

H
ü

sn
ü

 H
alid

 A
lab

ay

COORDINATED TARGET DETECTION

AND TRACKING BY DRONES USING

DISTANCE AND VISION

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND

COMPUTER ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND

SCIENCE OF ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Hüsnü Halid Alabay

June 2022

A
 M

aster's T
h

esis

A
G

U
 2

0
2
2

COORDINATED TARGET DETECTION AND

TRACKING BY DRONES USING DISTANCE

AND VISION

A THESIS

SUBMITTED TO THE DEPARTMENT OF ELECTRICAL AND COMPUTER

ENGINEERING

AND THE GRADUATE SCHOOL OF ENGINEERING AND SCIENCE OF

ABDULLAH GUL UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

By

Hüsnü Halid Alabay

June 2022

SCIENTIFIC ETHICS COMPLIANCE

I hereby declare that all information in this document has been obtained in accordance

with academic rules and ethical conduct. I also declare that, as required by these rules and

conduct, I have fully cited and referenced all materials and results that are not original to

this work.

Name-Surname: Hüsnü Halid Alabay

Signature:

REGULATORY COMPLIANCE

M.Sc. thesis titled Coordinated Target Detection And Tracking By Drones Using

Distance And Vision has been prepared in accordance with the Thesis Writing Guidelines

of the Abdullah Gül University, Graduate School of Engineering & Science.

Prepared By Advisor

Hüsnü Halid Alabay Asst. Prof. Samet Güler

Signature

Signature

Head of the Electrical and Computer Engineering Program

Assoc. Prof. Kutay İçöz

Signature

ACCEPTANCE AND APPROVAL

M.Sc. thesis titled Coordinated Target Detection And Tracking By Drones Using

Distance And Vision and prepared by Hüsnü Halid Alabay has been accepted by the jury

in the Electrical and Computer Engineering Graduate Program at Abdullah Gül

University, Graduate School of Engineering & Science.

……….. /……….. / ………..

JURY:

Advisor : Asst. Prof. Samet Güler

Member : Asst. Prof. Burak Tekgün

Member : Asst. Prof. Harun Yetkin

APPROVAL:

The acceptance of this M.Sc. thesis has been approved by the decision of the Abdullah

Gül University, Graduate School of Engineering & Science, Executive Board dated …..

/….. / ……….. and numbered .…………..……. .

……….. /……….. / ………..

(Date)

 Graduate School Dean

Prof. Dr. İrfan Alan

i

ABST RACT

COORDINATED TARGET DETECTION AND TRACKING

BY DRONES USING DISTANCE AND VISION

Hüsnü Halid Alabay

M.Sc. in Electrical and Computer Engineering

Advisor: Asst. Prof. Samet Güler

June 2022

Robot autonomy refers to the ability to carry out objectives by perceiving the environment

and deciding on the actions required without human interruption. Although autonomous

aerial robots offer big advantages in our daily life, online localization and control remain

the biggest challenge lying ahead of aerial robot implementations. For single robot

applications, GPS, and motion capture (mocap) systems can be utilized for outdoor and

indoor applications, respectively. However, when it comes to multi-robot systems, the

relative localization problem needs to be solved beyond the single robot localization

problem. Furthermore, GPS signals are not available everywhere, and mocap systems

limit the application space of multi-robot systems. Motivated by the industrial application

scenarios, we address the relative localization and docking problem in multi-drone

systems where drones do not utilize any external infrastructure for localization. We

consider a two-drone system that aims at docking a target object which consists of an

ultrawideband (UWB) distance sensor. The drones are equipped with UWB sensors and

cameras and try to localize the target object and dock around it in a pre-defined

configuration in the absence of GPS and magnetometer sensors and external

infrastructures. We design an extended Kalman filter based on the dynamic model of the

drone-target configuration that fuses the distance and vision sensor outputs. Particularly,

we use the YOLO algorithm for the bearing detection between the drones and the target.

Next, we devise and implement a switching-based distributed formation control algorithm

and integrate it into the estimation algorithm. We demonstrate the performance of our

algorithm in several simulation studies in a realistic Gazebo environment. Finally, we

provide primary experimental results and a roadmap to the full implementation of the

system.

Keywords: Multi-drone systems, Image processing, Estimation algorithms, Docking

ii

ÖZET

MESAFE VE GÖRÜNTÜ KULLANAN DRONLAR İLE

KOORDİNE HEDEF TEŞHİSİ VE TAKİBİ

Hüsnü Halid Alabay

Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans

Tez Yöneticisi: Dr. Öğr. Üyesi Samet Güler

Haziran 2022

Robot otonomisi, çevreyi algılayarak hedefleri gerçekleştirme ve insan müdahalesi

olmadan gerekli eylemlere karar verme yeteneğini ifade eder. Otonom hava robotları

günlük hayatımızda büyük avantajlar sunsa da çevrimiçi yer tespiti ve kontrol, hava

robotu uygulamalarının önündeki en büyük zorluk olmaya devam etmektedir. Tek robot

uygulamaları için, GPS ve hareket yakalama (mocap) sistemleri, sırasıyla dış mekân ve

iç mekân uygulamaları için kullanılabilir. Ancak çok robotlu sistemler söz konusu

olduğunda, göreli lokalizasyon probleminin tek robot lokalizasyon probleminin ötesinde

çözülmesi gerekmektedir. Ayrıca, GPS sinyalleri her yerde mevcut değildir ve mocap

sistemleri, çoklu robot sistemlerinin uygulama alanını sınırlar. Endüstriyel uygulama

senaryolarından motive alarak, drone'ların yerelleştirme için herhangi bir harici altyapı

kullanmadığı çoklu drone sistemlerinde göreceli lokalizasyon ve yerleştirme problemini

ele alıyoruz. Ultra geniş bant (UWB) mesafe sensöründen oluşan bir hedef nesneye

kenetlemeyi amaçlayan iki dronlu bir sistem düşünüyoruz. İHA'lar UWB sensörleri ve

kameraları ile donatılmış olup, GPS, manyetometre sensörleri ve harici altyapıların

yokluğunda hedef nesneyi lokalize etmeye ve önceden tanımlanmış bir konfigürasyonda

etrafına kenetlenmeye çalışırlar. Mesafe ve görüş sensörü sonuçlarını birleştiren drone-

hedef konfigürasyonunun dinamik modeline dayalı genişletilmiş bir Kalman filtresi

tasarlıyoruz. Özellikle insansız hava araçları ile hedef arasındaki açı tespiti için YOLO

algoritmasını kullanıyoruz. Ardından, anahtarlama tabanlı bir dağıtılmış formasyon

kontrol algoritması tasarlayıp uyguluyor ve bunu tahmin algoritmasına entegre ediyoruz.

Algoritmamızın performansını gerçekçi bir Gazebo ortamında çeşitli simülasyon

çalışmaları üzerinde gösteriyoruz. Son olarak, sistemin tam olarak uygulanması için

birincil deneysel sonuçlar ve bir yol haritası sunuyoruz.

Anahtar Kelimeler: Çoklu drone sistemleri, Görüntü işleme, Tahmin algoritmaları,

Kenetlenme

iii

Acknowledgments

I would like to express my gratitude to Dr. Samet GÜLER, who helped me to complete

this study by giving me a great deal of time and valuable contributions.

iv

TABLE OF CONTENTS

INTRODUCTION ... 1

1.1 RELATED WORKS ... 2

1.2 ORGANIZATION .. 7

SYSTEM DEFINITION ... 8

2.1 DRONE TEAM MODEL .. 8
2.1.1 Drone Model .. 8
2.1.2 Kinematic Model .. 9
2.1.3 Dynamic Model .. 10

2.2 PROBLEM FORMULATION ... 11

INDOOR NAVIGATION ... 16

3.1 GENERAL FRAMEWORK ... 16
3.2 LOCALIZATION ALGORITHM .. 17
3.3 CONTROL ALGORITHM ... 22

SSIMULATION .. 26

4.1 SIMULATION ENVIRONMENT ... 26
4.2 FORMATION MODEL ... 29
4.3 OBJECT DETECTION ... 30
4.4 SIMULATION RESULTS ... 32

4.5 ANALYSIS .. 32

EEXPERIMENT ... 41

5.1 EXPERIMENT SETUP ... 41

CCONCLUSIONS AND FUTURE PROSPECTS ... 47

6.1 CONCLUSIONS .. 47
6.2 SOCIAL IMPACT AND CONTRIBUTION TO GLOBAL SUSTAINABILITY 48
6.3 FUTURE PROSPECT ... 49

v

LIST OF FIGURES

Figure 2.1 Scenario that shows drone team localize robot manipulator 14

Figure 2.2 Scenario that shows drone team docks worker. .. 14
Figure 3.1 Block diagram for the system .. 17
Figure 3.2 The triangle formed by the drones and the target projected onto a plane. 18

Figure 3.3 State machine .. 22
Figure 3.4 Approach control mode parameters .. 24
Figure 3.5 Converge mode parameters. In the converge mode, the drones aim at

stabilizing themselves on the boundary of the disc 𝑩(𝒑𝑻, 𝝆
𝐝𝐞𝐬). 25

Figure 4.1 Hardware setup that contains Ubuntu 18.04 desktop computer and 2 Jetson

Nano computers for simulation ... 27
Figure 4.2 The simulated warehouse environment in Gazebo 9 robot simulator 28
Figure 4.3 The Iris drone model that used in the simulation for drone modeling 28
Figure 4.4 Block diagram of the simulated system ... 29

Figure 4.5 Figure shows how the YOLO algorithm and neural network griding and

detection works ... 31
Figure 4.6 Image frame and detection of object of interest in simulated drones 32
Figure 4.7 The modes of the drones in a simulation. The solid lines and the cyan arrows

show the traces and the heading angles of the drones, respectively 34
Figure 4.8 Ranges and their estimations in the simulation: The vertical lines denote the

start times of the states: Blue: Converge; Purple: Rotate; Green: Orient 35
Figure 4.9 Bearing angles and their estimations in the simulation: The vertical lines

denote the start times of the states: Blue: Converge; Purple: Rotate; Green: Orient

 .. 37

Figure 4.10 The initial and final locations and orientations of the drones and the final

range values .. 37

Figure 4.11 The drones’ modes in the second experiment with image processing. 38

Figure 4.12 Bearing angles and their estimations in the second simulation with image

processing. .. 38

Figure 4.13 The initial and final locations and orientations of the drones in the second

simulation with image processing. .. 39

Figure 5.1 Block diagram shows how movement commands are sent to DJI drones 42

Figure 5.2 DJI “Mavic 2” and “Air 2” drones that were modified for experiment

purposes. ... 43

Figure 5.3 Image shows each component that was added to DJI drones 43

Figure 5.4 Image shows image processing test setup for DJI drones 43

Figure 5.5 Monitor detection with Jetson Nano and onboard camera sensor 44

Figure 5.6 Detected monitor in our image processing system .. 44

Figure 5.7 Detection of the object in a straight direction with a) Left drone and b) right

drone ... 45

Figure 5.8 Oriented yaw angle detection of the object with a) Left drone and b) right

drone ... 45

Figure 5.9 Experimental setup in a lab environment .. 45

vi

LIST OF ABBREVIATIONS

BEV Bird’s Eye View

CNN Convolutional Neural Network

DOF Degree of Freedom

IOT Internet of Things

EKF Extended Kalman Filter

ESC Electronic Speed Controller

GPS Global Positioning System

HIL Hardware-in-the-Loop

HMM Hidden Markov Model

HOGS Histogram of Oriented Gradients

IMU Inertial Measurement Unit

LIDAR Light Detection and Ranging

MAP Maximum A Posteriori

MRS Multi-Robot System

ROS Robot Operating System

RSS Received Signal Strength

SIFT Scale Invariant Feature Transform

SLAM Simultaneous Localization and Mapping

SURF Speeded Up Robust Features

SVR Support Vector Regression

ToF Time-of-Flight

UAV Unmanned Aerial Vehicle

UHFRFID Ultra-High Frequency Radio-Frequency Identification

UWB Ultra-Wideband

VINS Visual Inertial Navigation System

VTOL Vertical-Take-Off-and-Landing

WFF Wall-Floor Features

YOLO You Only Look Once

To my family, friends, and all loved ones.

