectively generated. We investigate the
homological objects of this proper class along with its relation to CC-rings.
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1. Introduction

Throughout this study, all rings considered are associative with an identity element
and all modules at hand are right and unital. Given such a module M, we use the notations
E(M), Soc(M), Z(M), Rad(M) for the injective hull, socle, singular submodule, and radical
of M, respectively. The notation (N � M) N ≤ M means that N is a (proper) submodule of
M. Mod− R denotes the category of all right R-modules over a ring R. For the terminology
and notations used in this work we refer the reader to [1–3].

For any M ∈ Mod − R, we denote the injectivity domain of M by Jn−1(M). It is
clear that M is injective if and only if its injectivity domain is as large as it can be, that
is, Jn−1(M) = Mod− R. It is well known that every module is injective relative to any
semisimple module. In [4], the authors introduced modules M whose injectivity domain
Jn−1(M) is minimal possible, namely the class of all semisimple modules and called such
modules poor. This definition gives a natural homological opposite to injectivity of modules
since only injective modules have the class of all modules as their injectivity domain. It is
proved in [5] (Proposition 1) that every ring has a poor module. However, semisimple poor
modules need not exist over an arbitrary ring. Recall that a module M is said to crumble (or
be a crumbling module) if Soc(M/N) is a direct summand of M/N for every submodule
N of M. It follows from [5] (Corollary 2) that a module M crumbles if and only if it is a
locally noetherian V-module. It is shown in [5] (Theorem 1) that a ring R has a semisimple
poor module if and only if every right crumbling R-module is semisimple. Clearly, a ring
R crumbles if and only if it is a right SSI-ring, that is, every semisimple right R-module
is injective.

Following [6], we denote the sum of all submodules of a module M that crumble by
C(M). By [6] (Propositions 3.1 and 3.4), C(M) is the largest submodule of M that crumbles
and Soc(M) ≤ C(M). A module M is called semiartinian if Soc(M/N) 6= 0 for every proper
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submodule N of M. As a proper generalization of artinian modules, the class of semiartinian
modules are extensively studied in the literature. In [6], the authors considered modules of
which factor modules have a nonzero crumbling submodule. A module M is called weakly
semiartinian if C(M/N) 6= 0 for every proper submodule N of M. The sum of all weakly
semiartinian submodules of a module M is the largest weakly semiartinian submodule of
M which we denote by wsa(M). Clearly, semiartinian modules and crumbling modules
are examples of weakly semiartinian modules. A weakly semiartinian module need not
be semiartinian, in general. An example of a weakly semiartinian module which is not
semiartinian can be found in [6] (Remark 2). Various properties of weakly semiartinian
modules are given in the same work.

It is well known that a module is semisimple if and only if its submodules are direct
summands. As a generalization of direct summands, supplement submodules are defined
as follows. Let M be a module and U, V ≤ M. V is called a supplement of U in M if it
is minimal with respect to M = U + V, equivalently if M = U + V and U ∩ V is small
in V. Here a submodule S of a module M is called small in M, denoted by S � M, if
M 6= S + L for every proper submodule L of M. A module M is called supplemented if
every one of its submodules has a supplement in M. Supplement submodules play an
important role in ring theory and relative homological algebra. In recent years, types of
supplement submodules are extensively studied by many authors. In a series of books
and articles [1–3,7,8], the authors have obtained detailed information about variations of
supplement submodules and related rings.

In [9], the author introduced proper classes to axiomatize conditions under which a
class of short exact sequences of modules can be computed as Ext groups corresponding to
a certain relative cohomology. The class S plit of all splitting short exact sequences of right
R-modules and the class Abs of all short exact sequences of right R-modules are trivial
examples of proper classes. It follows from [1] (20.7) that the class Supp of all short exact

sequences 0 // M
ψ // N // K // 0 such that Im ψ is a supplement in N is a

proper class. Examples and properties of proper classes, especially related to supplements
can be found in [10–12].

Recently defined type of supplement submodules is as follows. A submodule V
of a module M is called an sa-supplement of U in M if M = U + V and U ∩ V is semi-
artinian (see [7]). It is shown in [7] that the class SAS of all short exact sequences

0 // M
ψ // N // K // 0 such that Im ψ is an sa-supplement in N is a proper

class. Since semiartinian modules are weakly semiartinian, it is of interest to investigate
a new type of supplement submodules by replacing the property of being “semiartinian”
by being “weakly semiartinian”. The purpose of this paper is to introduce the concept of
wsa-supplement submodules and investigate the objects of the proper class determined by
wsa-supplement submodules in relative homological algebra.

