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Robot autonomy refers to the ability to carry out objectives by perceiving the environment 

and deciding on the actions required without human interruption. Although autonomous 

aerial robots offer big advantages in our daily life, online localization and control remain 

the biggest challenge lying ahead of aerial robot implementations. For single robot 

applications, GPS, and motion capture (mocap) systems can be utilized for outdoor and 

indoor applications, respectively. However, when it comes to multi-robot systems, the 

relative localization problem needs to be solved beyond the single robot localization 

problem. Furthermore, GPS signals are not available everywhere, and mocap systems 

limit the application space of multi-robot systems. Motivated by the industrial application 

scenarios, we address the relative localization and docking problem in multi-drone 

systems where drones do not utilize any external infrastructure for localization. We 

consider a two-drone system that aims at docking a target object which consists of an 

ultrawideband (UWB) distance sensor. The drones are equipped with UWB sensors and 

cameras and try to localize the target object and dock around it in a pre-defined 

configuration in the absence of GPS and magnetometer sensors and external 

infrastructures. We design an extended Kalman filter based on the dynamic model of the 

drone-target configuration that fuses the distance and vision sensor outputs. Particularly, 

we use the YOLO algorithm for the bearing detection between the drones and the target. 

Next, we devise and implement a switching-based distributed formation control algorithm 

and integrate it into the estimation algorithm. We demonstrate the performance of our 

algorithm in several simulation studies in a realistic Gazebo environment. Finally, we 

provide primary experimental results and a roadmap to the full implementation of the 

system. 

Keywords: Multi-drone systems, Image processing, Estimation algorithms, Docking  
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ÖZET 

MESAFE VE GÖRÜNTÜ KULLANAN DRONLAR İLE 

KOORDİNE HEDEF TEŞHİSİ VE TAKİBİ 

 

Hüsnü Halid Alabay 

Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Yüksek Lisans 

Tez Yöneticisi: Dr. Öğr. Üyesi Samet Güler 

Haziran 2022 

 

Robot otonomisi, çevreyi algılayarak hedefleri gerçekleştirme ve insan müdahalesi 

olmadan gerekli eylemlere karar verme yeteneğini ifade eder. Otonom hava robotları 

günlük hayatımızda büyük avantajlar sunsa da çevrimiçi yer tespiti ve kontrol, hava 

robotu uygulamalarının önündeki en büyük zorluk olmaya devam etmektedir. Tek robot 

uygulamaları için, GPS ve hareket yakalama (mocap) sistemleri, sırasıyla dış mekân ve 

iç mekân uygulamaları için kullanılabilir. Ancak çok robotlu sistemler söz konusu 

olduğunda, göreli lokalizasyon probleminin tek robot lokalizasyon probleminin ötesinde 

çözülmesi gerekmektedir. Ayrıca, GPS sinyalleri her yerde mevcut değildir ve mocap 

sistemleri, çoklu robot sistemlerinin uygulama alanını sınırlar. Endüstriyel uygulama 

senaryolarından motive alarak, drone'ların yerelleştirme için herhangi bir harici altyapı 

kullanmadığı çoklu drone sistemlerinde göreceli lokalizasyon ve yerleştirme problemini 

ele alıyoruz. Ultra geniş bant (UWB) mesafe sensöründen oluşan bir hedef nesneye 

kenetlemeyi amaçlayan iki dronlu bir sistem düşünüyoruz. İHA'lar UWB sensörleri ve 

kameraları ile donatılmış olup, GPS, manyetometre sensörleri ve harici altyapıların 

yokluğunda hedef nesneyi lokalize etmeye ve önceden tanımlanmış bir konfigürasyonda 

etrafına kenetlenmeye çalışırlar. Mesafe ve görüş sensörü sonuçlarını birleştiren drone-

hedef konfigürasyonunun dinamik modeline dayalı genişletilmiş bir Kalman filtresi 

tasarlıyoruz. Özellikle insansız hava araçları ile hedef arasındaki açı tespiti için YOLO 

algoritmasını kullanıyoruz. Ardından, anahtarlama tabanlı bir dağıtılmış formasyon 

kontrol algoritması tasarlayıp uyguluyor ve bunu tahmin algoritmasına entegre ediyoruz. 

Algoritmamızın performansını gerçekçi bir Gazebo ortamında çeşitli simülasyon 

çalışmaları üzerinde gösteriyoruz. Son olarak, sistemin tam olarak uygulanması için 

birincil deneysel sonuçlar ve bir yol haritası sunuyoruz. 

Anahtar Kelimeler: Çoklu drone sistemleri, Görüntü işleme, Tahmin algoritmaları, 

Kenetlenme 
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Chapter 1 

1 Introduction 

 

        To localize an autonomous robot in an unknown environment, the Global 

Positioning System (GPS) is used which gathers position data of the sensor from at least 

four different satellites around the world. GPS data is one of the best ways to localize 

robots in an unknown environment, but this system has some problems which avoid us to 

gather position data. In this system, we are getting GPS signals from at least four different 

satellites, which compute the position and distance between the GPS sensor and satellites. 

Those signals are mainly radio signals and because of that, they cannot penetrate dense 

structures such as mountains or concrete buildings. So, in urban or indoor environments, 

which are surrounded by structures, we cannot use GPS signals efficiently. Because of 

this phenomenon, we need different localization systems for urban and indoor 

environments. To be able to localize our agents in these environments, we need to create 

a system that can gather different sensor data which help us to sense our environment and 

an estimator which uses sensor data to estimate our position to localize ourselves. For this 

kind of system, which does not use GPS signals, distance measurements and visual data 

are one of the best sensor data to help us to localize ourselves. With by using a specific 

sensor, we can get different distance data from different objects around us and by using 

visual data, we can use image processing techniques to detect a pre-defined object to 

localize ourselves with respect to the detected object. To create a system that works as 

mentioned, we can combine different sensors and algorithms to create a localization 

system. With the proposed study, a localization technique that uses distance 

measurements and visual data from their respective sensors to analyze their environment 

autonomously create and estimate their position with respect to objects in the 

environment. To be able to enhance this study’s effectiveness, a harsh environment is 

accepted to mimic GPS signal losses which are realized by not using magnetometer 

sensors that create rotational data for drones. In this chapter, state-of-art works are 

summarized to get a better understanding of the application of visual navigation. 
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1.1 Related Works 

         Within current state-of-art works on Visual navigation, many of them focus on 

drone localization that combine distance measures and computer vision techniques with 

autonomous control algorithms to navigate robots in an environment. To gather 

environmental data, camera systems & distance measurements used and those data 

matched with pre-installed maps. To be able to summarize general concept in state-of-art, 

we can separate them with some main topic as follows. 

        To devise a localization system without GPS signal aid, many previous works 

focused on fusion of several sensor data with different characteristics. Vision sensors 

provide extensive information about the environment, which can be processed on a 

robot’s computational boards to compute feasible paths. Recently, localization objective 

was separated from the mapping and path planning objectives to reduce the onboard 

computational complexity. Accordingly, vision sensors have been implemented heavily 

for localizing robots in a multi-robot system. Here, we provide a summary of the recent 

vision-based localization frameworks in the literature. We start with the general 

perspective where a robot tries to self-localize in unknown environments. Then, we 

narrow down to vision-based relative localization approaches for multi-robot systems. 

