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Abstract—In this paper we propose a runtime-based se-
lective task replication technique for task-parallel high per-
formance computing applications. Our selective task replica-
tion technique is automatic and does not require modifica-
tion/recompilation of OS, compiler or application code. Our
heuristic, we call App FIT, selects tasks to replicate such that
the specified reliability target for an application is achieved. In
our experimental evaluation, we show that App FIT selective
replication heuristic is low-overhead and highly scalable. In
addition, results indicate that complete task replication is
overkill for achieving reliability targets. We show that with
App FIT, we can tolerate pessimistic exascale error rates with
only 53% of the tasks being replicated.

I. INTRODUCTION

As High Performance Computing (HPC) systems grow

in size and complexity, they become more vulnerable to

faults [9]. Moreover it is expected that hardware-only fault-

tolerance solutions will not be adequate to handle the

expected error rates [13] in the future. Thus, software-based

solutions must complement hardware techniques to address

the reliability of future HPC systems and applications. These

solutions can be provided at programming model (PM)

and/or runtime level. Currently task-based parallel PMs are

becoming widely used to implement HPC applications for

achieving higher performance [10]. In addition, it has been

shown that dataflow execution model improves performance

of HPC applications with asynchronous execution [4]. As

a result, programming platforms such as OpenMP 4.0 [30]

and Intel Threading Blocks (TBB) [2] have recently added

support for task-based dataflow parallelism. Thus we find

that it is important to provide software-based fault-tolerance

for task-parallel dataflow HPC applications.

Redundant computation and checkpoint/restart are two

well-known techniques to achieve fault-tolerance. In re-

dundant computation, multiple replicas of a program are

executed in parallel, such as task replication in a task-based

HPC application. Redundant computation can be used for

recovering from task failures as well as for detecting silent

errors. It recovers from task failures since if a task replica

fails, the remaining replicas can still continue their com-

putations. It detects silent errors, such as data corruptions,

by comparing the results of the replicas. A data corruption

is called silent if it is undetected. Silent data corruptions

(SDCs) jeopardize the correctness of the results of HPC

applications [18] and as a result they pose a significant

threat. However, detecting SDCs is not sufficient, it is also

necessary to recover from SDC errors. Checkpoint/restart

can be utilized for SDC error recovery. In checkpoint/restart,

the state of the computation, called checkpoint, is saved

periodically and when a SDC error is detected, the com-

putation restarts from the latest checkpoint thus recovering

from SDC. In this work we combine redundant computation

- in our case replication of application tasks - and check-

point/restart to address SDCs and failures of task-parallel

HPC applications while increasing reliability.
The straightforward way to achieve this goal is to replicate

all application tasks, that is, complete task replication1.

However complete task replication may be prohibitive due

to the high resource cost and in fact might be excessive due

to the uneven susceptibility of the different program parts to

SDCs [24]. Therefore effective and efficient techniques are

needed to selectively replicate tasks. However the optimal

selective replication is NP-hard which can be formalized

as a bounded knapsack problem [26]. Therefore, practical

selective replication solutions must employ heuristics. In our

main contribution, we propose a runtime-based, fully auto-

matic and completely transparent heuristic, called App FIT,

to selectively choose tasks for replication. Our design does

not require any modifications at all to application code or

operating system.
With App FIT, users can set the desired reliability in Fail-

ures in Time (FIT)2 that their application requires and our

heuristic transparently and automatically replicates tasks se-

lectively to make sure that this target reliability is achieved.

The App FIT heuristic is useful when application users need

the flexibility to specify the required level of reliability

since different applications may have different reliability

requirements as shown in [16].
In our experimental evaluation, we find that complete task

replication over-allocates resources. In fact, we show that

by using our selective task replication heuristic App FIT

heuristic, we can tolerate pessimistic exascale error rates

with only 53% of task replication. Moreover, results show

1We use replication to refer to replication and checkpoint/restart together.
2FIT is a commonly used unitless reliability metric defined as number

of failures per billion hours.
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that App FIT has very low overheads by smart replication

of tasks. In fact, the fault-free performance overhead of

App FIT is found to be negligible.

We highlight two findings from our experiments and

the analysis of the results. First, we find that complete

replication is not needed to cope with the future HPC error

rates. Second, our evaluation confirms our intuition that

fault-tolerance based on task-parallel dataflow programming

is efficient, scalable and low-overhead. Briefly, our contri-

butions are:

• Design, implementation and evaluation of low overhead

and highly scalable selective task replication.