The paper is organized as follows. In Section 2, we prove that a module M is weakly
semiartinian if and only if every submodule of M is a wsa-supplement in M. In particular,
a ring R is weakly semiartinian if and only if every right maximal ideal of R is a wsa-
supplement in R.

We introduce right CC-rings as a generalization of C-rings and give some characteri-
zations of such rings in Section 3. We show that a ring R is a right CC-ring if and only if
every singular right R-module has a crumbling submodule. A semilocal right CC-ring is a
right C-ring. A right noetherian and a right WV-ring is a right CC-ring.

In Section 4, we show that, over an arbitrary ring, the class of all short exact sequences

0 // M
ψ // N // K // 0 such that Im ψ is a wsa-supplement in N is a proper

class. We study the objects of this class, which we call WSS . We show that a module
M is WSS-co-injective if and only if it is a wsa-supplement E(M). Over a right CC-
ring, a projective module P isWSS-co-injective if and only if P/ wsa(P) is injective. A
ring R is weakly semiartinian if and only if every right R-module is WSS-co-injective.
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Finally, we show that over a crumbling-free ringWSS-coprojective modules are only the
projective modules.

2. Weakly Semiartinian Modules

In this section, we give a characterization of weakly semiartinian modules via wsa-
supplement submodules. Firstly, let us start by giving the closure properties.

Proposition 1 ([6] (Proposition 3.1)). If f : M −→ N is a homomorphism of modules, then
f (C(M) ⊆ C(N).

Proposition 2. The class of weakly semiartinian modules is closed under submodules, factor
modules, direct sums, sums and extensions.

Proof. By [6] (Propositions 3.1 and 3.4), we get that the class of weakly semiartinian
modules is closed under submodules, factor modules, direct sums and sums. Let B be a
module and A be a submodule of B with A and B/A weakly semiartinian. Assume that
C(B/X) = 0 for some X � B. By Proposition 1, we have C(A/A ∩ X) ∼= C((A + X)/X) ≤
C(B/X) = 0. Since A is weakly semiartinian, A/A ∩ X) = 0 so that A ≤ X. B/X ∼=
(B/A)/(X/A) is weakly semiartinian which implies that C(B/X) 6= 0, a contradiction.
Hence, B is weakly semiartinian.

The sum of all weakly semiartinian submodules of a module M is denoted by wsa(M).
By Proposition 2, wsa(M) is weakly semiartinian. Therefore M is weakly semiartinian if
and only if wsa(M) = M. Using this fact and Proposition 2, we have the following result.

Corollary 1. For any module M, wsa(M/ wsa(M)) = 0.

Proof. Let N ≤ M containing wsa(M) such that N/ wsa(M) ≤ wsa(M/ wsa(M)). It
follows from Proposition 2 that N/ wsa(M) is weakly semiartinian. Since wsa(M) is
weakly semiartinian, applying Proposition 2 once again, we obtain that N is weakly
semiartinian. Therefore N ⊆ wsa(M). This means that N/ wsa(M) = 0.

Let M be a module and U ≤ M. We say that U is (has) a weakly semiartinian supplement
(wsa-supplement for short) in M if there exists V ≤ M such that U + V = M and U ∩V is a
weakly semiartinian module.

Theorem 1. An R-module M is weakly semiartinian if and only if every submodule of M is a
wsa-supplement in M.

Proof. Necessity follows from Proposition 2. For sufficiency, suppose that C(mR) = 0 for
some m ∈ M. Let U be any submodule of mR. By the assumption, there exists a submodule
V of M such that M = U + V and U ∩V is weakly semiartinian. Using modular law, we
have mR = U + V ∩mR. Note that C(U ∩V) = C(U ∩mR ∩V) ⊆ C(mR) = 0. It means
that U is a direct summand of mR and so mR is semisimple. Therefore mR = Soc(mR) =
C(mR) = 0, and hence m = 0. This completes the proof.

A module M is said to be crumbling-free if C(M) = 0. A ring R is called crumbling-
free if RR is crumbling free. Let R be a ring and A and B be R-modules. Recall that A
is B-injective if for any submodule X of B, any homomorphism f : X → A extends to a
homomorphism g : B→ A.