        A typical approach for global localization is to acquire onboard visual data and 

identify the robot location in a Geographic Information Systems dataset such as Google 

Maps or BING Maps.  In [1], on-board visual data and Google maps aerial images is 

combined with Histograms of Oriented Gradients (HOGS) to create Histogram data of 

the landscape which is used to match between geo-tagged images. Like that work, in [2-

4], Circular-HOG features is used to create matches between geo-tagged aerial images 

and on-board visual data. After the matching process, drone localization is completed by 

removing poor matches with a filtering process. In [5-7], visual data are compared with 

pre-installed geo-tagged images by using Scale-invariant feature transform (SIFT) 

algorithm, which detect features in images and check for comparison, to localize aerial 

vehicle in the map. Also, the localization results are tested by creating 3D maps and 

building facades. Similarly, in [8], oblique map is created by taking a large number of 

pictures in pre-defined patterns and fusing. 

        References [9,10] processed the on-board visual data with Kanade- Lucas-Tomasi 

feature detection algorithms to detect edges and corners of the paths and pavements. In 

this approach, gyro, accelerometer, and barometric pressure data are fused with vision 
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data in a Kalman filter to estimate an aerial vehicle’s position. Sharing obtained data is 

similar approach to fusing for localization. In [11-13], obtained visual data from different 

cameras on different aerial vehicles shared between each aerial vehicle in the system to 

create general map which can be used for localization. 

        Several works take advantage of designated objects in the environment in localizing 

aerial vehicles. In [14,15], Quick Response (QR) code and QR code-like patterns with 

known positions are used for localizing aerial vehicles. A vehicle can extract its global 

position when it detects such patterns or objects with its onboard camera. As an alternative 

to QR detection, Convolutional Neural Network (CNNs) are applied in [16,17] to detect 

patterns on urban districts or environment such as people, animals, or cars. By detecting 

those features from visual data, localization can be extracted from detected features’ 

positions. Such computer vision methods can be used for entertainment and educational 

activities with drones as well. For instance, human pose is used to localize and lock an 

aerial vehicle around the detected pose in [18]. Human face recognition technique is used 

in [19], which can be used in a classroom so that the aerial vehicle locks itself with respect 

to teacher’s position and record the lecture. 

        In [20] visual sensor on a drone is used to scan an environment to detect intruder 

aerial vehicles. Localization is performed by detecting the intruder vehicle and calculating 

its relative pose and distance. A similar concept is demonstrated in [21] where a binocular 

like gadget with visual sensor is used to detect aerial vehicles with deep neural networks. 

In [22,23], the same concept is studied by using multiple visual sensors which help us to 

get distance measure by using angle difference in views. 

        Primarily, simultaneous localization and mapping (SLAM) dominated the 

localization research track with its complete solution methodology to both the localization 

and mapping problems. In [24,25], SLAM algorithm is used to locate vehicles by 

detecting environmental features such as streets and building in outdoor environments. In 

[24] by saving local position of the vehicle in each step and matching it with Google 

Street Maps’ database to reduce the drifts in localization caused by the visual approach. 

In [25], by using on-board visual data, buildings detected and matched with Google Maps 

images and vehicle localized by calculating angle change in detected features. 

        To be able to use Google Street maps’ images in localization, top of the buildings of 

facades of the building can be used as visual data. Many satellite images have defined 

angle and oblique features which make them enough to use in visual image comparison. 

In [26], position data of a vehicle is estimated with onboard visual data and estimation is 
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combined with Hidden Markov Model (HMM) to localize the vehicle. Google Street 

images is modified and used along with on-board visual data with SIFT algorithm to 

create noisy position data which has 4 - 16-meter error. By combining these data with 

HMM, localization of the vehicle can be estimated. Similarly, in [27], facades of the 

buildings in Google Maps images are used for localization. First, outlines of the buildings’ 

roofs extracted in both satellite images and Bird’s eye view (BEV) images which can be 

matched and indicate buildings positions. Then facades of the buildings extracted from 

top to bottom in BEV images. After that on-board visual data and extracted facades 

compared with Self-similarity descriptor computation which results with estimated 

position of the vehicle. 

        On out-door localization, images are generally used to calculate location of the 

vehicle or position estimation. Image or video sequences are not used usually because of 

occlusion, fast camera motion, and pose variation problems. In [28], multi-object 

tracking, and 3D localization scheme are used to estimate aerial vehicle’s position by 

using deep learning algorithms. The proposed system can calculate 3D coordinates of 

other objects in the environments while detecting and tracking them. Moreover, view-

point changes can affect visual localization and make it hard to detect predefined images 

in a dataset. In [29], a novel generative model for descriptor learning is proposed which 

can handle seasonal changes in the environment. Semantic localization technique is used 

which can handle extreme appearance changes which include weather, season, and 

illumination. By capturing high-level geometric and semantic information from visual 

data, accurate camera pose estimation is performed in that work. 

        In indoor environments, different practices or modified versions of outdoor 

techniques can be used to gather position data of an aerial vehicle. Several works combine 

map creation with localization techniques to create position data for aerial vehicles. In 

[30,31], CNNs are used to detect interior features such as doors, dead-ends, and edges of 

walls to create 3D semantic map of indoor environments. To reduce pose estimations, 

Octree method and Support Vector Regression (SVR) methods are used. In [32], vistas, 

distance features gathered from parallel tracking, are generated to localize aerial vehicles. 

By detecting and tracking Wall-Floor Features (WFFs), odometry data and visual data 

can be fused to create position data for the system. In [33], a monocular visual-inertial 

navigation system (VINS) is created which has small footprint due to only consisting 

inertial measurement unit (IMU) and a camera, used to create maps for indoor 

environment. Online trajectory planner which operates on three-dimensional map, used 
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to guarantee safe navigation for aerial vehicle. In [34], visual SLAM technique is used to 

create global map with multiple cameras located at different points. The acquired vision 

data are compared to estimate the inter-camera poses. In [35], visual data is combined and 

used with Ultra-wideband (UWB) sensors to localize aerial vehicles in tight 

environments. As an alternative solution, a new camera system based on a Time-of-Flight 

(ToF) concept is used to localize an aerial vehicle in in-door environments in [36]. ToF 

camera can acquire dense depth maps with high frame rates which is suitable for 

localization. 

        Despite their several remarkable advantages, vision sensors may not be sufficient for 

self- or relative localization of aerial vehicles. Notably, vision sensors are prone to 

adversarial ambient conditions such as poor lighting and limited field-of-view. Therefore, 

vision sensors are usually applied with another sensor type to exploit the practicality and 

robustness of both worlds. A typical approach is to fuse the vision data with distance 

sensor data. We now summarize some important results about the distance-based 

localization solutions. 