• An automatic and efficient heuristic to selectively repli-

cate tasks while reducing costs significantly.

The rest of this paper is organized as follows: Section II

presents background and our motivation. Section III provides

the design of task replication. Section IV discusses our

heuristic. Section V presents the experimental evaluation.

Section VI surveys related work. Finally, Section VII sum-

marizes this work.

II. BACKGROUND AND MOTIVATION

This section introduces the error classification and fail-

ure model (Section II-A). Then it discusses task-parallel

dataflow programming (Section II-B). Finally, it presents our

motivation for selective replication (Section II-C).

A. Error Classification and Failure Model

Throughout this study, we refer to failures or errors as

the manifestation of faults. Errors are classified into three

categories based on their propagation (or lack thereof) from

typical error detection/correction hardware. The first class is

the Detected and Corrected Errors (DCE) where an error is

detected and corrected by the hardware. The second class

consists of errors that are Detected and Uncorrected Errors

(DUE) where the hardware is unable to recover from the

detected error. DUEs are expected to become more frequent

in the future with the increasing likelihood of double-bit and

multi-bit flips [15, 35] for caches and memory. Moreover, a

single bit flip in parity protected processor structures such as

register files could also lead to a DUE. DUEs typically result

in the crash of applications since it is not possible for the

faulted processor/hardware to recover [42]. The third class of

errors consists of Silent Data Corruptions (SDCs). In SDC,

the error is not detected, and the application terminates with

wrong results. Recent research suggests that SDC can be a

serious threat for HPC and exascale [18, 34]. A previous

study at CERN found that SDC could be a serious concern

since the observed SDC rate was orders of magnitude higher

than manufacturer specifications [31]. Thus in this study we

target SDCs and DUEs.

Figure 1. Example code in Dataflow and Fork-join.

B. Task-parallel Dataflow Programming

Tasks, as a higher level abstraction than threads, provide a

more natural interface for expressing parallelism in parallel

programs. Depending on how tasks are scheduled for exe-

cution and how they interleave during execution, task-based

parallel programming can be either fork-join parallelism [11]

or dataflow parallelism [21]. In both, tasks execute in parallel

but are synchronized differently. Under fork-join parallelism

tasks have to be explicitly synchronized with a join barrier

whereas under dataflow parallelism tasks are synchronized

implicitly depending on their inputs and outputs. Annotating

these inputs and outputs of tasks in a correct and complete

way is the programmer’s responsibility as a programming

discipline in dataflow programming models. However they

are most often simply the inputs and outputs of functions.

There are also tools for the automation of the annotations

[39]. One can find example implementation of fork-join

tasks in OpenMP 3.0 [12] and dataflow tasks in OmpSs [14],

OpenMP 4.0 [30] and Intel TBB [2].

A recent comparison between dataflow and fork-join

parallelism by Amer et al. [4] suggests that the dataflow

execution model tends to perform better because it exploits

the available parallelism better. This can be demonstrated

with a simple contrived example in Figure 1. Figure 1 (a)

is an example dataflow code in OmpSs PM with three tasks

A1, A2 and B each incrementing the elements of an array.

In tasks A1 and A2, the inout keyword is used to declare

array A as both input and output. In similar way, array B
in task B is declared as both input and output. Figure 1 (b)

is the same example but for fork-join in OpenMP 3.0 PM.

The difference between Figure 1 (a) and (b) is that the fork-

join tasks do not declare explicitly their inputs and outputs

and the fork-join code has the taskwait pragma directive

between tasks A1 and A2. The figures under the code are

the dependency graphs of the tasks for dataflow and fork-

join, respectively. In dataflow the dependencies between the

tasks are inferred from tasks’ inputs and outputs whereas

the dependencies in fork-join has to be enforced explicitly

with a synchronization barrier like the taskwait directive.
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Such synchronization in fork-join is necessary because the

input of task A2 is the output of task A1 and task A2 cannot

start execution before task A1 completes. However, using a

taskwait barrier also prevents the execution of task B
although it does not depend on neither task A1 nor task

A2. In dataflow the dependence between the tasks is more

accurately reflected indicating that task B can execute even

before task A1 if its input is ready.