Proposition 3. An R-module M is weakly semiartinian if and only if every crumbling-free R-
module is M-injective.

Proof. Necessity is clear since C(U) 6= 0 for every submodule U of M. For sufficiency,
suppose that N is a submodule of M with C(N) = 0. Let U ≤ N. Since N is crumbling-
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free, U is crumbling-free and so, by the hypothesis, U is M-injective. So we can write
M = U ⊕V, where V is a submodule of M. By the modular law, we get N = U ⊕ N ∩V.
This means that N = Soc(N) = C(N) = 0. Hence M is weakly semiartinian.

Proposition 4. Let M be a module and U be a submodule of M with M/U weakly semiartinian.
A submodule V of M is a wsa-supplement of U in M if and only if M = U + V and V is
weakly semiartinian.

Proof. Let V be a wsa-supplement of U in M. Then V/(U ∩V) ∼= M/U is weakly semi-
artinian. Since U ∩V is also weakly semiartinian, it follows from Proposition 2 that V is
weakly semiartinian. The converse is clear by again Proposition 2.

Since for a maximal submodule U of M we have M/U is simple, therefore weakly
semiartinian, the following result is a consequence of Proposition 4.

Corollary 2. Let M be a module and U be a maximal submodule of M. A submodule V of M is a
wsa-supplement of U in M if and only if M = U + V and V is weakly semiartinian.

Recall that a module M is coatomic if every proper submodule of M is contained in a
maximal submodule of M.

Corollary 3. Let M be a coatomic module. Then M is weakly semiartinian if and only if every
maximal submodule of M is a wsa-supplement in M.

Proof. Necessity follows from Proposition 1. For sufficiency, assume that M is not weakly
semiartinian, that is, wsa(M) 6= M. Let N be a maximal submodule of M that con-
tains wsa(M) and K be a wsa-supplement of N in M. Then K is weakly semiartinian by
Corollary 2 and we have K ≤ wsa(M) ≤ N which implies M = N + K ≤ N, contradicting
the maximality of N.

It is well known that a ring R is semisimple artinian if and only if every maximal right
ideal of R is a direct summand of R. Now we give an analogous characterization of this
fact for right weakly semiartinian rings.

Corollary 4. A ring R is right weakly semiartinian if and only if every maximal right ideal of R is
a wsa-supplement in R.

3. A Generalization of C-Rings

In [1] (10.10), a ring R is called a right C-ring if for every right R-module M and for
every proper essential submodule N of M, Soc(M/N) 6= 0, that is M/N has a simple
submodule. The class of right C-rings is studied by many authors in homological algebra.
Semiartinian rings and Dedekind domains are examples right C-rings. Since semiartinian
rings are weakly semiartinian, motivated by this fact, it is natural to introduce right CC-
rings as follows: A ring R is called a right CC-ring if for every right R-module M and
for every proper essential submodule N of M, C(M/N) 6= 0, that is M/N has a cyclic
crumbling submodule.

Proposition 5. The following statements are equivalent for a ring R.

1. R is a right CC-ring;
2. Every singular right R-module has a cyclic crumbling submodule;
3. For every proper essential right ideal I of R, C(R/I) 6= 0.

Proof. (1 ⇒ 2): Let M be a singular right R-module and 0 6= m ∈ M. Now consider the
isomorphism f : R/ ann(m) −→ mR. Since M is singular, ann(m) is a non-zero proper
essential right ideal of R. Then, R/ ann(m) has a cyclic crumbling submodule, that is
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C(R/ ann(m)) 6= 0. It follows from Proposition 1 that C(mR) 6= 0. This completes the
proof of (1⇒ 2).

(2⇒ 3) is clear since R/I is a singular right R-module for every proper essential right
ideal I of R.

(3 ⇒ 1): Let M be an R-module and N be a proper essential submodule of M. We
shall show that C(M/N) 6= 0. Let 0 6= m + N ∈ M/N. Since M/N is singular, ann(m + N)
is a proper essential right ideal of R. By assumption, R/ ann(m + N) has a cyclic crumbling
submodule. Applying Proposition 1, we obtain that C(R(m+ N)) 6= 0 and so C(M/N) 6= 0.
It means that R is a right CC-ring.