1

Chapter 1

1 Introduction

 To localize an autonomous robot in an unknown environment, the Global

Positioning System (GPS) is used which gathers position data of the sensor from at least

four different satellites around the world. GPS data is one of the best ways to localize

robots in an unknown environment, but this system has some problems which avoid us to

gather position data. In this system, we are getting GPS signals from at least four different

satellites, which compute the position and distance between the GPS sensor and satellites.

Those signals are mainly radio signals and because of that, they cannot penetrate dense

structures such as mountains or concrete buildings. So, in urban or indoor environments,

which are surrounded by structures, we cannot use GPS signals efficiently. Because of

this phenomenon, we need different localization systems for urban and indoor

environments. To be able to localize our agents in these environments, we need to create

a system that can gather different sensor data which help us to sense our environment and

an estimator which uses sensor data to estimate our position to localize ourselves. For this

kind of system, which does not use GPS signals, distance measurements and visual data

are one of the best sensor data to help us to localize ourselves. With by using a specific

sensor, we can get different distance data from different objects around us and by using

visual data, we can use image processing techniques to detect a pre-defined object to

localize ourselves with respect to the detected object. To create a system that works as

mentioned, we can combine different sensors and algorithms to create a localization

system. With the proposed study, a localization technique that uses distance

measurements and visual data from their respective sensors to analyze their environment

autonomously create and estimate their position with respect to objects in the

environment. To be able to enhance this study’s effectiveness, a harsh environment is

accepted to mimic GPS signal losses which are realized by not using magnetometer

sensors that create rotational data for drones. In this chapter, state-of-art works are

summarized to get a better understanding of the application of visual navigation.

2

1.1 Related Works

 Within current state-of-art works on Visual navigation, many of them focus on

drone localization that combine distance measures and computer vision techniques with

autonomous control algorithms to navigate robots in an environment. To gather

environmental data, camera systems & distance measurements used and those data

matched with pre-installed maps. To be able to summarize general concept in state-of-art,

we can separate them with some main topic as follows.

 To devise a localization system without GPS signal aid, many previous works

focused on fusion of several sensor data with different characteristics. Vision sensors

provide extensive information about the environment, which can be processed on a

robot’s computational boards to compute feasible paths. Recently, localization objective

was separated from the mapping and path planning objectives to reduce the onboard

computational complexity. Accordingly, vision sensors have been implemented heavily

for localizing robots in a multi-robot system. Here, we provide a summary of the recent

vision-based localization frameworks in the literature. We start with the general

perspective where a robot tries to self-localize in unknown environments. Then, we

narrow down to vision-based relative localization approaches for multi-robot systems.

 A typical approach for global localization is to acquire onboard visual data and

identify the robot location in a Geographic Information Systems dataset such as Google

Maps or BING Maps. In [1], on-board visual data and Google maps aerial images is

combined with Histograms of Oriented Gradients (HOGS) to create Histogram data of

the landscape which is used to match between geo-tagged images. Like that work, in [2-

4], Circular-HOG features is used to create matches between geo-tagged aerial images

and on-board visual data. After the matching process, drone localization is completed by

removing poor matches with a filtering process. In [5-7], visual data are compared with

pre-installed geo-tagged images by using Scale-invariant feature transform (SIFT)

algorithm, which detect features in images and check for comparison, to localize aerial

vehicle in the map. Also, the localization results are tested by creating 3D maps and

building facades. Similarly, in [8], oblique map is created by taking a large number of

pictures in pre-defined patterns and fusing.

 References [9,10] processed the on-board visual data with Kanade- Lucas-Tomasi

feature detection algorithms to detect edges and corners of the paths and pavements. In

this approach, gyro, accelerometer, and barometric pressure data are fused with vision

3

data in a Kalman filter to estimate an aerial vehicle’s position. Sharing obtained data is

similar approach to fusing for localization. In [11-13], obtained visual data from different

cameras on different aerial vehicles shared between each aerial vehicle in the system to

create general map which can be used for localization.

 Several works take advantage of designated objects in the environment in localizing

aerial vehicles. In [14,15], Quick Response (QR) code and QR code-like patterns with

known positions are used for localizing aerial vehicles. A vehicle can extract its global

position when it detects such patterns or objects with its onboard camera. As an alternative

to QR detection, Convolutional Neural Network (CNNs) are applied in [16,17] to detect

patterns on urban districts or environment such as people, animals, or cars. By detecting

those features from visual data, localization can be extracted from detected features’

positions. Such computer vision methods can be used for entertainment and educational

activities with drones as well. For instance, human pose is used to localize and lock an

aerial vehicle around the detected pose in [18]. Human face recognition technique is used

in [19], which can be used in a classroom so that the aerial vehicle locks itself with respect

to teacher’s position and record the lecture.

 In [20] visual sensor on a drone is used to scan an environment to detect intruder

aerial vehicles. Localization is performed by detecting the intruder vehicle and calculating

its relative pose and distance. A similar concept is demonstrated in [21] where a binocular

like gadget with visual sensor is used to detect aerial vehicles with deep neural networks.

In [22,23], the same concept is studied by using multiple visual sensors which help us to

get distance measure by using angle difference in views.

 Primarily, simultaneous localization and mapping (SLAM) dominated the

localization research track with its complete solution methodology to both the localization

and mapping problems. In [24,25], SLAM algorithm is used to locate vehicles by

detecting environmental features such as streets and building in outdoor environments. In

[24] by saving local position of the vehicle in each step and matching it with Google

Street Maps’ database to reduce the drifts in localization caused by the visual approach.

In [25], by using on-board visual data, buildings detected and matched with Google Maps

images and vehicle localized by calculating angle change in detected features.

 To be able to use Google Street maps’ images in localization, top of the buildings of

facades of the building can be used as visual data. Many satellite images have defined

angle and oblique features which make them enough to use in visual image comparison.

In [26], position data of a vehicle is estimated with onboard visual data and estimation is

4

combined with Hidden Markov Model (HMM) to localize the vehicle. Google Street

images is modified and used along with on-board visual data with SIFT algorithm to

create noisy position data which has 4 - 16-meter error. By combining these data with

HMM, localization of the vehicle can be estimated. Similarly, in [27], facades of the

buildings in Google Maps images are used for localization. First, outlines of the buildings’

roofs extracted in both satellite images and Bird’s eye view (BEV) images which can be

matched and indicate buildings positions. Then facades of the buildings extracted from

top to bottom in BEV images. After that on-board visual data and extracted facades

compared with Self-similarity descriptor computation which results with estimated

position of the vehicle.

 On out-door localization, images are generally used to calculate location of the

vehicle or position estimation. Image or video sequences are not used usually because of

occlusion, fast camera motion, and pose variation problems. In [28], multi-object

tracking, and 3D localization scheme are used to estimate aerial vehicle’s position by

using deep learning algorithms. The proposed system can calculate 3D coordinates of

other objects in the environments while detecting and tracking them. Moreover, view-

point changes can affect visual localization and make it hard to detect predefined images

in a dataset. In [29], a novel generative model for descriptor learning is proposed which

can handle seasonal changes in the environment. Semantic localization technique is used

which can handle extreme appearance changes which include weather, season, and

illumination. By capturing high-level geometric and semantic information from visual

data, accurate camera pose estimation is performed in that work.

 In indoor environments, different practices or modified versions of outdoor

techniques can be used to gather position data of an aerial vehicle. Several works combine

map creation with localization techniques to create position data for aerial vehicles. In

[30,31], CNNs are used to detect interior features such as doors, dead-ends, and edges of

walls to create 3D semantic map of indoor environments. To reduce pose estimations,

Octree method and Support Vector Regression (SVR) methods are used. In [32], vistas,

distance features gathered from parallel tracking, are generated to localize aerial vehicles.

By detecting and tracking Wall-Floor Features (WFFs), odometry data and visual data

can be fused to create position data for the system. In [33], a monocular visual-inertial

navigation system (VINS) is created which has small footprint due to only consisting

inertial measurement unit (IMU) and a camera, used to create maps for indoor

environment. Online trajectory planner which operates on three-dimensional map, used

5

to guarantee safe navigation for aerial vehicle. In [34], visual SLAM technique is used to

create global map with multiple cameras located at different points. The acquired vision

data are compared to estimate the inter-camera poses. In [35], visual data is combined and

used with Ultra-wideband (UWB) sensors to localize aerial vehicles in tight

environments. As an alternative solution, a new camera system based on a Time-of-Flight

(ToF) concept is used to localize an aerial vehicle in in-door environments in [36]. ToF

camera can acquire dense depth maps with high frame rates which is suitable for

localization.

 Despite their several remarkable advantages, vision sensors may not be sufficient for

self- or relative localization of aerial vehicles. Notably, vision sensors are prone to

adversarial ambient conditions such as poor lighting and limited field-of-view. Therefore,

vision sensors are usually applied with another sensor type to exploit the practicality and

robustness of both worlds. A typical approach is to fuse the vision data with distance

sensor data. We now summarize some important results about the distance-based

localization solutions.

 In [37], a multi-robot Cooperative Localization (CL) system is proposed with custom

covariance intersection-based algorithm. Each robot in the system has proprioceptive

sensors for ego-motion, exteroceptive sensors for other robots’ relative pose and

communication device that help robots to share information. By sharing and receiving

information with other robots, relative position between the robots is calculated. In [38],

a CL system is devised with a distributed Maximum A Posteriori (MAP) estimator which

helps system to reduce the memory and processing requirements. Furthermore, fusion of

all data in a team of robots are used in [39] to overcome single robot’s calculation error

over time. Each robot in the system try to localize itself in the environment by fusing on-

board sensors’ data such as cameras or IMU but as time passes, error rate will increase

and acquired location will be corrupted. To overcome this problem, on top of fusing on-

board sensors together, measurements from robot couples will be added which can be

used to improve localization accuracy. Similarly, in [40], localization of a team of robot

is done by fusing proprioceptive sensors, exteroceptive sensors, and data from other

robots in the team. By using Extended Kalman Filter (EKF), relative observation between

robots can be acquired. Reference [41] eliminates the need for prior knowledge about the

robots’ initial relative poses. In that system, robots share their sensor data with other

robots to match any common observation which help them to calculate pose

transformation in the robots’ reference frames.

6

 Trilateration techniques can be used for localization too. In [42,43], by applying a

single trilateration for each sensor in a deployment area, localization of an aerial vehicle

with distance measures can be achieved. In the system, all the sensors measured at least

three times with different orientations to plan a static path for the aerial vehicle.

 For outdoor localization with distance data, UWB sensors are used to get distance

measurement between vehicles and an anchor point. Because in outdoor environments,

we do not have dense obstacles, the way of gathering measurements will be different. In

[44], Drone Range-Free localization algorithm is created for aerial vehicle localization.

Drone Range-Free algorithm try to localize Internet-of-Things (IOT) device, that fixed

on aerial vehicle, on the intersection of the UWB sensors measurement. To overcome

noisy measurement from UWB sensor, range-free assumption for UWB relaxed and

nearly perfect measurement circles achieved. In [45], localization of single aerial vehicle

is done by using UWB sensors. Location of single aerial vehicle is detected with one fixed

anchor points and for swarm aerial vehicles, active swarm members change their role to

enhance the localization performance.