C. Motivation for Selective Replication

We propose selective task replication as a practical solu-

tion for real-life HPC programs that do not require complete

fault coverage. At high level, we foresee the following

scenario for using selective task replication. In this scenario,

the user sets the desired application reliability in terms

of Failures in Time (FIT). This scenario is related to the

observation that different applications may have different

reliability requirements. Hence the conservative approach

of replicating the entire execution may not be necessary.

Instead, replicating only the reliability critical parts of the

application might be sufficient to satisfy the application’s

reliability requirements. In fact, the pioneering work of Fang

et al. [16] finds that the algorithmic characteristics of parallel

programs correlate with the error resilience properties. They

report that different applications show different level of

resilience and exhibit different SDC rates. Hence the appli-

cation users can specify the level of resilience (FIT) for their

applications and our heuristic then automatically decides at

runtime the tasks to replicate such that the reliability of the

application is always below the specified FIT threshold.

III. TASK REPLICATION

This section details our task replication implementa-

tion. We implement our framework in publicly available

OmpSs PM and its Nanos runtime. However, our selective

task replication heuristics are applicable for other task-

parallel dataflow platforms. Nevertheless, the performance of

OmpSs+Nanos is on par with the highly optimized commer-

cial and open source implementation of OpenMP [5], [6] and

it has successfully served as a pilot platform to push dataflow

task parallelism to OpenMP 4.0. In the case of the distributed

OmpSs+MPI model, it combines dataflow execution with the

message passing model providing significant performance

benefits. It hides the communication latencies and achieves

higher performance compared to MPI only model [25].

Baseline Task Replication Design: Figure 2 shows our

design in action. At the beginning of the task, the task’s

inputs are checkpointed 1©. Then a replica is created by

creating a duplicate task descriptor 2©. In Nanos a task

descriptor is an internal data structure which represents an

instance of a task. It wraps the inputs and the outputs of

the task as well as a pointer to its code. Both the original

task descriptor and its replica are scheduled for execution.

Idle threads from a thread pool poll the internal structures

Figure 2. Task replication design: SDC mitigation

which store the scheduled task descriptors and execute

them asynchronously. The original task descriptors and their

replicas are executed in parallel but they are synchronized at

the end of their execution. This is the only synchronization

point where the results of the task and its replica are

compared 3©. The inequality of the results signifies that

SDC has occurred. In this situation, first the task’s initial

state is restored from its checkpoint and is re-executed 4©.

Then all three results are compared and the majority vote

is selected as the task’s result 5©. Although we use bitwise

comparison in this design, other comparators such as residue

error checkers can easily be deployed in the runtime.

Selective Task Replication Design: The criteria for task

selection is the rate that is estimated for a task based on its

argument size. This rate indicates how likely a task will fail.

At runtime the failure rates for a task are estimated before

the execution of a task and the decision for the selection

of the task for replication is taken by our heuristic. We will

elaborate on how failure rates are estimated in Section IV-A.

IV. TASK SELECTION HEURISTIC

When selecting tasks dynamically at runtime, our goal

is to avoid utilizing profiling information, which requires a

prerun as well as to avoid collecting additional information

at runtime since both are expensive. Therefore we propose

our heuristic, called App FIT, that makes use of only

already existing information at runtime to achieve efficient,

lightweight and near-optimal selective task replication. By

using the free information, i.e. information about task inputs

and outputs, from dataflow, we are able to design and

implement App FIT which does not require any profiling.

We will now first present how we estimate failure rates for

tasks and then we will present App FIT.

A. The Estimation of Failure Rates

In this subsection we first present how we calculate

failure rates in FITs for each application task and for the

whole application/benchmark. We use the FIT rates for

crashes (DUEs) and SDCs of Michalak et al. [29] for the

Roadrunner supercomputer. Michalak et al. obtained these

rates via accelerated neutron-beam test. We take the FITs

of a Roadrunner TriBlade node and adjust them for each

individual task and each benchmark proportional to their

task argument sizes which are available at the beginning
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of task executions. Let us call the task failure rates for

crashes/DUEs and SDCs as λF (T ) and λSDC(T ) respec-

tively. Consequently, the higher the argument size, the higher

the estimated failure rate is. Similarly the benchmark FIT

rates are estimated with respect to size of the benchmark

input size. We use the benchmark FIT rates to calculate

and specify the target reliability thresholds which are to be

achieved by the App FIT heuristic. For instance, if the crash

failure is 2.22 ×103 for 32 GBs as given in [29], then for

32 MB program input the crash failure would be 2.22, or

for a task argument of 32 KB the crash failure would be

2.22 ×10−3. Finally a task’s overall failure rates λF (T )
and λSDC(T ) are sum of all its arguments’ failure rates

respectively.