As a consequence of Proposition 5, we have the following result.

Corollary 5. Let R be commutative domain. Then the following statements are equivalent.

1. R is a right CC-ring;
2. Every torsion right R-module has a cyclic crumbling submodule.

A ring R is called a right weakly-V-ring (WV-ring for short) if every simple right R-
module is R/I-injective for any right ideal I of R such that R/I is proper. Clearly, every
right V-ring is a right WV-ring. Since a right WV-ring need not be right noetherian; in
general, the authors investigated when a right WV-ring is right noetherian in [13] and
showed that a right WV-ring R is right noetherian if and only if every cyclic right R-module
can be written as a direct sum of a projective module and a module which is either CS or
right noetherian.

Proposition 6. A right noetherian and a right WV-ring is a right CC-ring.

Proof. Let R be a right noetherian and a right WV-ring. Suppose that N is a proper essential
submodule of an R-module M. Let 0 6= m + N ∈ M/N. Then there exists a proper essential
right ideal I of R such that R/I ∼= R(m + N). Clearly, R(m + N) is noetherian. Since R is a
right WV-ring, R/I is a V-module. It means that R(m + N) crumbles and so M/N has a
cyclic crumbling submodule.

Proposition 7. Let R be a ring with R/ Soc(RR) weakly semiartinian. Then R is a right CC-ring.

Proof. By Proposition 5, it suffices to show that C(R/I) 6= 0 for every proper essen-
tial right ideal I of R. Since Soc(RR) is the intersection of all essential right ideals of
R, Soc(RR) ⊆ I and so R/I ∼= (R/ Soc(RR))/(I/ Soc(RR)) is a weakly semiartinian R-
module by Proposition 2. This means that C(R/I) 6= 0. Hence R is a right CC-ring.

A ring R is called semilocal if R/ Rad(R) is semisimple. The class of semilocal rings
properly contains the class of semiperfect rings. Note that over a semilocal ring a module
with zero radical is semisimple (see [1]).

Proposition 8. A semilocal and a right CC-ring is a right C-ring.

Proof. Let I be a proper essential right ideal of R. Since R is a right CC-ring, we can
write C(R/I) 6= 0. Note also by [6] (Lemma 4) that Rad(C(R/I)) = 0. By [1] (17.2-3), we
obtain that Soc(R/I) = C(R/I) 6= 0 since the ring is semilocal. This means that R is a
right C-ring.

Theorem 2. Let R be a right CC-ring. Then an R-module M is semisimple if and only if Soc(M) =
wsa(M) and every essential submodule of M is a wsa-supplement in M.

Proof. Necessity part is clear. For sufficiency, let U be a proper essential submodule of
M. Then there is a wsa-supplement V of U in M, that is U + V = M and U ∩V is weakly
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semiartinian. Since R is a right CC-ring, V/(U ∩V) ∼= M/U is weakly semiartinian. Then
V is weakly semiartinian by Proposition 2 and we have V ≤ wsa(M) = Soc(M) ≤ U. This
implies U = M, a contradiction. Therefore, M has no proper essential submodules. Hence
M is semisimple.

4. The Objects of the Proper Class WSS
In this section, we consider the class of short exact sequences determined by wsa-

supplement submodules. Before doing so, here we give the definition of a proper class
which plays a key role in relative homological algebra in terms of examining classes of short
exact sequences along with their homological objects (see [9] for an equivalent definition of
a proper class).

Definition 1. Let P be a class of short exact sequences of right R-modules and R-module homo-

morphisms. If a short exact sequence E : 0 −→ K
f−→ L

g−→ M −→ 0 belongs to P , then f is
said to be a P-monomorphism and g is said to be a P-epimorphism.

A subfunctorP of Ext is said to be a proper class ifP(M, N) is a subgroup of Ext(M, N)
for every R-modules M, N, and one of the following conditions is satisfied.

1. The composition of two P-monomorphisms is a P-monomorphism whenever this
composition is defined;

2. The composition of two P-epimorphisms is a P-epimorphism whenever this compo-
sition is defined.

Let R be a ring and P be a proper class of right R-modules. An R-module M is said
to be P-injective (resp., P-co-injective) if ExtP (K, M) = 0 (resp., ExtP (K, M) = ExtR(K, M))
for all right R-modules K. The smallest proper class for which every module from the class
of modules P is co-injective is called co-injectively generated by P .