 In indoor environments, we can have many different objects or features which can

be used to get distance data. To be able to localize itself and fly in indoor environment,

aerial vehicles should be able to determine collision-free path. In [46], ultra-high

frequency radio-frequency identification (UHFRFID) tags data are fused in Kalman

Filters to localize vehicle in an indoor environment. Position of the tags are known in the

environment and by calculating reckoning of the data, position of the vehicle is estimated.

In [47], to generate collision-free path, SLAM is used to detect the environment. By

gathering data in different altitude levels, environment that aerial vehicle flies identified

and gathered data is used to get a match for estimation of the position. In each iteration,

estimated pose will come closer to true position of the aerial vehicle and localization can

be done. In [48], depth maps are used to localize aerial vehicle in an indoor environment.

 Although several vision- and distance-based approaches are proposed for indoor

environments, a complete docking strategy for collaborative aerial vehicles remains an

open problem. In this thesis, we aim at designing and implementing a coordinated target

detection and tracking framework for two vertical take-off and landing (VTOL) aerial

vehicles by employing a monocular camera and UWB distance sensors. Our approach

differs from the previous work in several points. First, the proposed approach relies on

the onboard exteroceptive sensors (camera and UWB) and does not take advantage of

magnetometers or external infrastructure. Second, we propose an EKF algorithm which

7

contains two measurement modes based on the availability of the target object detection

by the onboard camera sensor. Thus, the proposed method inherits robustness and

resiliency. Finally, as opposed to the SLAM approaches which may fail if the

environment does not contain sufficiently rich features, the proposed solution does not

require dense feature environment.

1.2 Organization

 The following parts of the thesis are organized as follows. In Chapter 2, the

proposed system is explained by analyzing each system and algorithm used and the

connection between them. In Chapter 3, the General framework designed for drones is

explained. Extended Kalman Filter which is used to estimate distance measurements

acquired from the environment explained and the control algorithm is analyzed. In

Chapter 4, simulation results are provided to show how estimated distance measurements

follow ground truth values. analyzation of the simulation results discussed. In Chapter 5,

the setup of lab experiments of the proposed method is explained. Hardware, software,

and operational procedures are described, and results are illustrated. After that, Chapter 6

conclude the work and future studies discussed.

8

Chapter 2

2 System Definition

We consider two drone vehicles in an indoor environment with a target object that can be

detected and evaluated by the drones. The main goal is to design and evaluate a

perception-decision mechanism for the drones to plan and execute a given mission in the

environment. In this section, we define the vehicle model used, formulate the objectives

in general terms, and provide a general picture for the desired characteristics of the system

to be designed.

2.1 Drone Team Model

We consider a team of two vertical-take-off-and-landing (VTOL) aerial vehicles,

specifically quadrotors or drones, named 𝐷1 and 𝐷2. Each drone contains a four-motor

structure that provides an agile structure to fly in various environments with defined

motion characteristics such as altitude and velocity. The drones sense their environment

by omnidirectional ultrawideband (UWB) distance sensors and monocular camera

sensors. We define the motion models and characteristics of the individual drones in the

following section.

2.1.1 Drone Model

A typical quadrotor comprises the following components: an autopilot (flight controller),

DC motors connected through electronic speed controllers (ESC), a battery, a

complementary computer, and a variety of onboard sensors mounted based on the

objective. Each of these components takes care of a different part of the system such as

the flight controller applying basic control on the drone. To be able to fly with a quadrotor

9

system, we have four motors that two of them rotate counterclockwise and the other two

rotate clockwise with their respective propellers which create enough lifting force for all

the weight. In this system, to be able to analyze the motion model, we can start creating

it by motor rotations, the center of gravity, etc.

 In our system, we arranged our drones in a way that, they maintain their altitude

constant on any surface, and they only move freely on the plane. There are two basic

motion models for mobile robots defined based on the degree of freedom (DOF):

Holonomic and non-holonomic. In non-holonomic models, a robot’s total number of DOF

is bigger than controllable DOF. For instance, in a four-wheeled ground robot, the total

DOF can be counted as the capability of moving on the x-axis, y-axis, and the heading

direction. However, those kinds of robots are mainly controlled with two parameters

which are forward/backward acceleration and the angle of the rotation, which create two

DOF. On the other hand, in holonomic systems, one can control movement on the x and

y axes and the direction of the robot which creates the same amount of DOF with a total

DOF, three.

 A VTOL drone has a holonomic motion model which enables motion in all 𝑥, 𝑦, 𝑧

axes. However, as we explain in detail in the next chapter, to alleviate the design of the

localization algorithm in the absence of the magnetometer sensor, we restrict the motion

capability of the drones so that its motion resembles the non-holonomic model.

Essentially, such a restriction stems from the inability of measuring the heading angle of

the drones.

2.1.2 Kinematic Model

In our system, we have several coordinate frames in the environment which define the

coordinates for our drones. In total, we have two coordinate frames which are the ground

coordinate frame, ℰ= {𝐸𝑥, 𝐸𝑦, 𝐸𝑧}, and the body coordinate frame, ℬ= {𝐵𝑥, 𝐵𝑦, 𝐵𝑧}.

For a proper representation of the drones’ motion, we need to create a connection between

these coordinate frames. The body coordinate frame is attached to our drones, and it

moves with the drones’ motions while the ground coordinate frame does not change with

motion and stays as a reference point for the rest of the system. Because of these

differences in motion, the transformation between them should be calculated and used for

drones’ motion.

10

 To find the transformation between those coordinate frames, we define the relative

position 𝑟 = [𝑥, 𝑦, 𝑧]𝑇 between the ground (fixed) coordinate frame ℰ and the drone’s

body coordinate frame ℬ. By creating a transformation matrix, 𝑅𝐵
𝐸, drone’s relative

orientation to ground coordinates can be defined. While creating this transformation,

quaternion or Euler angles can be used. In Euler transformation, three rotation angles,

yaw, pitch, and roll angles of the drone can be used as follows:

 𝑹𝒊
𝒃 = 𝑹(𝝓, 𝒙) ∗ 𝑹(𝜽, 𝒚) ∗ 𝑹(𝝍, 𝒛) =

[

𝟏 𝟎 𝟎
𝟎 𝒄𝒐𝒔(𝝓) 𝒔𝒊𝒏(𝝓)
𝟎 𝒔𝒊𝒏(𝝓) 𝒔𝒊𝒏(𝝓)

] [
𝒄𝒐𝒔(𝜽) 𝟎 𝒔𝒊𝒏(𝜽)
 𝟎 𝟏 𝟎
−𝒔𝒊𝒏(𝜽) 𝒄𝒐𝒔(𝜽) 𝟎

] [
𝒄𝒐𝒔(𝝍) −𝒔𝒊𝒏(𝝍) 𝟎
𝒔𝒊𝒏(𝝍) 𝒄𝒐𝒔(𝝍) 𝟎
 𝟎 𝟎 𝟏

]

(2.1)

= [

𝑐𝑜𝑠(𝜓)𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜙) − 𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙) + 𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜙)

𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜙) + 𝑐𝑜𝑠(𝜓)𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙) − 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜓)
 −𝑠𝑖𝑛(𝜃) 𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜙) 𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)

]

(2.2)

2.1.3 Dynamic Model

To create dynamic model of the drone, we need to focus on two equations which are

transformation equations and rotational motion equations. Rotational motion equations

are coming from drone frame and motion of the motors that create rotation. By using

Newton-Euler method, we can define forces on the drone frame axes as noted below:

𝑀𝑏 = 𝐽𝜔̇ + 𝜔𝑥𝐽𝜔 + 𝜔𝑥 [

 0
 0
𝐽𝑟Ω𝑟

]

(2.3)

where 𝑀𝑏 is the total moment on all axes on drone frame, 𝐵, 𝐽 is stand for diagonal inertia

matrix, 𝜔 is angular velocity vector, 𝜔̇ is the drone’s angular acceleration vector, 𝐽𝑟 is the

inertia of the rotor and 𝜔𝑟 is the drone’s z-axis rotational imbalance.

Thrust created by motors generate moment on drone’s arm that help drone to rotate. To

be able to calculate these moments, we can use following equations:

 𝐹𝑖 = 𝑏Ω𝑖
2 (2.4)

11

𝑀𝑖 = 𝑏𝑙Ω𝑖
2

Which 𝐹𝑖 is the motor’s thrust, 𝑏 is the aerodynamic force constant, Ω is the motor’s

angular velocity, 𝑀𝑖 is the motor’s torque and 𝑙 is the length of the drone’s arm which is

the distance between motor and the center of the drone. So, to calculate all the moments

that effect drone from each axis, formulation can be written as follows:

𝑀𝐵 = [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] = [

 𝑙𝑏(−Ω2
2 + Ω4

2)

 𝑙𝑏(Ω2
2 + Ω2

2)

𝑑(Ω1
2 − Ω2

2 + Ω3
2 − Ω4

2)

]

(2.5)

Which 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧 are the total moment on x, y and z axis respectively and 𝑑 is the

rotational unbalance moment constant. After we define total moment on each axis like

that, by using Newton’s second law, we can update transformation equation from body

coordinate frame to ground coordinate frame.

𝑚𝑟̈ = [

 0
 0
𝑚𝑔

] + 𝑅𝐹𝐵

(2.6)

Which 𝐹𝐵 is the drone rotors’ total thrust without gravitational force, 𝑚 is the drone’s

mass, 𝑟̈ is the Newton’s second law’s acceleration and 𝑅 is our transformation matrix.

After those definitions, our total thrust force can be written as:

𝐹𝐵 = [

 0
 0
−𝑏(Ω1

2 + Ω2
2 + Ω3

2 + Ω4
2)

]

(2.7)

2.2 Problem Formulation

We address the problem of indoor navigation by a team of VTOL aerial vehicles. From a

wider perspective, we are interested in steering robots toward a goal location in an indoor

environment by utilizing onboard sensing mechanisms only, without any external sensing

aids. Typically, a multi-robot system (MRS) takes advantage of external infrastructures

in an indoor environment such as motion capture (mocap) systems or a set of distance

12

sensors. A mocap system consists of a set of infrared cameras that can detect markers

onboard of a vehicle and generate the pose (position and orientation) information with

high precision and accuracy. Although mocap systems can be a viable solution for small

lab environments to aid in producing prototype solutions, they have two main drawbacks.

First, the MRS motion is bound to the environment covered by the mocap system. As the

environment size increases, e.g., in a large industrial environment, excessive number of

cameras together with a ground station with high computational power would be needed.

For instance, to cover a 10-meter by 10-meter room precisely, one may need at least 30

IR cameras. The second downside is the high cost.

 The second viable option for localization in indoor environments is installing a set

of distance sensors on the roof of a room and a sensor of the same type on each robot.

Such sensor types include wi-fi access points, Bluetooth modules, and UWB sensors. The

stationary sensors mounted at a high level are called anchors and are typically mounted

at a safe distance apart from each other. One then measures the distances between the

anchors and sensors and generate the 2-D or 3-D location estimates of the robots by using

several geometric methods such as trilateration or optimal methods. The communication

between Wi-fi and Bluetooth modules usually provide the received-signal-strength (RSS)

measurements which can be converted to distance values, while UWB sensors use the

time-of-flight (TOF) method to measure distance. UWB sensors are proved to be

accurate, precise, and reliable [49]. With several ranging schemes such as single-sided,

double-sided, two-way ranging, and time-difference-of-arrival, most commercial UWB

sensors can generate accurate omni-directional distance measurements of up to 100

meters. Also, they can generate distance measurements even in non-line-of-sight cases

where an object occludes the line between the anchor and tag sensors. Furthermore, the

UWB scheme can be scaled up to multiple sensor configurations so that the distances

between multiple sensors can be acquired.