        In [37], a multi-robot Cooperative Localization (CL) system is proposed with custom 

covariance intersection-based algorithm. Each robot in the system has proprioceptive 

sensors for ego-motion, exteroceptive sensors for other robots’ relative pose and 

communication device that help robots to share information. By sharing and receiving 

information with other robots, relative position between the robots is calculated. In [38], 

a CL system is devised with a distributed Maximum A Posteriori (MAP) estimator which 

helps system to reduce the memory and processing requirements. Furthermore, fusion of 

all data in a team of robots are used in [39] to overcome single robot’s calculation error 

over time. Each robot in the system try to localize itself in the environment by fusing on-

board sensors’ data such as cameras or IMU but as time passes, error rate will increase 

and acquired location will be corrupted. To overcome this problem, on top of fusing on-

board sensors together, measurements from robot couples will be added which can be 

used to improve localization accuracy. Similarly, in [40], localization of a team of robot 

is done by fusing proprioceptive sensors, exteroceptive sensors, and data from other 

robots in the team. By using Extended Kalman Filter (EKF), relative observation between 

robots can be acquired. Reference [41] eliminates the need for prior knowledge about the 

robots’ initial relative poses. In that system, robots share their sensor data with other 

robots to match any common observation which help them to calculate pose 

transformation in the robots’ reference frames. 
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        Trilateration techniques can be used for localization too. In [42,43], by applying a 

single trilateration for each sensor in a deployment area, localization of an aerial vehicle 

with distance measures can be achieved. In the system, all the sensors measured at least 

three times with different orientations to plan a static path for the aerial vehicle. 

        For outdoor localization with distance data, UWB sensors are used to get distance 

measurement between vehicles and an anchor point. Because in outdoor environments, 

we do not have dense obstacles, the way of gathering measurements will be different. In 

[44], Drone Range-Free localization algorithm is created for aerial vehicle localization. 

Drone Range-Free algorithm try to localize Internet-of-Things (IOT) device, that fixed 

on aerial vehicle, on the intersection of the UWB sensors measurement. To overcome 

noisy measurement from UWB sensor, range-free assumption for UWB relaxed and 

nearly perfect measurement circles achieved. In [45], localization of single aerial vehicle 

is done by using UWB sensors. Location of single aerial vehicle is detected with one fixed 

anchor points and for swarm aerial vehicles, active swarm members change their role to 

enhance the localization performance. 

        In indoor environments, we can have many different objects or features which can 

be used to get distance data. To be able to localize itself and fly in indoor environment, 

aerial vehicles should be able to determine collision-free path. In [46], ultra-high 

frequency radio-frequency identification (UHFRFID) tags data are fused in Kalman 

Filters to localize vehicle in an indoor environment. Position of the tags are known in the 

environment and by calculating reckoning of the data, position of the vehicle is estimated. 

In [47], to generate collision-free path, SLAM is used to detect the environment. By 

gathering data in different altitude levels, environment that aerial vehicle flies identified 

and gathered data is used to get a match for estimation of the position. In each iteration, 

estimated pose will come closer to true position of the aerial vehicle and localization can 

be done. In [48], depth maps are used to localize aerial vehicle in an indoor environment.  

        Although several vision- and distance-based approaches are proposed for indoor 

environments, a complete docking strategy for collaborative aerial vehicles remains an 

open problem. In this thesis, we aim at designing and implementing a coordinated target 

detection and tracking framework for two vertical take-off and landing (VTOL) aerial 

vehicles by employing a monocular camera and UWB distance sensors. Our approach 

differs from the previous work in several points. First, the proposed approach relies on 

the onboard exteroceptive sensors (camera and UWB) and does not take advantage of 

magnetometers or external infrastructure. Second, we propose an EKF algorithm which 
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contains two measurement modes based on the availability of the target object detection 

by the onboard camera sensor. Thus, the proposed method inherits robustness and 

resiliency. Finally, as opposed to the SLAM approaches which may fail if the 

environment does not contain sufficiently rich features, the proposed solution does not 

require dense feature environment. 

1.2 Organization 

         The following parts of the thesis are organized as follows. In Chapter 2, the 

proposed system is explained by analyzing each system and algorithm used and the 

connection between them. In Chapter 3, the General framework designed for drones is 

explained. Extended Kalman Filter which is used to estimate distance measurements 

acquired from the environment explained and the control algorithm is analyzed. In 

Chapter 4, simulation results are provided to show how estimated distance measurements 

follow ground truth values.   analyzation of the simulation results discussed. In Chapter 5, 

the setup of lab experiments of the proposed method is explained. Hardware, software, 

and operational procedures are described, and results are illustrated. After that, Chapter 6 

conclude the work and future studies discussed. 
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Chapter 2 

 

2 System Definition 

 

We consider two drone vehicles in an indoor environment with a target object that can be 

detected and evaluated by the drones. The main goal is to design and evaluate a 

perception-decision mechanism for the drones to plan and execute a given mission in the 

environment. In this section, we define the vehicle model used, formulate the objectives 

in general terms, and provide a general picture for the desired characteristics of the system 

to be designed. 

 

2.1 Drone Team Model 

 

We consider a team of two vertical-take-off-and-landing (VTOL) aerial vehicles, 

specifically quadrotors or drones, named 𝐷1 and 𝐷2. Each drone contains a four-motor 

structure that provides an agile structure to fly in various environments with defined 

motion characteristics such as altitude and velocity. The drones sense their environment 

by omnidirectional ultrawideband (UWB) distance sensors and monocular camera 

sensors. We define the motion models and characteristics of the individual drones in the 

following section. 

 

2.1.1 Drone Model 

A typical quadrotor comprises the following components: an autopilot (flight controller), 

DC motors connected through electronic speed controllers (ESC), a battery, a 

complementary computer, and a variety of onboard sensors mounted based on the 

objective. Each of these components takes care of a different part of the system such as 

the flight controller applying basic control on the drone. To be able to fly with a quadrotor 
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system, we have four motors that two of them rotate counterclockwise and the other two 

rotate clockwise with their respective propellers which create enough lifting force for all 

the weight. In this system, to be able to analyze the motion model, we can start creating 

it by motor rotations, the center of gravity, etc. 

        In our system, we arranged our drones in a way that, they maintain their altitude 

constant on any surface, and they only move freely on the plane. There are two basic 

motion models for mobile robots defined based on the degree of freedom (DOF): 

Holonomic and non-holonomic. In non-holonomic models, a robot’s total number of DOF 

is bigger than controllable DOF. For instance, in a four-wheeled ground robot, the total 

DOF can be counted as the capability of moving on the x-axis, y-axis, and the heading 

direction. However, those kinds of robots are mainly controlled with two parameters 

which are forward/backward acceleration and the angle of the rotation, which create two 

DOF. On the other hand, in holonomic systems, one can control movement on the x and 

y axes and the direction of the robot which creates the same amount of DOF with a total 

DOF, three. 

        A VTOL drone has a holonomic motion model which enables motion in all 𝑥, 𝑦, 𝑧 

axes. However, as we explain in detail in the next chapter, to alleviate the design of the 

localization algorithm in the absence of the magnetometer sensor, we restrict the motion 

capability of the drones so that its motion resembles the non-holonomic model. 

Essentially, such a restriction stems from the inability of measuring the heading angle of 

the drones. 

 

2.1.2 Kinematic Model 

In our system, we have several coordinate frames in the environment which define the 

coordinates for our drones. In total, we have two coordinate frames which are the ground 

coordinate frame, ℰ= {𝐸𝑥, 𝐸𝑦, 𝐸𝑧}, and the body coordinate frame, ℬ= {𝐵𝑥, 𝐵𝑦, 𝐵𝑧}. 