A short exact sequence 0 // A
f // B // C // 0 is called WSS if Im f is a

wsa-supplement submodule of B. We denote the class of all WSS sequences byWSS . The
next result shows that the classWSS is a proper class over an arbitrary ring.

Proposition 9. The classWSS is the proper class co-injectively generated by the class of weakly
semiartinian modules.

Proof. It follows from Proposition 2 and [14] (Theorem 2).

Proposition 10. The classWSS is injectively generated by the class of crumbling-free modules.

Proof. Let E : 0 // A // B // C // 0 ∈ WSS , M be a crumbling-free mod-
ule and α : A −→ M a homomorphism. Then α∗E : 0 // M // D // C // 0 ∈
WSS sinceWSS is a proper class. Then there is a submodule K of D such that M + K = D
and M ∩ K is weakly semiartinian. By Proposition 1, we have C(M ∩ K) ≤ C(M) = 0 so
that α∗E splits. Therefore, M isWSS-injective.

Now let F : 0 // X // Y // Z // 0 be a short exact sequence such that
every crumbling-free module is F-injective. Since C(X/ wsa(X)) = 0, there is a submodule
L of Y with wsa(X) ≤ L and X/ wsa(X) ⊕ L/ wsa(X) = Y/ wsa(X). Then we have
X + L = Y and X ∩ L = wsa(X). Hence F ∈ WSS .

We call a module MWSS-co-injective, if every short exact sequence,

0 // M // N // K // 0 ,

of right R-modules starting with the module M is in the proper classWSS . It follows that
a module M isWSS-co-injective if and only if it is a wsa-supplement in every extension.
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It is clear that injective modules, semiartinian modules and wsa-supplementing modules
are examples ofWSS-co-injective modules. Proposition 10 implies that a crumbling-free
module isWSS-co-injective if and only if it is injective. Recall that we denote the injective
hull of a module M by E(M).

Theorem 3. The following statements are equivalent for a module M.

1. M isWSS-co-injective;
2. M is a wsa-supplement in E(M).

Proof. (1⇒ 2) is clear.
(2⇒ 1): Let M be a wsa-supplement in E(M) and let N be a module containing M. Since

E(M) ⊆ E(N), there exists a submodule U ⊆ E(N) such that E(N) = E(M)⊕U. Since M is
a wsa-supplement in E(M), M is a wsa-supplement in E(N). Hence there exists a submodule
V of E(N) such that E(N) = M + V and M ∩V is weakly semiartinian. By modular law, we
can write N = N∩ E(N) = N∩ (M+V) = M+ N∩V and M∩ (N∩V) = (M∩N)∩V =
M ∩V is weakly semiartinian. It means that M isWSS-co-injective.

The following result is a consequence of Theorem 3.

Corollary 6. Let M be a module with M/ wsa(M) injective. Then M isWSS-co-injective.

Proof. By the assumption, there exists a submodule K of E(M) containing wsa(M) such
that M/ wsa(M)⊕ K/ wsa(M) = E(M)/ wsa(M). Therefore M + K = E(M) and M ∩
K ⊆ wsa(M). Applying Proposition 2, M ∩ K is weakly semiartinian and so M is a
wsa-supplement in E(M). It follows from Theorem 3 that M isWSS-co-injective.

The next result shows that the class ofWSS-co-injective modules is closed under extensions.

Proposition 11. Let 0 −→ M −→ N −→ K −→ 0 be a short exact sequence of modules. If M
and K areWSS-co-injective, then so is N.

Proof. By [15] (Proposition 1.9 and 1.14).

Corollary 7. Every finite direct sum ofWSS-co-injective modules isWSS-co-injective.

Proof. Let n ∈ Z+ and Mi (1 ≤ i ≤ n) be any finite collection of WSS-co-injective
modules. Let M = M1 ⊕M2 ⊕ . . .⊕Mn. Suppose that n = 2, that is, M = M1 ⊕M2. Then
0 −→ M1 −→ M −→ M2 −→ 0 is a short exact sequence. Applying Proposition 11, we
have that M isWSS-co-injective. The proof is completed by induction on n.

We do not know if any direct sum ofWSS-co-injective modules isWSS-co-injective.
Nevertheless, over right noetherian rings, we show that the class of WSS-co-injective
modules is closed under direct sums.