 In contrast to the traditional localization schemes with multiple anchors located at

customized positions, we opt for mounting a UWB sensor onboard of the drones and on

the goal location (which will be referred as target). In this scheme, each drone 𝐷𝑖 , 𝑖 ∈

{1,2}, and the target 𝑇 consists of a UWB sensor which communicate to generate the three

distances between themselves. Particularly, if we denote the positions of the drones 𝐷𝑖 , 𝑖 ∈

{1,2}, and the target 𝑇 by 𝑝1 = [𝑥𝑖 , 𝑦𝑖, 𝑧𝑖]
T, 𝑖 ∈ {1,2}, and 𝑝𝑇 = [𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇]T,

respectively, then the UWB sensors generate the measurements.

13

 𝜌𝑖 = ||𝑝𝑖 − 𝑝𝑇||, 𝑖 ∈ {1,2},

𝜌0 = ||𝑝1 − 𝑝2||,

(2.8)

where ||. || denotes the 2-norm.

 Typically, a drone makes use of the magnetometer sensor in the autopilot to aid in

finding its heading angle with respect to the Earth north. Generally, magnetometer sensors

provide sufficiently accurate heading measurements in outdoor environments. However,

in some indoor environments, magnetometer readings can be affected by external

magnetic variations caused by several materials such as metals. Although magnetic

shielding can prevent the variations to some degree, it may not suffice to eliminate the

entire variation. Such variations may be tolerated in some applications, e.g., slowly

moving ground robots, but in drone applications, they can cause deviations from the

drone’s desired path or even collisions. Therefore, providing solutions without using

magnetometers brings a great advantage in most indoor applications. Hence, we aim at

providing a navigation solution without a magnetometer, which prevents us from

applying the common localization and path planning techniques.

We assume that each robot has a monocular camera sensor, and the target 𝑇 contains a

UWB sensor and has a pre-defined shape which can be discriminated by the robots by

computer vision techniques. For instance, in an industrial environment, the drone team

can have the capability of collaborative transportation of objects, and the target can be a

robot manipulator at a fixed location which waits for the drone team for transferring an

object (Figure 2.1). In such a scenario, the drone team should localize the target, approach

it, and finally dock in front of the manipulator at certain configuration. Another scenario

could be a worker with a helmet equipped with a UWB sensor waiting for the drone team

to accomplish further human-robot collaborative tasks (Figure 2.2). The drones first need

to approach the worker and dock around it, in the absence of external sensing aids.

14

Figure 2.1 Scenario that shows drone team localize robot manipulator

Figure 2.2 Scenario that shows drone team docks worker

We pose our main objective as follows. The drone team {𝐷1, 𝐷2} aim at searching and

navigating through the target 𝑇 by utilizing its onboard sensing and computational units

solely, without using magnetometer or any external sensing aid such as mocap systems.

Under the assumptions set forth thus far, we decompose the main objective into two parts:

• Objective 1: Design and implement a localization algorithm to generate the

relative positions between the robots and the target,

• Objective 2: Design and implement a high-level motion controller to steer the

robots toward the target and dock them at a certain relative configuration.

15

 Objective 1 includes the design of a relative localization mechanism between the

drones 𝐷1, 𝐷2 and the target 𝑇 without any magnetic sensing aids. Thus, the scenario

imposed in Objective 1 can be interpreted that the drones cannot measure their positions

and heading angles with respect to a fixed frame. This constraint poses a big challenge

which we tackle by exploiting the capabilities of the UWB sensors and computer vision

techniques. Moreover, Objective 2 requires solving a demanding control task for a drone

in the absence of a fixed frame, which poses another challenge since most control

algorithms require the knowledge of a fixed frame. In the next chapter, we present our

solution method for both objectives.

16

Chapter 3

3 Indoor Navigation

This chapter proposes a solution to the objective given in the previous chapter. First, we

design a relative localization algorithm by utilizing the onboard capabilities of the drones.

Then, we present our control framework which aims at driving the drones to a pre-defined

configuration around the target. We follow a systematic approach so that the two modules

are integrated into one framework directly.

3.1 General Framework

We address the problem of indoor navigation in two sub-parts: Relative localization and

control. We demonstrate the block diagram of the proposed framework in Figure 3.1. The

system is composed of two drones and a stationary target. Drone 𝐷1 includes a sensing

module, localization module, and a control module whereas drone 𝐷2 includes a sensing

module and a control module. The drones share the same wi-fi network over which some

estimation parameters are communicated. We note that such a common network is not

necessary for the framework; the onboard communication can be handled by the UWB

sensors as well.

 The sensing module consists of the onboard camera and UWB sensors and generates

the camera image frame and the distances 𝜌𝑖. Since all UWB distance data can be acquired

in one UWB sensor, we design drone 𝐷1 as the master so that it runs the estimation

algorithm and transmits the estimation results to drone 𝐷2. Thus, we avoid the extra

computational burden on the drone 𝐷2. Furthermore, each drone implements a computer

vision algorithm for object detection and relays the processed image information to its

high-level controller.

17

Figure 3.1 Block diagram for the system

The high-level control unit implements the path planning control algorithm and generates

the high-level motion control commands, which are then relayed to the low-level motion

controller. Assuming planar motion, the high-level controllers generate the desired

velocity commands. The low-level controller block is responsible for receiving the

velocity commands and generating the required torques accordingly by fusing the IMU

and optical flow sensor data. We detail the localization and the control modules in the

following sections.

3.2 Localization Algorithm

We now derive the system kinematics for the realization of the localization algorithms.

We assume that the drones fly at a fixed altitude ℎ̅, i.e., 𝑧𝑖 = ℎ̅, 𝑖 ∈ {1,2}. Thus, we

18

assume that the drones move on a plane. Consider Figure 3.2 where drones 𝐷1, 𝐷2, the

target 𝑇, and the coordinate frames are seen. We focus on the geometry of the triangle

{𝐷1, 𝐷2, 𝑇}. Let the line between target 𝑇 and drone 𝐷𝑖 be denoted by 𝑙𝑖, 𝑖 ∈ {1,2}. We

denote the angle between the line 𝑙𝑖 and the 𝑦-axis of drone 𝐷𝑖 measured counter-

clockwise by 𝜙𝑖 ∈ [−𝜋, 𝜋). Notably, the y-axis direction of a drone corresponds to the

drone’s forward direction. Also, denote the internal angles of the triangle {𝐷1, 𝐷2, 𝑇} on

the edge 𝐷𝑖 by 𝛼𝑖 ∈ [−𝜋, 𝜋), 𝑖 ∈ {1,2}, and on the edge 𝑇 by 𝛼0 ∈ [−𝜋, 𝜋). Finally, denote

the line between 𝐷1 and 𝐷2 by 𝑙0 and the angle measured from line 𝑙0 to the 𝑦-axis of

drone 𝐷𝑖 measured counter-clockwise by 𝛾𝑖 ∈ [−𝜋, 𝜋). Then, we have the following

relations:

 𝛾1 = 𝜙1 + 𝛼1,

𝛾2 = 2𝜋 − (𝜙2 + 𝛼2),

𝜙𝑖 = 𝜃𝑖 − atan(𝑥𝑇 − 𝑥𝑖, 𝑦𝑇 − 𝑦𝑖),

(3.1)

where 𝜃𝑖 ∈ [−𝜋, 𝜋) is the heading angle of drone 𝐷𝑖 measured with respect to a global

frame Σ𝐺.

Figure 3.2 The triangle formed by the drones and the target projected onto a

plane.

 We emphasize that the drones do not have access to their actual heading angles 𝜃𝑖

during operation. Due to this fact, although a drone has holonomic motion kinematics if

the roll and pitch motions are stabilized around the zero equilibrium, we cannot take full

advantage of its holonomic motion freedom. In other words, the drone does not have a

sense of a fixed reference frame, and thus it cannot have the odometry capability.

19

Therefore, we assume that the motion in the body x-axis is maintained at zero, and the

drones move only in their body y-axis and rotate their heading angles, i.e.,

 𝑣𝑖
𝑥 = 0, 𝑣𝑖

𝑦
∈ [0, 𝑣̅], 𝜔𝑖 ∈ [−𝜔̅, 𝜔̅], (3.2)

where 𝑣̅, 𝜔̅ > 0 are design constants. It then follows that ||𝑣𝑖|| = 𝑣𝑖
𝑦

= 𝑣𝑖.

 We resemble this motion characteristics to the non-holonomic kinematics which

enables the derivation of the relative motion dynamics. The entire system model (3.3)

consists of the distances and bearing angles inside the triangle {𝐷1, 𝐷2, 𝑇}. Particularly,

the model between each drone and the target can be derived by using the polar dynamics

as follows:

 𝜌̇𝑖 = −𝑣𝑖 cos(𝜙𝑖),

𝜙̇𝑖 =
1

𝜌𝑖
𝑣𝑖 sin(𝜙𝑖) + 𝜔𝑖,

(3.3)

where 𝑖 ∈ {1,2}. Furthermore, the polar dynamics between the drones can be written as:

 𝜌̇0 = −𝑣1 cos(𝛾1) − 𝑣2 cos(𝛾2),

𝛾̇1 =
1

𝜌0

(𝑣1 sin(𝛾1) + 𝑣2 sin(𝛾2)) + 𝜔1,

𝛾̇2 =
1

𝜌0

(𝑣1 sin(𝛾1) + 𝑣2 sin(𝛾2)) + 𝜔2.

(3.4)

Noting that the input vector is defined as

 𝐮 = [𝑣1, 𝑣2, 𝜔1, 𝜔2]
T, (3.5)

we define the state vector as follows:

 𝐱 = [𝜌0, 𝜌1, 𝜌2, 𝜙1, 𝜙2, 𝛾1, 𝛾2]
T. (3.6)

Therefore, the entire system model can be represented as follows:

𝐱̇ = 𝐟(𝐱, 𝐮) =

[

−𝐮1 cos(𝐱6) − 𝐮2 cos(𝐱𝟕)

−𝐮1 cos(𝐱𝟒)

−𝐮2 cos(𝐱𝟓)
1

𝐱𝟐
𝐮1 sin(𝐱𝟒) + 𝐮3

1

𝐱𝟑
𝐮2 sin(𝐱𝟓) + 𝐮4

1

𝐱𝟐

(𝐮1 sin(𝐱𝟔) + 𝐮2 sin(𝐱𝟕)) + 𝐮3

1

𝐱𝟐

(𝐮1 sin(𝐱𝟔) + 𝐮2 sin(𝐱𝟕)) + 𝐮4]

+ 𝝐𝒙,

(3.7)

20

where 𝝐𝒙~𝑁(𝟎,𝐑) is the additional Gaussian noise vector describing the process noise

and disturbance. Having defined the motion model, we continue with the measurement

model definition. The drones can always measure the distances 𝜌0, 𝜌1, 𝜌2 with the UWB

sensors. By using the law of cosines, we can always calculate the internal angles

𝛼0, 𝛼1, 𝛼2. By using the relation in (3.1), we then measure the angles 𝛾1 − 𝜙1 and 𝛾2 − 𝜙2

as well. However, the drones can measure the bearing angles 𝜙1, 𝜙2 only when the

computer vision algorithms can produce detection results, i.e., when the drones can detect

the target body. We explain the detection algorithms applied in Section in detail. The

object detection can only occur within a certain radius of the object. We define that region

as a disc 𝐵(𝑝𝑇 , 𝜌̅), where 𝜌̅ is the detection radius. Also, inside this disc, detection may

not occur. Therefore, we consider two measurement models. The first model does not

include the bearing angles 𝜙1, 𝜙2, and is defined as follows:

 𝐲𝟏 = [𝜌0, 𝜌1, 𝜌2, 𝛾1 − 𝜙1, 𝛾2 − 𝜙2]
T + 𝝐𝒚. (3.8)

The second model consists of the bearing angles and is defined as follows:

 𝐲̅𝟐 = [𝜌0, 𝜌1, 𝜌2, 𝜙1, 𝜙2, 𝛾1 − 𝜙1, 𝛾2 − 𝜙2]
T. (3.9)

Or equivalently,

 𝐲𝟐 = [𝜌0, 𝜌1, 𝜌2, 𝜙1, 𝜙2, 𝛾1, 𝛾2]
T + 𝝐𝒚. (3.10)

We note that all measured angles reside in the interval [−𝜋, 𝜋), and otherwise, they need

to be wrapped to this interval.