For a proper representation of the drones’ motion, we need to create a connection between 

these coordinate frames. The body coordinate frame is attached to our drones, and it 

moves with the drones’ motions while the ground coordinate frame does not change with 

motion and stays as a reference point for the rest of the system. Because of these 

differences in motion, the transformation between them should be calculated and used for 

drones’ motion.  
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        To find the transformation between those coordinate frames, we define the relative 

position 𝑟 = [𝑥, 𝑦, 𝑧]𝑇 between the ground (fixed) coordinate frame ℰ and the drone’s 

body coordinate frame ℬ. By creating a transformation matrix,  𝑅𝐵
𝐸, drone’s relative 

orientation to ground coordinates can be defined. While creating this transformation, 

quaternion or Euler angles can be used. In Euler transformation, three rotation angles, 

yaw, pitch, and roll angles of the drone can be used as follows: 

 

 𝑹𝒊
𝒃 = 𝑹(𝝓, 𝒙) ∗ 𝑹(𝜽, 𝒚) ∗ 𝑹(𝝍, 𝒛)    =    

                                     

[

𝟏     𝟎     𝟎
𝟎 𝒄𝒐𝒔(𝝓) 𝒔𝒊𝒏(𝝓)
𝟎 𝒔𝒊𝒏(𝝓) 𝒔𝒊𝒏(𝝓)

] [
𝒄𝒐𝒔(𝜽)     𝟎 𝒔𝒊𝒏(𝜽)
    𝟎     𝟏     𝟎
−𝒔𝒊𝒏(𝜽) 𝒄𝒐𝒔(𝜽)     𝟎

] [
𝒄𝒐𝒔(𝝍) −𝒔𝒊𝒏(𝝍) 𝟎
𝒔𝒊𝒏(𝝍)   𝒄𝒐𝒔(𝝍) 𝟎
    𝟎        𝟎 𝟏

] 

(2.1) 

 

 

 
= [

𝑐𝑜𝑠(𝜓)𝑐𝑜𝑠(𝜃) 𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜙) − 𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠(𝜙) 𝑐𝑜𝑠(𝜓)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙) + 𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜙)

𝑠𝑖𝑛(𝜓)𝑐𝑜𝑠(𝜃) 𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜃)𝑠𝑖𝑛(𝜙) + 𝑐𝑜𝑠(𝜓)𝑐𝑜𝑠(𝜙) 𝑠𝑖𝑛(𝜓)𝑠𝑖𝑛(𝜃)𝑐𝑜𝑠(𝜙) − 𝑠𝑖𝑛(𝜙)𝑐𝑜𝑠(𝜓)
     −𝑠𝑖𝑛(𝜃)                        𝑐𝑜𝑠(𝜃)𝑠𝑖𝑛(𝜙)                     𝑐𝑜𝑠(𝜃)𝑐𝑜𝑠(𝜙)

] 

 

(2.2) 

 

 

2.1.3 Dynamic Model 

To create dynamic model of the drone, we need to focus on two equations which are  

transformation equations and rotational motion equations. Rotational motion equations 

are coming from drone frame and  motion of the motors that create rotation. By using 

Newton-Euler method, we can define forces on the drone frame axes as noted below: 

 

 
𝑀𝑏 = 𝐽𝜔̇ + 𝜔𝑥𝐽𝜔 + 𝜔𝑥 [

   0
   0
𝐽𝑟Ω𝑟

] 

(2.3) 

 

where 𝑀𝑏 is the total moment on all axes on drone frame, 𝐵, 𝐽 is stand for diagonal inertia 

matrix, 𝜔 is angular velocity vector, 𝜔̇ is the drone’s angular acceleration vector, 𝐽𝑟 is the 

inertia of the rotor and 𝜔𝑟 is the drone’s z-axis rotational imbalance. 

 

Thrust created by motors generate moment on drone’s arm that help drone to rotate. To 

be able to calculate these moments, we can use following equations: 

 

 𝐹𝑖 = 𝑏Ω𝑖
2 (2.4) 
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𝑀𝑖 = 𝑏𝑙Ω𝑖
2 

 

Which 𝐹𝑖 is the motor’s thrust, 𝑏 is the aerodynamic force constant, Ω is the motor’s 

angular velocity, 𝑀𝑖 is the motor’s torque and 𝑙 is the length of the drone’s arm which is 

the distance between motor and the center of the drone. So, to calculate all the moments 

that effect drone from each axis, formulation can be written as follows: 

 

 

𝑀𝐵 = [

𝑀𝑥

𝑀𝑦

𝑀𝑧

] = [

        𝑙𝑏(−Ω2
2 + Ω4

2)

          𝑙𝑏(Ω2
2 + Ω2

2)

𝑑(Ω1
2 − Ω2

2 + Ω3
2 − Ω4

2)

] 

 

(2.5) 

 

Which 𝑀𝑥 , 𝑀𝑦 , 𝑀𝑧 are the total moment on x, y and z axis respectively and 𝑑 is the 

rotational unbalance moment constant. After we define total moment on each axis like 

that, by using Newton’s second law, we can update transformation equation from body 

coordinate frame to ground coordinate frame. 

 

 
𝑚𝑟̈ = [

  0
  0
𝑚𝑔

] + 𝑅𝐹𝐵 

 

(2.6) 

 

Which 𝐹𝐵 is the drone rotors’ total thrust without gravitational force, 𝑚 is the drone’s 

mass, 𝑟̈ is the Newton’s second law’s acceleration and 𝑅 is our transformation matrix. 

After those definitions, our total thrust force can be written as: 

 

 
𝐹𝐵 = [

                     0
                     0
−𝑏(Ω1

2 + Ω2
2 + Ω3

2 + Ω4
2)

] 
 

(2.7) 

 

2.2 Problem Formulation 
 

We address the problem of indoor navigation by a team of VTOL aerial vehicles. From a 

wider perspective, we are interested in steering robots toward a goal location in an indoor 

environment by utilizing onboard sensing mechanisms only, without any external sensing 

aids. Typically, a multi-robot system (MRS) takes advantage of external infrastructures 

in an indoor environment such as motion capture (mocap) systems or a set of distance 
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sensors. A mocap system consists of a set of infrared cameras that can detect markers 

onboard of a vehicle and generate the pose (position and orientation) information with 

high precision and accuracy. Although mocap systems can be a viable solution for small 

lab environments to aid in producing prototype solutions, they have two main drawbacks. 

First, the MRS motion is bound to the environment covered by the mocap system. As the 

environment size increases, e.g., in a large industrial environment, excessive number of 

cameras together with a ground station with high computational power would be needed. 

For instance, to cover a 10-meter by 10-meter room precisely, one may need at least 30 

IR cameras. The second downside is the high cost. 

 

        The second viable option for localization in indoor environments is installing a set 

of distance sensors on the roof of a room and a sensor of the same type on each robot. 