Theorem 4. Let R be a right noetherian ring and {Mi}i∈I be a collection ofWSS-co-injective
R-modules. Then

⊕
i∈I Mi isWSS-co-injective.

Proof. Put M =
⊕

i∈I Mi. It is easy to see that wsa(M) =
⊕

i∈I wsa(Mi). Since R is
a right noetherian ring, E(M) is the direct sum of E(Mi) for each i ∈ I. Note that
E(M)/ wsa(M) =

⊕
i∈I E(Mi)/

⊕
i∈I wsa(Mi) ∼=

⊕
i∈I(E(Mi)/ wsa(Mi)). Using

Theorem 3, we can write E(Mi)/ wsa(Mi) = (Mi/ wsa(Mi))⊕ (Ki/ wsa(Mi)) for some
submodule Ki/ wsa(Mi) of E(Mi)/ wsa(Mi) (i ∈ I). Let K/ wsa(M) =

⊕
i∈I Ki/ wsa(Mi).

Therefore E(M)/ wsa(M) = M/ wsa(M) ⊕ K/ wsa(M). This means that M is a wsa-
supplement in E(M). Applying Theorem 3 once again, we obtain that M is WSS-co-
injective.
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In general, a submodule of aWSS-co-injective module need not beWSS-co-injective.
For example, the submodule ZZ of the WSS-co-injective module QZ is not WSS-co-
injective. We prove that every wsa-supplement submodule of aWSS-co-injective module
isWSS-co-injective.

Proposition 12. Let M be aWSS-co-injective module and V be a wsa-supplement submodule of
M. Then V isWSS-co-injective.

Proof. Let V be a wsa-supplement in M. Then E : 0 −→ V −→ M −→ M/V −→ 0 is a
short exact sequence inWSS , that is, U + V = M and U ∩V is weakly semiartinian for
some submodule U of M. Therefore by [15] (Proposition 1.8) V isWSS-co-injective.

The following fact is direct consequence of Proposition 12.

Corollary 8. Every direct summand of aWSS-co-injective module isWSS-co-injective.

We call a ring R weakly semiartinian if RR is weakly semiartinian, or equivalently, if
every R-module is weakly semiartinian.

Proposition 13. The following statements are equivalent for a ring R.

1. R is right weakly semiartinian;
2. EveryWSS-co-injective R-module is weakly semiartinian;
3. Every injective R-module is weakly semiartinian.

Proof. (1⇒ 2) and (2⇒ 3) are trivial.
(3⇒ 1): RR is a submodule of E(RR) which is weakly semiartinian by assumption.

Proposition 2 completes the proof.

A ring R is called right hereditary if every factor module of an injective module
is injective. Now we prove that over right hereditary rings every factor module of a
WSS-co-injective module isWSS-co-injective. Firstly, we need the following result.

Proposition 14. WSS-co-injective modules are closed under quotients if and only if quotients of
injective modules areWSS-co-injective.

Proof. The necessity part follows from the fact that injective modules areWSS-co-injective.
For sufficiency, let M be aWSS-co-injective module and N be a submodule of M. We have
the commutative diagram:

0

��

0

��
N

��

N

��
0 // M //

��

E(M) //

��

M/E(M) // 0

0 // M/N //

��

E(M)/N //

��

M/E(M) // 0

0 0

,

with exact rows and columns. Since M isWSS-co-injective it has a wsa-supplement in
E(M). WSS being a proper class implies that M/N has a wsa-supplement in E(M)/N
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which is WSS-co-injective by assumption. By [15] (Proposition 1.8) M/N is WSS-co-
injective module.

Corollary 9. Let R be a right hereditary ring and M be aWSS-co-injective R-module. Then every
factor module of M isWSS-co-injective.

Proposition 15. Let M be aWSS-co-injective module. Then the following are equivalent:

1. M/ wsa(M) isWSS-co-injective;
2. M/ wsa(M) is injective;
3. M/N isWSS-co-injective for each weakly semiartinian submodule N of M;
4. M/N isWSS-co-injective for each wsa-supplement submodule N of M.

Proof. (1⇒ 2) follows from Corollary 1.
(2⇒ 3): Let N be a weakly semiartinian submodule of M. We have the short exact

sequence 0 // wsa(M)/N // M/N // M/ wsa(M) // 0 with M/ wsa(M)

injective, hence WSS-co-injective. By Proposition 2, weakly semiartinian modules are
closed under quotients and so wsa(M)/N isWSS-co-injective. By Proposition 11, M/N
is alsoWSS-co-injective.