Having defined the motion model and measurement models for the entire system, we

design a multi-rate extended Kalman filter in discrete time with the motion model (3.14)

and the measurement models (3.15) and (3.17). The prediction update part includes the

propagation of the motion model with the given input vector:

 𝛍̅𝐤 = 𝐟(𝐱, 𝐮),

𝚺̅𝐤 = 𝐆𝐤𝚺𝐤𝐆𝐤
𝐓 + 𝐑

(3.11)

where 𝑸 is the motion model covariance matrix and

21

𝐆𝐤 =

𝛛𝐟

𝛛𝐱
|𝐱𝐤=𝛍𝐤

=

[

0 0 0 0 0 𝐮1 sin(𝐱𝟔) 𝐮2 sin(𝐱𝟕)

0 0 0 𝐮1 sin(𝐱𝟒) 0 0 0

0 0 0 0 𝐮2 sin(𝐱𝟓) 0 0
0 𝐠𝟒𝟐 0 𝐠𝟒𝟒 0 0 0
0 0 𝐠𝟓𝟑 0 𝐠𝟓𝟓 0 0

𝐠𝟔𝟏 0 0 0 0 𝐠𝟔𝟔 𝐠𝟔𝟕

𝐠𝟕𝟏 0 0 0 0 𝐠𝟕𝟔 𝐠𝟕𝟕]

,

𝐠𝟒𝟐 =
−1

𝐱𝟐
𝟐

𝐮1 sin(𝐱𝟒), 𝐠𝟓𝟑 =
−1

𝐱𝟑
𝟐

𝐮2 sin(𝐱𝟓),

𝐠𝟒𝟒 =
1

𝐱𝟐
𝐮1 cos(𝐱𝟒), 𝐠𝟓𝟓 =

1

𝐱𝟑
𝐮2 sin(𝐱𝟓),

𝐠𝟔𝟏 = 𝐠𝟕𝟏 =
−1

𝐱𝟏
𝟐

(𝐮1 sin(𝐱𝟔) + 𝐮2 sin(𝐱𝟕)),

𝐠𝟔𝟔 = 𝐠𝟕𝟔 =
1

𝐱𝟏
𝐮1 cos(𝐱𝟔), 𝐠𝟔𝟕 = 𝐠𝟕𝟕 =

1

𝐱𝟏
𝐮2 cos(𝐱𝟕).

(3.12)

The measurement update step includes finding the Kalman gain and updating the

predicted state by using the measurement. For the first measurement model, we have

𝐇𝟏 =
𝛛𝐡𝐢

𝛛𝐱
 =

[

1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 1 0
0 0 0 0 −1 0 1]

.

(3.13)

For the second measurement model, we have

 𝐇𝟐 = 𝐈𝟕, (3.14)

where 𝐈𝐧 is an identity matrix of size n-by-n. Therefore, the measurement update step

consists of the following:

𝐊𝐤 = 𝚺̅𝐤(𝐇𝐤

𝐢)
𝐓
[𝐇𝐤

𝐢 𝚺̅𝐤(𝐇𝐤
𝐢)

𝐓
+ 𝐐]

−𝟏

,

𝛍𝐤 = 𝛍̅𝐤 + 𝐊𝐤 (𝐲𝐤
𝐢 − 𝐡𝐢(𝛍̅𝐤))

𝚺𝐤 = (𝐈𝐧𝐢
− 𝐊𝐤𝐇𝐤

𝐢)𝚺̅𝐤,

 (3.15)

where 𝐧𝟏 = 5, 𝐧𝟐 = 7, 𝒚𝒌
𝒊 is the measurement vector at time 𝑘, 𝐇𝐤

𝐢 is as in (3.14), (3.15),

and 𝐊𝐤 is the Kalman gain.

22

3.3 Control Algorithm

In this part, we model the high-level control units of the two drones. First, we design a

fictitious control law as if the controlled variables are measured perfectly. Then, we

integrate the estimation module into the formation control module to replace the fictitious

variables with the estimated variables.

The high-level controller aims at approaching the target and docking at a suitable distance.

Thus, we decompose the control action into two parts: Approach and dock. We assume

that the drones are initially located far distance apart from the target, i.e., 𝜌𝑖(0) >

𝜌des, 𝑖 ∈ {1,2}, where 𝜌des is the radius of the detection disc 𝐵(𝑝𝑇 , 𝜌des) defined in the

previous section. Our method comprises a series of action modes for the drones. Thus,

we define a state machine to manage the high-level control actions. The state machine

consists of four modes: Approach, Converge, Rotate, and Orient. The state machine

operates based on the following flow diagram:

Figure 3.3 State machine

23

First, we design the control law for the Approach mode. The main goal for drone 𝐷𝑖 is to

reduce the distance 𝜌𝑖 toward the target and maintain the distance toward the other drone

𝐷𝑗 at a suitable value. Since the drones do not use a magnetometer sensor, they cannot

take full advantage of their holonomic motion capabilities. Instead, every drone moves

only in the 𝑦-axis and performs rotation in the 𝑧-axis of its body frame Σ𝑏 while

maintaining the speed in the 𝑥-axis of its body frame Σ𝑏 at zero as in (3.2). Such a

modification results in a non-holonomic behavior and puts an important constraint in the

motion control algorithm design. We propose the following control law for 𝐷𝑖 in the

Approach mode:

 𝑣𝑖(𝑡) = 𝐾𝑣𝑒𝜌𝑖
(𝑡),

𝜔𝑖(𝑡) = 𝐾𝜔𝑒𝜔𝑖
(𝑡),

𝑒𝜌𝑖
(𝑡) = 𝜌𝑖(𝑡) − 𝜌des,

𝑒𝜔𝑖
(𝑡) = 𝜙𝑖(𝑡) − 𝜙𝑖

des(𝑡),

𝜙𝑖
des(𝑡) = arctan (𝐷, √1 − 𝐷2) ,

𝐷(𝑡) = 𝑥𝑑𝑒𝑠/𝜌𝑖(𝑡),

(3.16)

where 𝐾𝑣, 𝐾𝜔 > 0 are design constants, and 𝜙𝑖
des is the desired bearing angle between the

drone 𝑅𝑖 and the target 𝑇. We assume that the drones are initiated such that the initial

inter-drone distance is close to its desired value, i.e., |𝜌0(0) − 𝜌0
des| < 𝑐, where 𝜌0

des is

the desired inter-drone distance at steady-state and 𝑐 is an arbitrary constant. The linear

speed controller 𝑣𝑖 aims at approaching the target by reducing the distance error 𝑒𝜌𝑖

whereas the angular speed controller 𝜔𝑖 aims at regulating the bearing error toward the

target. Referring to Figure 3.4, we denote the desired bearing of drone 𝑅𝑖 toward 𝑇 at time

𝑡 by 𝜙des(𝑡) which is calculated by using the distance 𝜌𝑖(𝑡) and the desired separation

𝑥𝑑𝑒𝑠 between the 𝑅𝑖 and 𝑇 in the 𝑥-axis of the body frame Σ𝑏𝑖. In other words, the drone

tries to direct its heading toward the point which is 𝑥𝑑𝑒𝑠 unit away from 𝑇 by using the

error term 𝑒𝜔𝑖
.

24

Figure 3.4 Approach control mode parameters

Once both drones enter the disc 𝐵(𝑝𝑇 , 𝜌des), which is the disc with center 𝑝𝑇, the target

location, and with radius 𝜌des, both drones switch their states to Converge. In the

Converge state, both drones aim at regulating their distances and bearings to their desired

values so that

 𝑣𝑖(𝑡) = 𝐾𝑣𝑒𝜌𝑖
(𝑡),

𝜔𝑖(𝑡) = −𝐾𝜔𝜙𝑖(𝑡),

𝑒𝜌𝑖
(𝑡) = 𝜌𝑖(𝑡) − 𝜌des.

(3.17)

The drones aim at stabilizing the drones on the boundary of the disc 𝐵(𝑝𝑇 , 𝜌des) as in

Figure 3.3. Since the drones do not have any sense of their heading angles due to the

absence of a fixed reference frame, they align themselves around the target 𝑇 by using

the available measurements. However, the drones may drift in the 𝑥-axis of their body

frames because no external infrastructure can aid in the localization procedure. Therefore,

in the Converge state, the drones can move around the boundary of the disc 𝐵(𝑝𝑇 , 𝜌des).

25

Figure 3.5 Converge mode parameters. In the converge mode, the drones aim at

stabilizing themselves on the boundary of the disc 𝑩(𝒑𝑻, 𝝆
𝐝𝐞𝐬).

Once both drones regulate the distances 𝜌𝑖 and the bearings 𝜙𝑖 around the circle within a

threshold, they switch to the Rotate state where they aim at regulating the inter-drone

distance 𝜌0. At this stage, the drones apply the following control law:

 𝑣𝑖(𝑡) = 𝐾𝑣𝑒𝜌𝑖
(𝑡),

𝑣1
𝑥(𝑡) = 𝐾𝑣𝑒𝜌0

(𝑡), 𝑣2
𝑥(𝑡) = −𝐾𝑣𝑒𝜌0

(𝑡),

𝜔𝑖(𝑡) = −𝐾𝜔𝜙𝑖(𝑡),

𝑒𝜌𝑖
(𝑡) = 𝜌𝑖(𝑡) − 𝜌des,

𝑒𝜌0
(𝑡) = 𝜌0(𝑡) − 𝜌0

des.

(3.18)

26

Chapter 4

4 Simulation

 We created a simulation environment which can mimic physical properties of real

experiment setup and help us to perform and analyze system setup. For simulation,

Gazebo simulation environment is used and Robot operating System (ROS) is combined

with it to have autonomous control in simulated drone models. For robot model, Iris drone

model is used and warehouse items such as boxes, pallets and shelves are used to create

indoor warehouse environment. In this chapter, the simulation environment, drone and

system setup, and simulation procedure are expalined and analyzed.

4.1 Simulation Environment

 In robotic area, ROS is used in many studies because of many benefits that it

provides. In robotic applications, we may need to control many different objects and

instances such as robots, manipulators, or simulation physics. Normally by using only

one code and terminal, controlling all these parts is hard to implement. To be able to

control them from one place and create a common communication plane, ROS is used.

With ROS, we can create nodes in our network and connect each instance in our project

to our system. In ROS, we have different type of messages that can contain different type

of data such as Twist message that can carry 6 different data which are Linear x – y – z

and Angular x – y – z values. Each node in this network can carry multiple data and

messages (which called topics) which published from robots and anytime, by subscribing

to these topics, we can reach these data and messages and use them for any purposes. By

using this system, we can send any kind of data such as sensor data or images from

cameras and we can create multi-robot system that each robot can share the same data

from same node and realize their objective.

27

 Several simulation environments can be built to simulate the performance of our

algorithm such as Gazebo, AirSim, and DJI simulation tools. Robot Operating System

(ROS) and its new version ROS2 work in different operating systems such as Windows,

MacOS and Linux distros but to be able to run these systems with an appropriate

simulator, Linux distros are the best options because of their flexibility and easy to run

all these programs. For these purposes, we used Ubuntu 18.04 operating system as our

main operating system which can run our simulator program, Gazebo Simulator, can run

essential libraries and also can work with ROS very well. For our study, we created our

simulation environment in Gazebo 9 robot simulator which installed on a desktop

computer with Ubuntu 18.04 Operating system. Hardware setup is shown in Figure 4.1.