Such sensor types include wi-fi access points, Bluetooth modules, and UWB sensors. The 

stationary sensors mounted at a high level are called anchors and are typically mounted 

at a safe distance apart from each other. One then measures the distances between the 

anchors and sensors and generate the 2-D or 3-D location estimates of the robots by using 

several geometric methods such as trilateration or optimal methods. The communication 

between Wi-fi and Bluetooth modules usually provide the received-signal-strength (RSS) 

measurements which can be converted to distance values, while UWB sensors use the 

time-of-flight (TOF) method to measure distance. UWB sensors are proved to be 

accurate, precise, and reliable [49]. With several ranging schemes such as single-sided, 

double-sided, two-way ranging, and time-difference-of-arrival, most commercial UWB 

sensors can generate accurate omni-directional distance measurements of up to 100 

meters. Also, they can generate distance measurements even in non-line-of-sight cases 

where an object occludes the line between the anchor and tag sensors. Furthermore, the 

UWB scheme can be scaled up to multiple sensor configurations so that the distances 

between multiple sensors can be acquired. 

        In contrast to the traditional localization schemes with multiple anchors located at 

customized positions, we opt for mounting a UWB sensor onboard of the drones and on 

the goal location (which will be referred as target). In this scheme, each drone 𝐷𝑖 , 𝑖 ∈

{1,2}, and the target 𝑇 consists of a UWB sensor which communicate to generate the three 

distances between themselves. Particularly, if we denote the positions of the drones 𝐷𝑖 , 𝑖 ∈

{1,2}, and the target 𝑇 by 𝑝1 = [𝑥𝑖 , 𝑦𝑖, 𝑧𝑖]
T, 𝑖 ∈ {1,2}, and 𝑝𝑇 = [𝑥𝑇 , 𝑦𝑇 , 𝑧𝑇]T, 

respectively, then the UWB sensors generate the measurements. 
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 𝜌𝑖 = ||𝑝𝑖 − 𝑝𝑇||, 𝑖 ∈ {1,2}, 

𝜌0 = ||𝑝1 − 𝑝2||, 

(2.8) 

where ||. || denotes the 2-norm. 

 

        Typically, a drone makes use of the magnetometer sensor in the autopilot to aid in 

finding its heading angle with respect to the Earth north. Generally, magnetometer sensors 

provide sufficiently accurate heading measurements in outdoor environments. However, 

in some indoor environments, magnetometer readings can be affected by external 

magnetic variations caused by several materials such as metals. Although magnetic 

shielding can prevent the variations to some degree, it may not suffice to eliminate the 

entire variation. Such variations may be tolerated in some applications, e.g., slowly 

moving ground robots, but in drone applications, they can cause deviations from the 

drone’s desired path or even collisions. Therefore, providing solutions without using 

magnetometers brings a great advantage in most indoor applications. Hence, we aim at 

providing a navigation solution without a magnetometer, which prevents us from 

applying the common localization and path planning techniques. 

 

We assume that each robot has a monocular camera sensor, and the target 𝑇 contains a 

UWB sensor and has a pre-defined shape which can be discriminated by the robots by 

computer vision techniques. For instance, in an industrial environment, the drone team 

can have the capability of collaborative transportation of objects, and the target can be a 

robot manipulator at a fixed location which waits for the drone team for transferring an 

object (Figure 2.1). In such a scenario, the drone team should localize the target, approach 

it, and finally dock in front of the manipulator at certain configuration. Another scenario 

could be a worker with a helmet equipped with a UWB sensor waiting for the drone team 

to accomplish further human-robot collaborative tasks (Figure 2.2). The drones first need 

to approach the worker and dock around it, in the absence of external sensing aids. 



14 

 

 

Figure 2.1 Scenario that shows drone team localize robot manipulator 

 

 

Figure 2.2 Scenario that shows drone team docks worker 

 

We pose our main objective as follows. The drone team {𝐷1, 𝐷2} aim at searching and 

navigating through the target 𝑇 by utilizing its onboard sensing and computational units 

solely, without using magnetometer or any external sensing aid such as mocap systems. 

Under the assumptions set forth thus far, we decompose the main objective into two parts: 

• Objective 1: Design and implement a localization algorithm to generate the 

relative positions between the robots and the target, 

• Objective 2: Design and implement a high-level motion controller to steer the 

robots toward the target and dock them at a certain relative configuration. 
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        Objective 1 includes the design of a relative localization mechanism between the 

drones 𝐷1, 𝐷2 and the target 𝑇 without any magnetic sensing aids. Thus, the scenario 

imposed in Objective 1 can be interpreted that the drones cannot measure their positions 

and heading angles with respect to a fixed frame. This constraint poses a big challenge 

which we tackle by exploiting the capabilities of the UWB sensors and computer vision 

techniques. Moreover, Objective 2 requires solving a demanding control task for a drone 

in the absence of a fixed frame, which poses another challenge since most control 

algorithms require the knowledge of a fixed frame. In the next chapter, we present our 

solution method for both objectives. 
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Chapter 3 

 

3 Indoor Navigation 

 

This chapter proposes a solution to the objective given in the previous chapter. First, we 

design a relative localization algorithm by utilizing the onboard capabilities of the drones. 

Then, we present our control framework which aims at driving the drones to a pre-defined 

configuration around the target. We follow a systematic approach so that the two modules 

are integrated into one framework directly. 

 

3.1 General Framework 
 

We address the problem of indoor navigation in two sub-parts: Relative localization and 

control. We demonstrate the block diagram of the proposed framework in Figure 3.1. The 

system is composed of two drones and a stationary target. Drone 𝐷1 includes a sensing 

module, localization module, and a control module whereas drone 𝐷2 includes a sensing 

module and a control module. The drones share the same wi-fi network over which some 

estimation parameters are communicated. We note that such a common network is not 

necessary for the framework; the onboard communication can be handled by the UWB 

sensors as well. 

 

        The sensing module consists of the onboard camera and UWB sensors and generates 

the camera image frame and the distances 𝜌𝑖. Since all UWB distance data can be acquired 

in one UWB sensor, we design drone 𝐷1 as the master so that it runs the estimation 

algorithm and transmits the estimation results to drone 𝐷2. Thus, we avoid the extra 

computational burden on the drone 𝐷2. Furthermore, each drone implements a computer 

vision algorithm for object detection and relays the processed image information to its 

high-level controller. 
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Figure 3.1 Block diagram for the system 

 

The high-level control unit implements the path planning control algorithm and generates 

the high-level motion control commands, which are then relayed to the low-level motion 

controller. Assuming planar motion, the high-level controllers generate the desired 

velocity commands. The low-level controller block is responsible for receiving the 

velocity commands and generating the required torques accordingly by fusing the IMU 

and optical flow sensor data. We detail the localization and the control modules in the 

following sections. 

 

3.2 Localization Algorithm 
 

 

We now derive the system kinematics for the realization of the localization algorithms. 