(3⇒ 4): Let N be a wsa-supplement submodule of M. Then there exists K ≤ M such
that N + K = M and N ∩ K is weakly semiartinian. Since N ∩ K ≤ wsa(M), we have the
short exact sequence

0 // wsa(M)/(N ∩ K) // M/N ∩ K // M/ wsa(M) // 0.

By Proposition 2, wsa(M)/(N ∩ K) is WSS-co-injective. M/ wsa(M) is WSS-co-
injective by assumption. By Proposition 11, M/(N ∩ K) is alsoWSS-co-injective. Since
M/N is isomorphic to a direct summand of M/(N ∩K), M/N isWSS-co-injective module.

(4 ⇒ 1) follows from the fact that wsa(M) is a wsa-supplement of M in M. By
assumption M/ wsa(M) isWSS-co-injective.

Corollary 10. The following statements are equivalent:

1. I/ wsa(I) is injective for every injective module I;
2. M/ wsa(M) is injective for everyWSS-co-injective module M;
3. The class ofWSS-co-injective modules is closed under wsa-supplement quotients.

Proof. The equivalence of 2 and 3 is given in Proposition 15 and (2⇒ 1) is clear.
(1 ⇒ 2): Let M be a WSS-co-injective module. Then M has a wsa-supplement

N in injective hull E(M) of M. Since M + N = E(M) and M ∩ N is weakly semiar-
tinian, we have M ∩ N ≤ wsa(M) and hence E(M)/ wsa(M) = [M/ wsa(M)] ⊕ [(N +
wsa(M))/ wsa(M)]. By Proposition 15, E(M)/ wsa(M) is a WSS-co-injective module
and so is M/ wsa(M) as a direct summand of E(M)/ wsa(M). Corollary 8 completes
the proof.

Corollary 11. Let R be a right CC-ring. Then the class ofWSS-co-injective modules is closed
under wsa-supplement quotients.

Proof. Let R be a right CC-ring and I be an injective module. Then every singular module
is weakly semiartinian which implies that every crumbling-free module is nonsingular.
Since I/ wsa(I) is crumbling-free, it is nonsingular and it follows from [16] (Lemma 2.3)
that wsa(I) is closed I. We have I ∼= wsa(I)⊕ [I/ wsa(I)] and so I/ wsa(I) is injective.
The rest of the proof follows from Corollary 10.

Proposition 16. The following statements are equivalent for a projective module P.

1. P isWSS-co-injective;
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2. P/ wsa(P) is a homomorphic image of an injective module;
3. There exists a weakly semiartinian submodule M of P such that P/M is a homomorphic image

of an injective module.

Proof. (1⇒ 2): Let α : P → E(P) be the inclusion and π : P → P/ wsa(P) the canonical
epimorphism. Then we have the diagram

0 // P α //

π

��

E(P).

fyy
P/ wsa(P)

Since P is WSS-co-injective and P/ wsa(P) is crumbling-free, it follows from
Proposition 10 that there exists a homomorphism f : E(P)→ P/ wsa(P) such that f α = π.
Since π is an epimorphism, then so is f . Hence P/ wsa(P) = f (E(P)).

(2⇒ 3): Since wsa(P) is weakly semiartinian, taking M = wsa(P) yields the result
by assumption.

(3 ⇒ 1): Let M be a weakly semiartinian submodule of P such that there is an
epimorhism f : I → P/M with I injective. Consider the diagram

E(P) h // I

f
��

0 // M α // P π //

β

OO

γ

��

g

99

P/M //

kyy ��

0

P/ wsa(P) 0 ,

where α : M → P and β : P → E(P) are inclusions and π : P → P/M and γ : P →
P/ wsa(P) are canonical epimorphisms. Since M is weakly semiartinian, there is a homo-
morphism k : P/M→ P/ wsa(P) such that kπ = γ. Since f is an epimorphism and P is pro-
jective, there is a homomorphism g : P→ I such that f g = π. Since β is a monomorphism
and I is injective, there is a homomorphism h : E(P)→ I such that hβ = g. We have that the
homomorphism k f h : E(P)→ P/ wsa(P) satisfies (k f h)β = k( f (hβ)) = k( f g) = kπ = γ.