Figure 4.1 Hardware setup that contains Ubuntu 18.04 desktop computer and 2

Jetson Nano computers for simulation

 In the Gazebo simulation, we gathered necessary models such as boxes,

shelves, and pallets to create our warehouse environment. As the drone simulation, Iris

drone model is used. Within this simulator application, we can control many different

properties of our objects and environments such as the size of the objects or environmental

properties, wind, and light. A sample perspective view of our environment can be seen in

Figure 4.2.

28

Figure 4.2 The simulated warehouse environment in Gazebo 9 robot simulator

 To control the drone’s motion as in real-world applications, ROS and Px4 systems

are wrapped on it which help us to get important topics and services for our drones such

as drone’s velocity values or taking off and landing commands. The Iris drone model is

created by using 3D body parts, propellers and simulated motors. Also, to acquire the

images in simulation environment, forward-facing 640x480 pixel RGB camera module

implemented on Iris drone model (Figure 4.3). To be able to implement image processing

techniques, we need to have an object of interest. In simulation, a television image used

for that purpose. By using this drone model, we can mimic every possible action that any

normal drone can realize in real life.

Figure 4.3 The Iris drone model that used in the simulation for drone modeling

29

4.2 Formation Model

 In our work, formation of our drones is set like real world. After simulation

environmment created, our system works step by step to localize our drones. To be able

to control our simulated drone models, we design our simulation as Hardware-in-the-

Loop (HIL) which we use real hardware setup, Jetson Nano computers to process data

from simulation. As in a typical real experiment, Jetson Nano computers acquire the

required data from simulated drone models and all calculations are performed onboard.

The simulation operations start with arming both drones at 1.5 meter altitude and continue

with forward movement towards the object. While they are moving, by using camera

sensor’s data, image processing is done and we try to detect television image in our image

frames. Until we detect television image in our image frame, drones continue their

forward movement and by using UWB sensors, we determine distances between drones

and object, which are fused in the EKF function to estimate the relative positions. After

the television is detected by the Jetson boards, we put bounding box around the objects

in the image frames and calculate the pixel distances between x axis of image frame and

center of the bounding box. Afterwards, we translate pixel distance to metric unit such as

meter, and we can measure angle between object and our forward axis and use the bearing

data in the estimation algorithm.

Figure 4.4 Block diagram of the simulated system

30

4.3 Object Detection

 In image processing, there are several different methods and algorithms for object

detection and tracking in given images or video feeds such as SIFT, Speeded up Robust

Features (SURF) and You Only Look Once (YOLO). The main purpose of these methods

is to detect any given object in a given source of images or video feeds by applying

comparison and finding similarities between them. Algorithms such as SIFT and SURF

mainly try to find similar features between those images and try to match given images

on given image or video sets. On the other hand, YOLO algorithm uses neural network,

which is a series of algorithms that can create relationship between set of data and mimic

human brain. Unlike other detection methods, instead of checking every pixel in the given

image over and over again, YOLO separate given image into grids for detection. For each

grid in an image, neural networks can analyze relationships between them and after that

analyze, it can suppress grids that has lower relationship value to create bounding boxes

around the object. In this work, we use YOLO algorithm to detect the target object by the

drones’ onboard cameras.

 In YOLO, they are many different versions varying from original updated versions

to seperately personalized versions for specific tasks that can expand its usage area and

can enhance its detection power. Currently, YOLO v5 is the latest published version

which has better detection power than previous updates at the expanse of more processing

power requirements. If we want to use YOLO algorithms in any work, we need to

consider its processing power requirements to be able to use them well and without any

problem. YOLO can run on the main processor or on a separate graphics card. Usually,

implementing YOLO on a separate dedicated board improves the detection quality. We

implemented YOLO on the dedicated Jetson Nano boards for improved detection rates

and quality.

31

Figure 4.5 Figure shows how the YOLO algorithm and neural network griding and

detection works

 For our system, we decided to use YOLO version 3 which has moderate power

consumption and also can detect required objects very well. To be able to use our installed

camera module’s image data with YOLOv3, we should create a connection between our

system and the YOLO algorithm. To be able to attach YOLOv3 to ROS, we used Darknet-

Ros [50] ROS packages that run YOLO algorithms within the ROS environment so we

can get results of YOLO algorithms as a ROS topic in our network. After installation of

these packages, to be able to use them within our system, we need to change some

parameters and files. In YOLOv3, we have two different versions of it for different

purposes which are normal YOLOv3 and tiny versions of it. In YOLOv3-tiny, we have

the same algorithms as YOLOv3 but we have less power consumption and also it requires

less processing power. So, this version is a better option for our robotic system which has

onboard computers. After deciding on our YOLO algorithm’s version, we need to find a

proper data set that will include all the objects that we want to detect with YOLOv3-tiny.

For that purpose, we used COCO [51] dataset from Microsoft, which is a pre-trained

dataset and has eighty different objects varying from foods to daily use objects such as

television or car. By using this data set with YOLOv3-tiny, we can detect our object of

interest in the warehouse environment and get bounding box data to analyze it and define

our position in the environment.

 In our simulation, after we run Gazebo with ROS environment together, we start

Darknet-Ros package within ROS to start image processing. From our pre-installed

camera sensor on Iris drone model, we can get onboard image data and transfer this data

to our Darknet-Ros topics created by Darknet-Ros package. While the drones are running,

YOLOv3-tiny can process transferred image data and detect the object of interest. After

the detection occurs, YOLOv3-tiny can create a bounding box, which cover detected

32

object with 4 corner points around it, then it can send position of this bounding box by

using specific topic in our network so we can use it in our code as we want.

Figure 4.6 Image frame and detection of object of interest in simulated drones

After detection, our image frame and bounding boxes looks like in Figure 4.6. Created

bounding boxes can be in different shapes because of our detection quality and movement

of the drones and image frames but these differences will not effect our calculation

because after detection happened, center point of created bounding box is used for pixel

distance calculation, so even if we have different sized bounding boxes, our calculation

will not get effected.

4.4 Simulation Results

 We carried out a comprehensive simulation study to analyze the performance of the

proposed framework. A sample simulation environment is seen in Figure 4.2 where the

two drones reside in an industrial environment. We placed the object to be detected at the

position 𝑝𝑇 = [0,7.35]𝑇 meters in the Gazebo frame at 2 meter high from the ground.

The drones were started from various initial locations and aimed at docking around the

target 𝑇. Our simulations included an initialization phase and an operation phase. We

assumed that the drones were at rest on the ground. In the initialization phase, the drones

were commanded to take off and hover at the altitude 𝑧 = 2 meters at their initial locations

on the 𝑥𝑦-plane by utilizing the px4 low-level controllers. Then, the EKF code was ran

and the drones started moving in the operation phase.

33

 We demonstrate a simulation result in Figure 4.7. In this simulation, the drones

started from the initial locations 𝑝1 = [−2.25,0.45]𝑇 , 𝑝2 = [2.25,0.15]𝑇 meters on the

Gazebo 𝑥𝑦-plane. In Figure 4.7, the target object location is shown with the blue diamond,

while the red and yellow lines depict the traces of the drones 𝑅1, 𝑅2, respectively. The

purple and green diamonds show the initial locations of the drones. The blue and purple

circles denote the discs 𝐵(𝑝𝑇 , 𝜌des − 𝜌th) and 𝐵(𝑝𝑇 , 𝜌des + 𝜌th), where 𝜌th is the pre-

defined threshold value to avoid chattering. Thus, the aim of the drones is to enter the

zone between these discs, align their headings toward the target, and adjust the inter-drone

distance at its desired value 𝜌0
des. We illustrate the start times of the four phases

(Approach, Converge, Rotate, and Orient) in the simulation in Figure 4.7.

 The Approach mode took 14.6 seconds in which the drones move toward the target

by using the control law (3.16). When both drones enter the disc 𝐵(𝑝𝑇 , 𝜌des) at 𝑡 = 14.6

seconds, the drones switch to the Converge mode where they try to align their headings

toward the target and regulate their distances 𝜌1, 𝜌2 toward the target at its desired value

𝜌des by using the control law (3.17). The drones’ headings are shown with the cyan arrows.

It is observed that the drones aligned their headings toward the target successfully by

adjusting the angular velocity control term 𝜔𝑖. Also, since the bearings 𝜙𝑖 ∈ (−𝜋, 𝜋), 𝑖 ∈

(1,2), the control law 𝑣𝑖(𝑡) = 𝐾𝑣𝑒𝜌𝑖
(𝑡) applied on the 𝑦 −axes of the drones’ body frames

regulated the error 𝑒𝜌𝑖
(𝑡), steering the drones on the circle 𝐶(𝑝𝑇 , 𝜌des). In the Converge

mode, the drones utilized the second measurement modal, i.e., 𝐲𝟐 =

[𝜌0, 𝜌1, 𝜌2, 𝜙1, 𝜙2, 𝛾1, 𝛾2]
T + 𝝐𝒚. That is, the drones used the bearing angles produced by

the deep learning method. In the lower-left figure in Figure 4.7, it is observed that at the

end of the Converge mode (𝑡 = 14.6 seconds), the drones entered the zone defined by the

discs 𝐵(𝑝𝑇 , 𝜌des − 𝜌th) and 𝐵(𝑝𝑇 , 𝜌des + 𝜌th) and aligned their headings toward the

target with a small error.

34

Figure 4.7 The modes of the drones in a simulation. The solid lines and the cyan

arrows show the traces and the heading angles of the drones, respectively

After satisfying the conditions in the Converge mode, both drones switched to the Rotate

mode at 𝑡 = 19.7 seconds, where the aim was to regulate the inter-drone distance 𝜌0 at

its desired value 𝜌0
des. In this state, the drones use the controller (3.18) where they move

in the 𝑥 −axes of their body frames, which correspond to the axes which are perpendicular

to the lines combining the drones with the target. Meanwhile, they continue regulating

their bearing angles toward the target. Therefore, the drones move on the circle

𝐶(𝑝𝑇 , 𝜌des) while maintaining the bearings at 𝜙𝑖 = 0. Once the inter-drone distance is

within the threshold |𝜌0 − 𝜌0
des| ≤ 𝜌0

th, where 𝜌0
th > 0 is a design parameter to avoid

chattering, the drones switch to the Orient mode where they maintain their distances and

bearing angles toward the target at their desired values. In this simulation, we observed

that the drones spent 1.2 seconds in the Rotate mode.

35

Figure 4.8 Ranges and their estimations in the simulation: The vertical lines denote

the start times of the states: Blue: Converge; Purple: Rotate; Green: Orient

 We present the estimation results of the same simulation in Figure 4.8 and Figure 4.9.

Figure 4.8 demonstrates the range values, their estimations, and the desired values. The

grey background areas denote the threshold zones for the ranges allowed by the threshold

value 𝜌0
th and 𝜌th. For instance, in the upper figure, the actual range 𝜌0 is desired to be in

the in the range [𝜌0 − 𝜌0
th, 𝜌0 + 𝜌0

th] depicted by the grey zone. The vertical lines denote

the start time of the states. We observed that the drones approached the target with

monotonically decreasing range values to 𝜌1, 𝜌2 until the end of the Approach mode.

Then, once both drones entered the disc 𝐵(𝑝𝑇 , 𝜌des) at 𝑡 = 14.6 seconds, the drones

controlled their ranges 𝜌1, 𝜌2 to be in the grey zone in the middle and lower figures. We

see from these figures that during this period, it took some time to regulate 𝜌1 while 𝜌2

was already in the grey zone.