We assume that the drones fly at a fixed altitude ℎ̅, i.e., 𝑧𝑖 = ℎ̅, 𝑖 ∈ {1,2}. Thus, we 
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assume that the drones move on a plane. Consider Figure 3.2 where drones 𝐷1, 𝐷2, the 

target 𝑇, and the coordinate frames are seen. We focus on the geometry of the triangle 

{𝐷1, 𝐷2, 𝑇}. Let the line between target 𝑇 and drone 𝐷𝑖 be denoted by 𝑙𝑖, 𝑖 ∈ {1,2}. We 

denote the angle between the line 𝑙𝑖 and the 𝑦-axis of drone 𝐷𝑖 measured counter-

clockwise by 𝜙𝑖 ∈ [−𝜋, 𝜋). Notably, the y-axis direction of a drone corresponds to the 

drone’s forward direction. Also, denote the internal angles of the triangle {𝐷1, 𝐷2, 𝑇} on 

the edge 𝐷𝑖 by 𝛼𝑖 ∈ [−𝜋, 𝜋), 𝑖 ∈ {1,2}, and on the edge 𝑇 by 𝛼0 ∈ [−𝜋, 𝜋). Finally, denote 

the line between 𝐷1 and 𝐷2 by 𝑙0 and the angle measured from line 𝑙0 to the 𝑦-axis of 

drone 𝐷𝑖 measured counter-clockwise by 𝛾𝑖 ∈ [−𝜋, 𝜋). Then, we have the following 

relations: 

 𝛾1 = 𝜙1 + 𝛼1, 

𝛾2 = 2𝜋 − (𝜙2 + 𝛼2), 

𝜙𝑖 = 𝜃𝑖 − atan(𝑥𝑇 − 𝑥𝑖, 𝑦𝑇 − 𝑦𝑖), 

 

(3.1) 

where 𝜃𝑖 ∈ [−𝜋, 𝜋) is the heading angle of drone 𝐷𝑖 measured with respect to a global 

frame Σ𝐺. 

 

Figure 3.2 The triangle formed by the drones and the target projected onto a 

plane. 

 

        We emphasize that the drones do not have access to their actual heading angles 𝜃𝑖 

during operation. Due to this fact, although a drone has holonomic motion kinematics if 

the roll and pitch motions are stabilized around the zero equilibrium, we cannot take full 

advantage of its holonomic motion freedom. In other words, the drone does not have a 

sense of a fixed reference frame, and thus it cannot have the odometry capability. 
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Therefore, we assume that the motion in the body x-axis is maintained at zero, and the 

drones move only in their body y-axis and rotate their heading angles, i.e., 

 𝑣𝑖
𝑥 = 0, 𝑣𝑖

𝑦
∈ [0, 𝑣̅], 𝜔𝑖 ∈ [−𝜔̅, 𝜔̅], (3.2) 

where 𝑣̅, 𝜔̅ > 0 are design constants. It then follows that ||𝑣𝑖|| = 𝑣𝑖
𝑦

= 𝑣𝑖.  

 

        We resemble this motion characteristics to the non-holonomic kinematics which 

enables the derivation of the relative motion dynamics. The entire system model (3.3) 

consists of the distances and bearing angles inside the triangle {𝐷1, 𝐷2, 𝑇}. Particularly, 

the model between each drone and the target can be derived by using the polar dynamics 

as follows: 

 𝜌̇𝑖 = −𝑣𝑖 cos(𝜙𝑖), 

𝜙̇𝑖 =
1

𝜌𝑖
𝑣𝑖 sin(𝜙𝑖) + 𝜔𝑖, 

 

(3.3) 

where 𝑖 ∈ {1,2}. Furthermore, the polar dynamics between the drones can be written as: 

 𝜌̇0 = −𝑣1 cos(𝛾1) − 𝑣2 cos(𝛾2), 

𝛾̇1 =
1

𝜌0

(𝑣1 sin(𝛾1) + 𝑣2 sin(𝛾2)) + 𝜔1, 

𝛾̇2 =
1

𝜌0

(𝑣1 sin(𝛾1) + 𝑣2 sin(𝛾2)) + 𝜔2. 

 

(3.4) 

Noting that the input vector is defined as 

 𝐮 = [𝑣1, 𝑣2, 𝜔1, 𝜔2]
T, (3.5) 

we define the state vector as follows: 

 𝐱 = [𝜌0, 𝜌1, 𝜌2, 𝜙1, 𝜙2, 𝛾1, 𝛾2]
T. (3.6) 

Therefore, the entire system model can be represented as follows: 

 

𝐱̇ = 𝐟(𝐱, 𝐮) =

[
 
 
 
 
 
 
 
 
 
 
 
 

−𝐮1 cos(𝐱6) − 𝐮2 cos(𝐱𝟕)

−𝐮1 cos(𝐱𝟒)

−𝐮2 cos(𝐱𝟓)
1

𝐱𝟐
𝐮1 sin(𝐱𝟒) + 𝐮3

1

𝐱𝟑
𝐮2 sin(𝐱𝟓) + 𝐮4

1

𝐱𝟐

(𝐮1 sin(𝐱𝟔) + 𝐮2 sin(𝐱𝟕)) + 𝐮3

1

𝐱𝟐

(𝐮1 sin(𝐱𝟔) + 𝐮2 sin(𝐱𝟕)) + 𝐮4]
 
 
 
 
 
 
 
 
 
 
 
 

+ 𝝐𝒙, 

 

(3.7) 
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where 𝝐𝒙~𝑁(𝟎,𝐑) is the additional Gaussian noise vector describing the process noise 

and disturbance. Having defined the motion model, we continue with the measurement 

model definition. The drones can always measure the distances 𝜌0, 𝜌1, 𝜌2 with the UWB 

sensors. By using the law of cosines, we can always calculate the internal angles 

𝛼0, 𝛼1, 𝛼2. By using the relation in (3.1), we then measure the angles 𝛾1 − 𝜙1 and 𝛾2 − 𝜙2 

as well. However, the drones can measure the bearing angles 𝜙1, 𝜙2 only when the 

computer vision algorithms can produce detection results, i.e., when the drones can detect 

the target body. We explain the detection algorithms applied in Section in detail. The 

object detection can only occur within a certain radius of the object. We define that region 

as a disc 𝐵(𝑝𝑇 , 𝜌̅), where 𝜌̅ is the detection radius. Also, inside this disc, detection may 

not occur. Therefore, we consider two measurement models. The first model does not 

include the bearing angles 𝜙1, 𝜙2, and is defined as follows: 

 𝐲𝟏 = [𝜌0, 𝜌1, 𝜌2, 𝛾1 − 𝜙1, 𝛾2 − 𝜙2]
T + 𝝐𝒚. (3.8) 

The second model consists of the bearing angles and is defined as follows: 

 𝐲̅𝟐 = [𝜌0, 𝜌1, 𝜌2, 𝜙1, 𝜙2, 𝛾1 − 𝜙1, 𝛾2 − 𝜙2]
T. (3.9) 

Or equivalently, 

 𝐲𝟐 = [𝜌0, 𝜌1, 𝜌2, 𝜙1, 𝜙2, 𝛾1, 𝛾2]
T + 𝝐𝒚. (3.10) 

We note that all measured angles reside in the interval [−𝜋, 𝜋), and otherwise, they need 

to be wrapped to this interval. 