Now let F be a crumbling-free module and θ : P → F be a homomorphism. Since
wsa(P) ≤ Ker θ, by Factor Theorem there is homomorphism u : P/ wsa(P)→ F such that
uγ = θ. Then, we have the diagram,

0 // P
β //

θ

��

γ

$$

E(P)

k f h
��

F P/ wsa(P),u
oo

with the homomorphism uk f h : E(P) → F that satisfies (uk f h)β = u((k f h)β) = uγ = θ
which implies by Proposition 10 that P isWSS-co-injective.

Corollary 12. Every projective module isWSS-co-injective if and only if every crumbling-free
module is a homomorphic image of an injective module.

Proof. For necessity let M be a crumbling-free module. There is an epimorphism f : P→
M with P projective. Let E(P) be the injective hull of P and α : P→ E(P) be the inclusion.
Since P isWSS-co-injective, it follows from Proposition 10 that there is a homomorphism
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g : E(P) → M such that gα = f . Clearly, f is an epimorphism. Sufficiency follows from
Proposition 16.

Corollary 13. Over a right CC-ring, a projective module P isWSS-co-injective if and only if
P/ wsa(P) is injective.

Proof. For necessity, let P be aWSS-co-injective module. Then, by Proposition 16, there is
an epimorphism f : I → P for some injective module I. Since P/ wsa(P) is a crumbling-
free module over a right CC-ring, it is nonsingular. By [16] (Lemma 2.3), Ker f is closed in
I, and so Ker f ⊕ [P/ wsa(P)] ∼= I. Hence P/ wsa(P) is injective. Sufficiency follows from
the fact thatWSS-co-injective modules are closed under extensions.

Proposition 17. A ring R is right weakly semiartinian if and only if every right R-module is
WSS-co-injective.

Proof. Necessity is clear. For sufficiency, it is enough to show that C(M) 6= 0 for every
nonzero R-module M. Let N be a crumbling-free module. Then any submodule K of N
is also crumbling-free. It follows from Proposition 10 that K is injective, therefore a direct
summand of N. This shows that N is semisimple. Then we have N = Soc N ≤ C(N) = 0.
Hence R is right weakly semiartinian.

A ring R is called a right SSI-ring if all semisimple right R-modules are injective. It is
known that a ring R is a right noetherian right V-ring if and only if it is a right SSI-ring.

Theorem 5. The following statements are equivalent for a ring R.

1. EveryWSS-co-injective R-module is injective;
2. Every weakly semiartinian R-module is injective;
3. R is semisimple artinian.

Proof. (1⇒ 2) and (3⇒ 1) are clear.
(2⇒ 3): Every semisimple module is weakly semiartinian, hence injective by assump-

tion and so R is a right SSI-ring. Then every module crumbles by [6] (Theorem 3). Since
crumbling modules are weakly semiartinian, R is semisimple artinian by assumption.

An R-module K is calledWSS-coprojective if every short exact sequence,

0 // M // N // K // 0 ,

of right R-modules ending with the module K is in the proper classWSS . For an arbitrary
ring R, let C(R) = C(RR).

Proposition 18. Let R be a crumbling-free ring. Then WSS-coprojective R-modules are only
projective modules.

Proof. Let M be aWSS-coprojective R-module. Since every R-module is a factor module
of a free R-module, there exist a free R-module F and an epimorphism ψ : F −→ M. Put

U = Ker(ψ). Now we consider the short exact sequence 0 −→ U ι−→ F
ψ−→ M −→ 0,

where ι is the canonical injection. By the hypothesis, there exists a submodule V of F such
that F = U + V and U ∩ V is weakly semiartinian. Since C(R) = 0, it follows from [6]
(Corollary 8) that C(F) = C(R)F = 0, and so C(U ∩V) ⊆ C(F) = 0. It means that the short

exact sequence 0 −→ U ι−→ F
ψ−→ M −→ 0 splits. Hence M is projective.

Recall that a module M is flat if every short exact sequence of the form,

0 // M
ψ // N // K // 0 ,
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is pure exact, that is, Im ψ is a pure submodule of N. Clearly, every projective module
is flat.

Theorem 6. Over a commutative C-ringWSS-projective modules are flat.

Proof. This follows from [7] (Theorem 3.9) and the fact that SAS ⊆ WSS .
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