 Next, the drones switched to the Rotate mode at 𝑡 = 19.7 seconds, where they

utilized the actual range and bearing measurements instead of their estimations to adjust

𝜌0. Thus, the range estimations remained constant during the Rotate mode. We remind

36

that the main reason why we did not utilize the EKF during the Rotate mode is because

the system model (3.10) was no longer valid when we moved the drones in their body 𝑥-

axes. The drones brought 𝜌0 to its desired range [𝜌0 − 𝜌0
th, 𝜌0 + 𝜌0

th] (inside the grey zone

in the upper figure in 1.2 seconds. Afterward, both drones switched to the Orient mode

(the green vertical line) in which they maintained their distances and bearing angles

toward the target.

 We demonstrate the bearing angle estimations with their ground truth values

obtained from the Gazebo environment in Figure 4.9. We note that in the Approach mode,

none of these variables are measured directly, the drones can measure 𝜙𝑖 − 𝛾𝑖 only.

Therefore, until the Converge mode starts, these variables are estimated to some degree

of error only. Once the Converge mode starts, the drones can measure the bearing angles

𝜙𝑖 and 𝛾𝑖 directly by utilizing the deep learning method thus the estimation outcomes

converge to their ground truth values. However, it took some time for the estimated values

to converge at the beginning of the Converge mode. The main reason for this issue is that

the drones rotated their heading angles during the Approach mode in order to satisfy the

control objective, which caused the bearing angles 𝜙𝑖 to increase in magnitude. Since the

target was close to the sides of the image frames on both drones, the bearing angle

estimation based on the detected bounding box performed poorly. Nevertheless, since the

drones estimated the signs of the bearing angles, the angular velocity control was executed

correctly, resulting in the decrease in the angles in magnitude. This motion brought the

target object toward the center of the image frames, and at 𝑡 = 17 seconds, the correct

bearing angles are estimated by the EKF. Since the EKF was not executed during the

Rotate mode, the estimations diverged from their actual values in that mode. However,

this divergence did not affect the convergence of the drones because they used the raw

measurements coming from the sensors. We illustrate the entire traces of the drones with

the final range and bearing angle values in Figure 4.10. We observe that the drones

entered the desired zone defined by the discs 𝐵(𝑝𝑇 , 𝜌des − 𝜌th) and 𝐵(𝑝𝑇 , 𝜌des + 𝜌th),

aligned their headings toward the target (shown by the purple arrows), and regulated the

inter-drone distance 𝜌0 to its desired range [𝜌0 − 𝜌0
th, 𝜌0 + 𝜌0

th], meeting all conditions

set in Chapter 3.

37

Figure 4.9 Bearing angles and their estimations in the simulation: The vertical

lines denote the start times of the states: Blue: Converge; Purple: Rotate; Green:

Orient

Figure 4.10 The initial and final locations and orientations of the drones and the

final range values

38

We illustrate another simulation result in Figure 4.11-Figure 4.13, where the desired

drone-target distances are increased to 5.65 meters. We observed that the drones

approach the target and dock around it successfully. Also, the estimation performance

was sufficient. In Figure 4.13, the estimated variables are represented where they

converge to their actual values in a short time in the Converge mode (between the yellow

and purple vertical lines).

Figure 4.11 The drones’ modes in the second experiment with image processing.

Figure 4.12 Bearing angles and their estimations in the second simulation with

image processing.

39

Figure 4.13 The initial and final locations and orientations of the drones in the

second simulation with image processing.

4.5 Analysis

 In this part, we analyze the system performance of each stage (mode). In the Approach

mode, the drones are controlled with purely distance measurement data. The drones need

to start from a suitable initial condition to realize this mode successfully. Particularly, the

drones need to start their heading angles such that 𝛾1 ∈ (
𝜋

2
− 𝜖,

𝜋

2
+ 𝜖) , 𝛾2 ∈

(
−𝜋

2
− 𝜖,

−𝜋

2
+ 𝜖) with an arbitrarily small 𝜖 so that they can approach to the target in the

first few seconds. Distance-based formation control with global convergence guarantees

is an open research problem in the literature, and a more advanced control technique can

be designed for the Approach mode of our proposed framework. Nevertheless, the

proposed distributed control algorithm here sufficed to obtain small errors in the

Approach mode.

 Once both drones detect the target object with the YOLO method, they enter the

Converge mode where they utilize the bearing data together with the distance

measurements in the control algorithm. Since we design the drones to switch to the

40

Converge mode after both drones detect the target object simultaneously, the EKF

algorithm is guaranteed to obtain both bearing data as the input. As can be observed from

the estimation figures of the previous section, the drones can detect the relative positions

toward the target up to a small error in the Converge mode. Since we use a multi-rate

EKF algorithm with two measurement models, the drones continue estimating the relative

position in the absence of the visual target detection, which enhances the performance.

We emphasize that the drones may drift in their body 𝑥-axis in the Converge mode, which

can be compensated with a proportional controller in that axis.

 In the Rotate mode, the drones aimed at regulating the inter-drone distance by

moving on the circle around the target. In the simulations, we observed that the drones

were able to detect the target object in the Rotate mode, which helped regulating the

heading angle toward the target all the time. Notably, this behavior is expected because

the drones enter the Rotate mode after the Converge mode where the drone-target

distances allow the target object detection. Since the drones moved on their body 𝑥-axes,

the non-holonomic motion behavior was not satisfied in this mode. Thus, EKF was not

running during this mode, and the drones had to move based on the distance

measurements and visual detection results. We observed sufficient accuracy in the Rotate

mode, and the drones maintained the inter-drone distance around the desired values.

41

Chapter 5

5 Experiment

 After our simulation results analyzed, to be able to test our designed system in real

world, we created an experimental testbed. While carrying out our simulation setup to the

real-world experiments, we had to tune some parameters and functions in the algorithm

to fit the real drone requirements. In this chapter, we describe the complete experimental

setup to realize the proposed system and our primary results on the object detection.

5.1 Experiment Setup

To realize our study in a real-world experiment, we need to set up some hardware and

software parts that should be different than our simulation setup. In the simulation, by

fixing pre-defined parameters in Gazebo simulation files and our code, we can summon

our drones in a simulation environment, change parameters on them, use services such as

take-off and land that our drones have them and we can control them in off-board mode,

which is a mode that helps us to send control commands to make them follow. So, first,

to be able to create an experiment setup, those parameters should be fixed.

 For this experiment, we used Mavic 2 rpo and Mavic mini 2 drones from DJI

company. These drones have smaller size with respect to other same level drones, also

they can fly smootly without so much vibration and shifting, they can fly at least 20

minutes and also they can takeoff and land automatically. In normal use, we can only

control these drones by using their remote controller or mobile phone applications which

connect drones’ wifi signals for connection. So, by using our system, which we created

for our simulation environment, we cannot send movement command to our drones to fly

with them and apply our study. DJI company created a software development kit, which

is in a form of mobile phone application, that can modified and can control drones as

customer want. So, for this study, we modified this published application for our case

which can send movement command to our drones by runnig our code.

 We modified the MSDK applications by using Swift and Android Studio

applications, which are mainly used to create applications for IOS and Android platforms.

We add some control buttons that allows us to recieve data from our code and send it to

42

the drones as velocity commands. To create servers between our main computer and our

applications, we mounted a Jetson Nano computer on each drone. So, basically, our code

send required data to the our application over Jetson Nano’s server to fly drones

automatically as shown in Figure 5.1.

Figure 5.1 Block diagram shows how movement commands are sent to DJI drones

 Our final drone setup is shown in Figure 5.2. Each drone has the identical

components, which help them to fly autonomously with velocity input commands. We

used Jetson Nano computers, as in the simulations, to realize the deep learning method

and the image processing techniques which require a GPU and sufficient computational

power. To be able to feed the Jetson Nano computer with enough power, we used a small

LiPo battery, 3C1S 1100 mAh, and power regulater which gives 5 V and 3 A output.

Also, we placed a RasPicam camera sensor to get image data and a UWB sensor to get

distance data. After this setup, all hardware part for the experiment was ready.

 As the initial step for the real experiments, we conducted detection tests with the

Jetson Nano computer. As shown in Figure 5.4, we power up the Jetson Nano computer

with a new power module and connect it to the monitor and start the image processing

module within the ROS system. As we can observe in Figure 5.5, image processing was

working fine and we can detect the monitor object shown in Figure 5.6 with our system.

43

Figure 5.2 DJI “Mavic 2” and “Air 2” drones that were modified for experiment

purposes.

Figure 5.3 Image shows each component that was added to DJI drones

Figure 5.4 Image shows image processing test setup for DJI drones

RasPicam

camera sensor

Jetson Nano

UWB sensor

Battery &

Power module

44

Figure 5.5 Monitor detection with Jetson Nano and onboard camera sensor

Figure 5.6 Detected monitor in our image processing system

After the sucessful initial detection tests with the individual Jetson boards, we set up the

complete system, connected the two drones, and ran the detection code to detect our object

of interest simultaneously. As demonstrated in Figure 5.7 and Figure 5.8, our drones can

detect monitor objects with the YOLOv3 at the same time. We noticed that the camera

FOV allows good detection rates at the bearing angle interval 𝜙𝑖 ∈ [−
𝜋

6
,
𝜋

6
] radians.

Notably, if a camera with a larger FOV is used (e.g., a fish-eye camera), bigger intervals

45

can be obtained. Also, the Jetson Nano boards yielded the detection rate at around 10

frame per second (fps) under default configurations, which was sufficient for our

particular application.

Figure 5.7 Detection of the object in a straight direction with a) Left drone and b)

right drone

Figure 5.8 Oriented yaw angle detection of the object with a) Left drone and b)

right drone

Figure 5.9 Experimental setup in a lab environment

46

Afterwards, we tested the Converge mode of the formation control algorithm with one

drone while the other drone was at rest. As shown in Figure 5.9, we put the monitor object

and our drones in a way that they can start the experiment from converge state. The first

drone (left drone in Figure 5.9) aimed at maintaining the desired distance toward the target

and regulating the bearing angle 𝜙1. We observed a successful performance in three tests.

In the future, we plan to tune the system parameters and conduct a complete test of the

proposed framework.

47

Chapter 6

6 Conclusions and Future Prospects

6.1 Conclusions

 Localization methods are needed for many different applications such as search and

rescue missions or automation. For two main different environments, outdoor and indoor

environments, we have different types of data and sensors which help us to get the

required knowledge on the position of the robots. To be able to locate our agent in the

outdoor environment, we mainly rely on GPS data which we can get from GPS sensors

and at least three or four satellites around the world. This signal is very helpful for finding

our position in an outdoor environment but in indoor environments, we cannot use this

signal clearly. In an indoor environment, we have many obstacles and objects that

interfere with GPS signals that prevent us from using them clearly. With this study, we

created a new approach for indoor localization by using image processing techniques and

distance sensors. In this work, two identical drones can fly in their respective body frames,

they can move freely in an indoor environment and be able to mimic harsh environments,

these drones do not use a magnetometer sensor that gives rotation angle for drones which

result in, drones do not know their yaw angles. To be able to give sense to drones for their

environment, a forward-looking camera sensor is placed and used to receive image data

for localization. With UWB sensors placed on them, they can get distance measurements

between drones and objects of interest, which can be detected by the image processing

system. Also, by using these distances, we can define the angle between drones and object

which help us to define our yaw angle for drones. By using an Extended Kalman Filter,

we can use these distance measurements and angle calculations to filter them and estimate

our position in the environment. By using image data from camera sensors and image

processing techniques, we can detect objects of interest within the image frame to estimate

our relative position and improve our Extended Kalman Filter results. Drones will move

48

in 4 different states that in each state they will try to move and fix different data to make

localization better.