We now elaborate on how our framework is orthog-

onal to the failure rate estimation and analysis studies.

Our framework is independent of the method for estimat-

ing/measuring the failure rates of each individual tasks or

benchmarks. As stated above, we use DUE and SDC rates

from the measurements of [29]. However, these rates can

be obtained by any other methods such as the analysis of

system failure (memory, storage, network) histories/logs or

application/task-specific vulnerability analysis. Such studies

are orthogonal and independent and can be seamlessly inte-

grated to our heuristic. Moreover, these studies can account

for various additional features that can affect the reliability

factors of individual tasks. These features are in essence

captured by refining task failure rates. For instance, the

reliability factor of a task can be affected by the feature

that the task contains many silent stores [23] which would

mask any prior SDC at the memory location of the store

operation. This will be captured by a vulnerability analysis

in terms of a lower failure rate. Our heuristic, without any

further modification, will simply make use of this refined

task failure rate instead of the previous rate.

We assume that the checkpoints are stored in a safe

memory region such that their failure rates can be ignored.

For the voter, since it memory footprint is small, its failure

rates are small enough to be considered safe. However, in

any case, we can increase reliability by taking multiple

checkpoints and using multiple voters without incurring too

much performance penalty since the overhead of taking

checkpoints and voting is low enough to perform them

multiple times.

B. App FIT heuristic

App FIT heuristic is for the scenario where the user

aims to run its application under a FIT threshold and

while the application is executing, the threshold is never

exceeded. Given that the user knows the FIT threshold, we

assume it also knows the total number of tasks which the

runtime takes as an input. Let N be total number of tasks.

While the execution continues, when a task is about to

execute, App FIT checks atomically the following condition

Table I
DETAILS OF OUR TASK-PARALLEL BENCHMARKS

Shared-memory Benchmarks

Sparse LU
LU decomposition
Matrix size 12800x12800 doubles, block size 200x200

Cholesky
Cholesky factorization
Matrix size 16384x16384 doubles and block size 512x512

FFT
Fast Fourier Transform
Matrix size 16384x16384 complex doubles, block size 16384x128

Perlin Noise
Noise generation to improve realism in motion pictures
Array of pixels with size of 65536, block size 2048

Stream
Linear operations among arrays
Array size 2048x2048 (doubles), block size 32768

Distributed Benchmarks

Nbody
Interaction between N bodies
Array size 65536 bodies, block size depends on #nodes

Matrix Multiplication
Matrix Multiplication using CBLAS
Matrix size 9216x9216 doubles and block size 1024x1024

Pingpong
Computation and communication between pairs of processes
Array size 65536 doubles, block size 1024

Linpack
HPL Linpack
Matrix size 131072 doubles, block size 256, 8x8 grid

to decide whether to replicate the task T :

current fit+(λF (T )+λSDC(T )) > (threshold/N)×(i+1)
(1)

where current fit is the current FIT of the computation

at the time which is maintained by App FIT, λF (T ) and

λSDC(T ) is task T ’s estimated crash and SDC failure rates

respectively, threshold is the specified threshold by the user

and i is the number of tasks that had been decided on so

far. If the condition holds, it means that if App FIT does not

replicate the task, then after the task computation finishes the

current fit will surpass the intended threshold portion for

the tasks (including the current task) finished by that time.

Therefore, App FIT decides to replicate the task. After the

task finishes, App FIT updates current fit by adding the

FIT of the task. If the condition does not hold, App FIT

does not replicate the task.

App FIT, in its current design, only adds tasks to repli-

cate. It could have been designed such that some replica

tasks are removed dynamically however this has the draw-

back of losing the reliability obtained from and the compu-

tation of the removed tasks. In its current design, there is

never such loss. In addition, removal of tasks would require

dynamic inspection of task which would incur additional

performance penalty.