 

Having defined the motion model and measurement models for the entire system, we 

design a multi-rate extended Kalman filter in discrete time with the motion model (3.14) 

and the measurement models (3.15) and (3.17). The prediction update part includes the 

propagation of the motion model with the given input vector: 

 𝛍̅𝐤 = 𝐟(𝐱, 𝐮), 

𝚺̅𝐤 = 𝐆𝐤𝚺𝐤𝐆𝐤
𝐓 + 𝐑 

 

(3.11) 

where 𝑸 is the motion model covariance matrix and 
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𝐆𝐤 =

𝛛𝐟

𝛛𝐱
|𝐱𝐤=𝛍𝐤

 

=

[
 
 
 
 
 
 

0 0 0 0 0 𝐮1 sin(𝐱𝟔) 𝐮2 sin(𝐱𝟕)

0 0 0 𝐮1 sin(𝐱𝟒) 0 0 0

0 0 0 0 𝐮2 sin(𝐱𝟓) 0 0
0 𝐠𝟒𝟐 0 𝐠𝟒𝟒 0 0 0
0 0 𝐠𝟓𝟑 0 𝐠𝟓𝟓 0 0

𝐠𝟔𝟏 0 0 0 0 𝐠𝟔𝟔 𝐠𝟔𝟕

𝐠𝟕𝟏 0 0 0 0 𝐠𝟕𝟔 𝐠𝟕𝟕 ]
 
 
 
 
 
 

, 

𝐠𝟒𝟐 =
−1

𝐱𝟐
𝟐

𝐮1 sin(𝐱𝟒),        𝐠𝟓𝟑 =
−1

𝐱𝟑
𝟐

𝐮2 sin(𝐱𝟓), 

𝐠𝟒𝟒 =
1

𝐱𝟐
𝐮1 cos(𝐱𝟒),        𝐠𝟓𝟓 =

1

𝐱𝟑
𝐮2 sin(𝐱𝟓), 

𝐠𝟔𝟏 = 𝐠𝟕𝟏 =
−1

𝐱𝟏
𝟐

(𝐮1 sin(𝐱𝟔) + 𝐮2 sin(𝐱𝟕)),         

𝐠𝟔𝟔 = 𝐠𝟕𝟔 =
1

𝐱𝟏
𝐮1 cos(𝐱𝟔),       𝐠𝟔𝟕 = 𝐠𝟕𝟕 =

1

𝐱𝟏
𝐮2 cos(𝐱𝟕). 

 

(3.12) 

The measurement update step includes finding the Kalman gain and updating the 

predicted state by using the measurement. For the first measurement model, we have 

 

 

𝐇𝟏 =
𝛛𝐡𝐢

𝛛𝐱
 =  

[
 
 
 
 
1 0 0 0 0 0 0
0 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 −1 0 1 0
0 0 0 0 −1 0 1]

 
 
 
 

. 

 

(3.13) 

 

For the second measurement model, we have  

 𝐇𝟐 = 𝐈𝟕,     (3.14) 

where 𝐈𝐧 is an identity matrix of size n-by-n. Therefore, the measurement update step 

consists of the following: 

 
𝐊𝐤 = 𝚺̅𝐤(𝐇𝐤

𝐢 )
𝐓
[𝐇𝐤

𝐢 𝚺̅𝐤(𝐇𝐤
𝐢 )

𝐓
+ 𝐐]

−𝟏

, 

𝛍𝐤 = 𝛍̅𝐤 + 𝐊𝐤 (𝐲𝐤
𝐢 − 𝐡𝐢(𝛍̅𝐤)) 

𝚺𝐤 = (𝐈𝐧𝐢
− 𝐊𝐤𝐇𝐤

𝐢 )𝚺̅𝐤, 

    (3.15) 

where 𝐧𝟏 = 5, 𝐧𝟐 = 7, 𝒚𝒌
𝒊  is the measurement vector at time 𝑘, 𝐇𝐤

𝐢  is as in (3.14), (3.15), 

and 𝐊𝐤 is the Kalman gain. 
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3.3 Control Algorithm 
 

In this part, we model the high-level control units of the two drones. First, we design a 

fictitious control law as if the controlled variables are measured perfectly. Then, we 

integrate the estimation module into the formation control module to replace the fictitious 

variables with the estimated variables. 

 

The high-level controller aims at approaching the target and docking at a suitable distance. 

Thus, we decompose the control action into two parts: Approach and dock. We assume 

that the drones are initially located far distance apart from the target, i.e., 𝜌𝑖(0) >

𝜌des, 𝑖 ∈ {1,2}, where 𝜌des is the radius of the detection disc 𝐵(𝑝𝑇 , 𝜌des) defined in the 

previous section. Our method comprises a series of action modes for the drones. Thus, 

we define a state machine to manage the high-level control actions. The state machine 

consists of four modes: Approach, Converge, Rotate, and Orient. The state machine 

operates based on the following flow diagram: 

 

Figure 3.3 State machine 
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First, we design the control law for the Approach mode. The main goal for drone 𝐷𝑖 is to 

reduce the distance 𝜌𝑖 toward the target and maintain the distance toward the other drone 

𝐷𝑗  at a suitable value. Since the drones do not use a magnetometer sensor, they cannot 

take full advantage of their holonomic motion capabilities. Instead, every drone moves 

only in the 𝑦-axis and performs rotation in the 𝑧-axis of its body frame Σ𝑏 while 

maintaining the speed in the 𝑥-axis of its body frame Σ𝑏 at zero as in (3.2). Such a 

modification results in a non-holonomic behavior and puts an important constraint in the 

motion control algorithm design. We propose the following control law for 𝐷𝑖 in the 

Approach mode: 

 𝑣𝑖(𝑡) = 𝐾𝑣𝑒𝜌𝑖
(𝑡), 

𝜔𝑖(𝑡) = 𝐾𝜔𝑒𝜔𝑖
(𝑡), 

𝑒𝜌𝑖
(𝑡) = 𝜌𝑖(𝑡) − 𝜌des, 

𝑒𝜔𝑖
(𝑡) = 𝜙𝑖(𝑡) − 𝜙𝑖

des(𝑡), 

𝜙𝑖
des(𝑡) = arctan (𝐷, √1 − 𝐷2) , 

𝐷(𝑡) = 𝑥𝑑𝑒𝑠/𝜌𝑖(𝑡), 

(3.16) 

where 𝐾𝑣, 𝐾𝜔 > 0 are design constants, and 𝜙𝑖
des is the desired bearing angle between the 

drone 𝑅𝑖 and the target 𝑇. We assume that the drones are initiated such that the initial 

inter-drone distance is close to its desired value, i.e., |𝜌0(0) − 𝜌0
des| < 𝑐, where 𝜌0

des is 

the desired inter-drone distance at steady-state and 𝑐 is an arbitrary constant. The linear 

speed controller 𝑣𝑖 aims at approaching the target by reducing the distance error 𝑒𝜌𝑖
 

whereas the angular speed controller 𝜔𝑖 aims at regulating the bearing error toward the 

target. Referring to Figure 3.4, we denote the desired bearing of drone 𝑅𝑖 toward 𝑇 at time 

𝑡 by 𝜙des(𝑡) which is calculated by using the distance 𝜌𝑖(𝑡) and the desired separation 

𝑥𝑑𝑒𝑠 between the 𝑅𝑖 and 𝑇 in the 𝑥-axis of the body frame Σ𝑏𝑖. In other words, the drone 

tries to direct its heading toward the point which is 𝑥𝑑𝑒𝑠 unit away from 𝑇 by using the 

error term 𝑒𝜔𝑖
. 