6.2 Social Impact and Contribution to Global

Sustainability

 Localization systems are used in many different areas which robotic systems involve

in our life. With new research, we started to use those systems in many different areas

such as farming, agricultural spraying, and cinematography. In those systems, gathering

position data of the agent is so important and needed to execute the requested objective,

which will be helpful for humans and our societies in many different ways. With this

study, we created a new localization method for indoor environments which robot swarms

with two drones work together to detect a defined object to localize themselves around it

to estimate their respective position. While realizing this mission, they can use image

processing techniques that can detect pre-defined objects placed in the environment. By

this detection, the position of this object can be defined in the image frame and this data

can be used by autonomous systems to create position data. With this system, we can

solve the indoor localization problem which resulted from interfering with GPS signals,

by combining estimation and image processing techniques in a way that we can estimate

our relative position by checking detected objects in our image frame. By using the

proposed system, we can localize any robot in a different indoor environment which has

different objects and shapes, and we can use this system for different purposes such as

search and rescue missions, which we can detect a wounded person that needs to be

rescued and define its respective position to send required help to them. In many situations

where we cannot rely on GPS data, such as interference and signal blocage, we can use

the proposed study to localize any agent in the system, and moreover, we can modify this

work by adding different kinds of sensors or different robots to make it better and suitable

for requested work. Also, by using this system, we can improve its working mechanism

to speed up the ongoing process to make it better.

49

6.3 Future Prospect

For future prospects, this system can be improved in a way that we can add more drones

or ground robots to improve our image data and detection power, which can be resulted

in better detection and more possibilities. For future research, improving the estimation

method and image data will be a good way to create a better system for future works.

50

BIBLIOGRAPHY

[1] Shan M, Wang F, Lin F, Gao Z, Tang YZ, Chen BM. Google map aided visual

navigation for UAVs in GPS-denied environment. In: IEEE. ; 2015: 114–119.

[2] Patterson T, McClean S, Morrow P, Parr G. Utilizing geographic information

system data for unmanned aerial vehicle position estimation. In: IEEE. ; 2011: 8–

15.

[3] Lindsten F, Callmer J, Ohlsson H, Törnqvist D, Schön TB, Gustafsson F.

Georeferencing for UAV navigation using environmental classification. In:

IEEE.;2010: 1420–1425..

[4] Bansal M, Daniilidis K, Sawhney H. Ultrawide baseline facade matching for geo-

localization. In: Springer. 2016 (pp. 77–98).

[5] Majdik AL, Albers-Schoenberg Y, Scaramuzza D. Mav urban localization from

google street view data. In: IEEE. ; 2013: 3979–3986.

[6] Majdik AL, Verda D, Albers-Schoenberg Y, Scaramuzza D. Micro air vehicle

localization and position tracking from textured 3d cadastral models. In: IEEE. ;

2014: 920–927.

[7] Majdik AL, Verda D, Albers-Schoenberg Y, Scaramuzza D. Air-ground matching:

Appearance-based GPS-denied urban localization of micro aerial vehicles. Journal

of Field Robotics 2015; 32(7): 1015–1039.

[8] Jiang S, JiangW. On-board GNSS/IMU assisted feature extraction and matching

for oblique UAV images. Remote Sensing 2017; 9(8): 813.

[9] Conte G, Doherty P. An integrated UAV navigation system based on aerial image

matching. In: IEEE. ; 2008: 1–10.

[10] Conte G, Doherty P. Vision-based unmanned aerial vehicle navigation using geo-

referenced information. EURASIP Journal on Advances in Signal Processing

2009; 2009: 1–18.

[11] Indelman V, Gurfil P, Rivlin E, Rotstein H. Distributed vision-aided cooperative

localization and navigation based on three-view geometry. Robotics and

Autonomous Systems 2012; 60(6): 822–840.

[12] Vemprala SH, Saripalli S. Collaborative Localization for Micro Aerial Vehicles.

IEEE Access 2021; 9: 63043–63058.

[13] Vemprala S, Saripalli S. Monocular vision based collaborative localization for

51

micro aerial vehicle swarms. In: IEEE. ; 2018: 315–323.

[14] Nazemzadeh P, Fontanelli D, Macii D, Palopoli L. Indoor localization of mobile

robots through QR code detection and dead reckoning data fusion. IEEE/ASME

Transactions On Mechatronics 2017; 22(6): 2588–2599.

[15] Faigl J, Krajník T, Chudoba J, Přeučil L, Saska M. Low-cost embedded system for

relative localization in robotic swarms. In: IEEE. ; 2013: 993–998.

[16] Amer K, Samy M, ElHakim R, Shaker M, ElHelw M. Convolutional neural

network-based deep urban signatures with application to drone localization. In: ;

2017: 2138–2145.

[17] Haameid RD, Al-Abudi BQ, Hassan RN. Automatic Object Detection, Labelling,

and Localization by Camera’s Drone System. Iraqi Journal of Science 2021: 5008–

5023.

[18] Ahmed D, Qureshi WS, Aijaz SA, Imran BM, Naqvi SMA, Lin CY. Towards

Selfie Drone: Spatial Localization and Navigation of drone Using Human Pose

Estimation. In: IEEE. ; 2021: 1–7.

[19] Khattar F, Luthon F, Larroque B, Dornaika F. Visual localization and servoing for

drone use in indoor remote laboratory environment. Machine Vision and

Applications 2021; 32(1): 1–13.

[20] Husodo AY, Jati G, Alfiany N, JatmikoW. Intruder drone localization based on 2D

image and area expansion principle for supporting military defence system. In:

IEEE. ; 2019: 35–40.

[21] Pavliv M, Schiano F, Reardon C, Floreano D, Loianno G. Tracking and relative

localization of drone swarms with a vision-based headset. IEEE Robotics and

Automation Letters 2021; 6(2): 1455–1462.

[22] Yi J, Srigrarom S. Near-Parallel Binocular-Like Camera Pair for Multi-Drone

Detection and 3D Localization. In: IEEE. ; 2020: 204–210.

[23] Nam SY, Joshi GP. Unmanned aerial vehicle localization using distributed sensors.

International Journal of Distributed Sensor Networks 2017; 13(9):

1550147717732920.

[24] Floros G, Van Der Zander B, Leibe B. Openstreetslam: Global vehicle localization

using openstreetmaps. In: IEEE. ; 2013: 1054–1059.

[25] Zamir AR, Shah M. Accurate image localization based on google maps street view.

In: Springer. ; 2010: 255–268.

[26] Le Barz C, Thome N, Cord M, Herbin S, Sanfourche M. Global robot

52

egolocalization combining image retrieval and hmm-based filtering. In:; 2014:6-p.

[27] Bansal M, Sawhney HS, Cheng H, Daniilidis K. Geo-localization of street views

with aerial image databases. In: ; 2011: 1125–1128.

[28] Zhang H, Wang G, Lei Z, Hwang JN. Eye in the sky: Drone-based object tracking

and 3d localization. In: ; 2019: 899–907.

[29] Schönberger JL, Pollefeys M, Geiger A, Sattler T. Semantic visual localization. In:

; 2018: 6896–6906.

[30] Li J, LiuY,Wang J,Yan M,YaoY. 3D semantic mapping based on convolutional

neural networks. In: IEEE. ; 2018: 9303–9308.

[31] Garcia A, Mittal SS, Kiewra E, Ghose K. A convolutional neural network feature

detection approach to autonomous quadrotor indoor navigation. In: IEEE. ; 2019:

74–81.

[32] Ta DN, Ok K, Dellaert F. Vistas and parallel tracking and mapping with Wall–

Floor Features: Enabling autonomous flight in man-made environments. Robotics

and Autonomous Systems 2014; 62(11): 1657–1667.

[33] Lin Y, Gao F, Qin T, et al. Autonomous aerial navigation using monocular visual-

inertial fusion. Journal of Field Robotics 2018; 35(1): 23–51.

[34] Zou D, Tan P. Coslam: Collaborative visual slam in dynamic environments. IEEE

transactions on pattern analysis and machine intelligence 2012; 35(2): 354–366.

[35] Tiemann J,Wietfeld C. Scalable and precise multi-UAV indoor navigation using

TDOA-based UWB localization. In: IEEE. ; 2017: 1–7.

[36] 36. Salado AM, Vandeportaele B, Lacroix S, Hattenberger G. Flight autonomy of

micro-drone in indoor environments using lidar flash camera. In: Citeseer. ; 2010.

[37] Carrillo-Arce LC, Nerurkar ED, Gordillo JL, Roumeliotis SI. Decentralized multi-

robot cooperative localization using covariance intersection. In: IEEE. ; 2013:

1412–1417.

[38] Nerurkar ED, Roumeliotis SI, Martinelli A. Distributed maximum a posteriori

estimation for multi-robot cooperative localization. In: IEEE. ; 2009: 1402–1409.

[39] Knuth J, Barooah P. Distributed collaborative localization of multiple vehicles

from relative pose measurements. In: IEEE. ; 2009: 314–321.

[40] Martinelli A, Pont F, Siegwart R. Multi-robot localization using relative

observations. In: IEEE. ; 2005: 2797–2802.

[41] Indelman V, Nelson E, Michael N, Dellaert F. Multi-robot pose graph localization

and data association from unknown initial relative poses via expectation

53

maximization. In: IEEE. ; 2014: 593–600.

[42] Sorbelli FB, Das SK, Pinotti CM, Silvestri S. Precise localization in sparse sensor

networks using a drone with directional antennas. In: ; 2018: 1–10.

[43] 43. Sorbelli FB, Das SK, Pinotti CM, Silvestri S. Range based algorithms for

precise localization of terrestrial objects using a drone. Pervasive and Mobile

Computing 2018; 48: 20–42.

[44] Sorbelli FB, Pinotti CM. Ground localization with a drone and uwb antennas:

Experiments on the field. In: IEEE. ; 2019: 1–7.

[45] Steup C, Beckhaus J, Mostaghim S. A Single-Copter UWB-Ranging-Based

Localization System Extendable to a Swarm of Drones. Drones 2021; 5(3): 85.

[46] Magnago V, Palopoli L, Buffi A, et al. Ranging-free UHF-RFID robot positioning

through phase measurements of passive tags. IEEE Transactions on

Instrumentation and Measurement 2019; 69(5): 2408–2418.

[47] Grzonka S, Grisetti G, BurgardW. A fully autonomous indoor quadrotor. IEEE

Transactions on Robotics 2011; 28(1): 90–100.

[48] Carrio A, Tordesillas J, Vemprala S, Saripalli S, Campoy P, How JP. Onboard

detection and localization of drones using depth maps. IEEE Access 2020; 8:

30480–30490.

[49] Alarifi, A., Al-Salman, A., Alsaleh, M., Alnafessah, A., Al-Hadhrami, S., Al-

Ammar, M. A., & Al-Khalifa, H. S. (2016). Ultra wideband indoor positioning

technologies: Analysis and recent advances. Sensors, 16(5), 707.

[50] Bjelonic M. YOLO ROS: Real-Time Object Detection for ROS.

https://github.com/leggedrobotics/darknet_ros; 2016–2018.

[51] Lin TY, Maire M, Belongie S, et al. Microsoft coco: Common objects in

context.In: Springer. ; 2014: 740–755.

54

CURRICULUM VITAE

2013 – 2019 B.Sc., Electrical& Electronics Engineering, Abdullah Gul

University, Kayseri, TURKEY

2019 – 2022 M.Sc., Electrical & Computer Engineering, Abdullah Gul

University, Kayseri, TURKEY

SELECTED PUBLICATIONS AND PRESENTATIONS

Güler, S., Yıldırım, I., Alabay, H., “Mutual Relative Localization in Heterogeneous Air-

Ground Robot Teams”, 19th International Conference on Informatics in Control,

Automation and Robotics, July 2022, Accepted