V. EVALUATION

In this section we provide the evaluation and analysis of

our technique. As stated earlier, we implement our ideas in

OmpSs [14] and Nanos [40]. We perform our experiments

in the Marenostrum supercomputer [3]. Up to 64 nodes and

16 cores per node are used in the experiments. Table I

summarizes our benchmarks [1]. In addition to shared-

memory benchmarks, we have distributed benchmarks to

evaluate the performance overheads of task replication and

our heuristics and their impacts on the application scalability

at large scale and with high core counts. In shared-memory

benchmark experiments all 16 cores in one node are used.

In distributed benchmark experiments 1024 cores over 64

nodes are used. We run each experiment 10× and report

averages.
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A. Experimental Results

Figure 3. App FIT results

1) Evaluation of App FIT Heuristic: We evaluate

App FIT designed for obeying pre-specified FIT thresholds

to see whether complete replication is needed to handle

future error rates by specifying the thresholds such that their

reliability matches today’s systems. We set thresholds as

follows: It is expected that in future HPC or exascale systems

the error rates in a single node will increase about one order

of magnitude [32]. To handle this increase, we decrease the

current FITs of our benchmarks by 10× so that the overall

application FITs, thus their reliabilities, stay the same.

Figure 3 shows the replication results of App FIT. The

figure shows the percentage of computation time replicated

due to the replication of tasks and the percentages of the

number of tasks replicated for 10× and 5× error rates. On

average App FIT replicates only 53% and 30% of the tasks,

and 60% and 36% additional execution time to keep the

same reliability level at 10× and 5× rates respectively3.

Takeaway-1: Results show that complete replication is
not required for the predicted exascale error rates to achieve
the same reliability levels as today. Moreover the amount of
replication can be decreased further by assuming modest
increases in error rates or relaxing reliability requirements.

Generally the percentages of the number of tasks repli-

cated and the percentages of computation time replicated

are close except for Linpack and Matmul. This is because

they have some tasks that are clearly more distinctive than

other tasks in terms of their FITs because of their memory

usage and execution times. Moreover, the difference in terms

of the percentages of replication across the benchmarks is

mainly due to the task granularity and the number of tasks.

That is, the more and the finer-grain the tasks are, the less the

percentage of replication is. Coarser and low number of tasks

restrains App FIT to obey the threshold in a more efficient

way. For instance, Cholesky, FFT, and Nbody have relatively

coarser and low number of tasks and thus they incur more

replication. In contrast, Stream, Matmul and Perlin have high

number (25K-48K) of finer tasks. Another observation is for

3In our experiments App FIT achieves FITs that are lower and close to
the specified FITs. For brevity we omit the current FITs of benchmarks,
the specified thresholds and the thresholds that App FIT achieves.

Perlin and SparseLU there is a significant difference between

the resulting replication percentages when 10× and 5× rates

are used. This is because there is a few number of tasks

whose reliability impacts are much higher than others and

their selection for replication is sufficient to obey 5× rates.

Finally, the performance overhead of App FIT is not

significant since it checks a single condition and calculates

the FIT of a task through a tight code consisting of one

branch and about 50 multiplication and addition instructions.

2) Evaluation of Task Replication: In this section we

evaluate the overheads and scalability of selective task

replication. In the experiments we replicate all tasks in an

application. This way, if complete task replication (having

high resource cost, more than %100) is shown to be scalable

and to have low performance overheads, then it follows that

selective replication (having lower resource cost) is also scal-

able and has low performance overheads. This is supported

by the fact that the performance overheads of our heuristics

are indeed very low. In addition, we use the McCalpin’s

artificial and memory-intensive stream benchmark [28] to

stress-test our task replication design in terms of overheads

and scalability. Task replicas are executed on spare cores.

Figure 4 shows the performance overheads of task repli-

cation with respect to the fault-free execution (wall-clock)

times for all benchmarks. As seen, the overheads are very

low and 2.5% on average.

Next we evaluate the effect of replication on the scalability

of the benchmarks. We also assess the effect of fault recov-

ery on the scalability with per task fixed fault rates. Figure 5

shows the scalability of complete task replication for shared-

memory benchmarks i.e., speedups over 1 core with the

given fault rate (each case has a different baseline). As seen,

replication scales very well (except Stream). Stream does not

scale with 16 cores even without task replication. It does

not have much parallelism and mainly consists of memory

operations which hinders its scalability even when there

is no replication. Note that slight differences in speedups

across different fault rates are due to the experimental noise

(also holds for distributed applications). Figure 6 shows

the scalability of complete task replication for distributed

benchmarks i.e., speedups over 64 cores with the given fault

rate (each case has a different baseline). We see that task

replication is highly scalable for distributed applications.

By evaluating these applications, we show task replication

is well-suited for task-parallel distributed programs and is

highly scalable at large scale and for high core counts.

Takeaway-2: Overhead and scalability results indi-
cate that task-parallel dataflow programming makes fault-
tolerance affordable while enabling design of replication
heuristics.

VI. RELATED WORK

Replication is a well-known technique that has been

adopted in various domains from aviation to distributed

502



Figure 4. Task replication overheadsg p

Figure 5. Complete replication scalability (shared memory)g p p y y

Figure 6. Complete replication scalability (distributed)

systems [33]. This technique has been used for reliability,

performance and ensuring quality of service. However in

most cases the complete replication of a system or an ap-

plication can be prohibitively costly to achieve the intended

purpose. As a result, selective replication becomes the only

viable solution. For instance concerning the performance

of systems, the work of Beckmann et al. [8] investigates

selective replication to increase the performance of the

caches of chip multiprocessors using a metric based on hit

latency and misses. In case of aiming for better quality of

service (QoS), Gruneberger et al. [20] propose a selective

replication heuristic to increase QoS while keeping costs

affordable for the distributed event-processing systems.

However selective replication as a way to address the

trade-off between resource costs and reliability has not been

investigated thoroughly, particularly in HPC community.

Moreover, on one hand, the aforementioned studies [8, 20]

cannot be employed to increase reliability while keeping

cost affordable since those techniques and heuristics do not

capture the reliability critical aspects of systems. On the

other hand, there is the growing body of evidence showing

that selective fault-tolerance support is of key-importance

to decrease the resource costs while providing the required

level of reliability. For instance, Luo et al. [24] and Fang et

al. [16] find that different applications and different phases

in applications (in our case tasks) exhibit different vulnera-

bilities. Although neither of these works state it explicitly,

it follows that selective fault-tolerance is a natural fit to

achieve a reasonable trade-off between costs and the required

level of reliability for different applications. Thus, to the

best of our knowledge, our selective replication heuristic is

the first to address the trade-off between resource costs and

application-specific reliability requirements, in particular for

task-parallel HPC applications. The work of Subasi et al.

[38] is based on programmer knowledge in order to achieve

effective partial replication. The NanoCheckpoints [36] and

the message logging protocol proposed by Martsinkevich et

al. [27] address fail-stop errors of task-parallel computations.

SSD [37] is designed by using machine learning techniques

to mitigate silent errors in HPC applications.

Meanwhile even though the performance and efficiency

advantages of task-based dataflow programming models [19]

and runtimes [41] are well-established, to the best of our

knowledge, there has been no research investigating selective

replication in these programming models. As consequence,

we strive to leverage the resilience advantages of such

frameworks to develop fully automatic runtime selective task

replication heuristics. Although our selective task replication

framework does not provide complete failure coverage such

as errors from the operating system or network/MPI com-

munications, it is orthogonal and seamlessly integrable to

system-wide fault-tolerance solutions such as [7, 18].

There has been work at compiler level to selectively

duplicate instructions that may cause user-visible errors

[17, 22]. Shoestring [17] uses the data flow and control flow

graphs of programs to select vulnerable instructions for error

detection by duplication. Laguna et al. use machine learning

to learn code instructions that must be protected to avoid

corruptions. They use compiler to protect only those learned

vulnerable instructions through duplication. As opposed to

our scheme, these techniques do not offer error recovery.

VII. CONCLUSION

In this study we propose low-overhead and scalable se-

lective task replication for task-parallel programs to mitigate

SDCs and DUEs. To achieve selective task replication,

we develop a selective task replication technique for task-

parallel programs. We present our automatic and transparent

heuristic to select the tasks to replicate for keeping FIT of
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a program under a given threshold. Results show that it has

low overhead and selects tasks in an efficient way.

In this research, our key findings were: First, complete

replication of HPC applications is not required to mitigate

the foreseen exascale error rates while achieving the same

reliability levels today which are typically sufficient for the

applications to correctly finish their computations. Second,

task-parallelism and dataflow offer key properties making

fault-tolerance support for future HPC systems affordable.
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