24 

 

 

Figure 3.4 Approach control mode parameters 

 

Once both drones enter the disc 𝐵(𝑝𝑇 , 𝜌des), which is the disc with center 𝑝𝑇, the target 

location, and with radius 𝜌des, both drones switch their states to Converge. In the 

Converge state, both drones aim at regulating their distances and bearings to their desired 

values so that  

 𝑣𝑖(𝑡) = 𝐾𝑣𝑒𝜌𝑖
(𝑡), 

𝜔𝑖(𝑡) = −𝐾𝜔𝜙𝑖(𝑡), 

𝑒𝜌𝑖
(𝑡) = 𝜌𝑖(𝑡) − 𝜌des. 

(3.17) 

The drones aim at stabilizing the drones on the boundary of the disc 𝐵(𝑝𝑇 , 𝜌des) as in 

Figure 3.3. Since the drones do not have any sense of their heading angles due to the 

absence of a fixed reference frame, they align themselves around the target 𝑇 by using 

the available measurements. However, the drones may drift in the 𝑥-axis of their body 

frames because no external infrastructure can aid in the localization procedure. Therefore, 

in the Converge state, the drones can move around the boundary of the disc 𝐵(𝑝𝑇 , 𝜌des). 
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Figure 3.5 Converge mode parameters. In the converge mode, the drones aim at 

stabilizing themselves on the boundary of the disc 𝑩(𝒑𝑻, 𝝆
𝐝𝐞𝐬). 

 

Once both drones regulate the distances 𝜌𝑖 and the bearings 𝜙𝑖 around the circle within a 

threshold, they switch to the Rotate state where they aim at regulating the inter-drone 

distance 𝜌0. At this stage, the drones apply the following control law: 

 𝑣𝑖(𝑡) = 𝐾𝑣𝑒𝜌𝑖
(𝑡), 

𝑣1
𝑥(𝑡) = 𝐾𝑣𝑒𝜌0

(𝑡), 𝑣2
𝑥(𝑡) = −𝐾𝑣𝑒𝜌0

(𝑡), 

𝜔𝑖(𝑡) = −𝐾𝜔𝜙𝑖(𝑡), 

𝑒𝜌𝑖
(𝑡) = 𝜌𝑖(𝑡) − 𝜌des, 

𝑒𝜌0
(𝑡) = 𝜌0(𝑡) − 𝜌0

des. 

(3.18) 
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Chapter 4 

4 Simulation 
 

 

        We created a simulation environment which can mimic physical properties of real 

experiment setup and help us to perform and analyze system setup. For simulation, 

Gazebo simulation environment is used and Robot operating System (ROS) is combined 

with it to have autonomous control in simulated drone models. For robot model, Iris drone 

model is used and warehouse items such as boxes, pallets and shelves are used to create 

indoor warehouse environment. In this chapter, the simulation environment, drone and 

system setup, and simulation procedure are expalined and analyzed. 

4.1 Simulation Environment 

        In robotic area, ROS is used in many studies because of many benefits that it 

provides. In robotic applications, we may need to control many different objects and 

instances such as robots, manipulators, or simulation physics. Normally by using only 

one code and terminal, controlling all these parts is hard to implement. To be able to 

control them from one place and create a common communication plane, ROS is used. 

With ROS, we can create nodes in our network and connect each instance in our project 

to our system. In ROS, we have different type of messages that can contain different type 

of data such as Twist message that can carry 6 different data which are Linear x – y – z 

and Angular x – y – z values. Each node in this network can carry multiple data and 

messages (which called topics) which published from robots and anytime, by subscribing 

to these topics, we can reach these data and messages and use them for any purposes. By 

using this system, we can send any kind of data such as sensor data or images from 

cameras and we can create multi-robot system that each robot can share the same data 

from same node and realize their objective. 

 



27 

 

        Several simulation environments can be built to simulate the performance of our 

algorithm such as Gazebo, AirSim, and DJI simulation tools. Robot Operating System 

(ROS) and its new version ROS2 work in different operating systems such as Windows, 

MacOS and Linux distros but to be able to run these systems with an appropriate 

simulator, Linux distros are the best options because of their flexibility and easy to run 

all these programs. For these purposes, we used Ubuntu 18.04 operating system as our 

main operating system which can run our simulator program, Gazebo Simulator, can run 

essential libraries and also can work with ROS very well. For our study, we created our 

simulation environment in Gazebo 9 robot simulator which installed on a desktop 

computer with Ubuntu 18.04 Operating system. Hardware setup is shown in Figure 4.1.  

 

 

Figure 4.1 Hardware setup that contains Ubuntu 18.04 desktop computer and 2 

Jetson Nano computers for simulation 

 

                In the Gazebo simulation, we gathered necessary models such as boxes, 

shelves, and pallets to create our warehouse environment. As the drone simulation, Iris 

drone model is used. Within this simulator application, we can control many different 

properties of our objects and environments such as the size of the objects or environmental 

properties, wind, and light. A sample perspective view of our environment can be seen in 

Figure 4.2. 
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Figure 4.2 The simulated warehouse environment in Gazebo 9 robot simulator 

 

 

        To control the drone’s motion as in real-world applications, ROS and Px4 systems 

are wrapped on it which help us to get important topics and services for our drones such 

as drone’s velocity values or taking off and landing commands. The Iris drone model is 

created by using 3D body parts, propellers and simulated motors. Also, to acquire the 

images in simulation environment, forward-facing 640x480 pixel RGB camera module 

implemented on Iris drone model (Figure 4.3). To be able to implement image processing 

techniques, we need to have an object of interest. In simulation, a television image used 

for that purpose. By using this drone model, we can mimic every possible action that any 

normal drone can realize in real life. 

 

 

 

Figure 4.3 The Iris drone model that used in the simulation for drone modeling 
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4.2 Formation Model 

        In our work, formation of our drones is set like real world. After simulation 

environmment created, our system works step by step to localize our drones. To be able 

to control our simulated drone models, we design our simulation as Hardware-in-the-

Loop (HIL) which we use real hardware setup, Jetson Nano computers to process data 

from simulation. As in a typical real experiment, Jetson Nano computers acquire the 

required data from simulated drone models and all calculations are performed onboard. 

The simulation operations start with arming both drones at 1.5 meter altitude and continue 

with forward movement towards the object. While they are moving, by using camera 

sensor’s data, image processing is done and we try to detect television image in our image 

frames. Until we detect television image in our image frame, drones continue their 

forward movement and by using UWB sensors, we determine distances between drones 

and object, which are fused in the EKF function to estimate the relative positions. After 

the television is detected by the Jetson boards, we put bounding box around the objects 

in the image frames and calculate the pixel distances between x axis of image frame and 

center of the bounding box. Afterwards, we translate pixel distance to metric unit such as 

meter, and we can measure angle between object and our forward axis and use the bearing 

data in the estimation algorithm. 

 

Figure 4.4  Block diagram of the simulated system 
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4.3 Object Detection 

       In image processing, there are several different methods and algorithms for object 

detection and tracking in given images or video feeds such as SIFT, Speeded up Robust 

Features (SURF) and You Only Look Once (YOLO). The main purpose of these methods 

is to detect any given object in a given source of images or video feeds by applying 

comparison and finding similarities between them. Algorithms such as SIFT and SURF 

mainly try to find similar features between those images and try to match given images 

on given image or video sets. On the other hand, YOLO algorithm uses neural network, 

which is a series of algorithms that can create relationship between set of data and mimic 

human brain. Unlike other detection methods, instead of checking every pixel in the given 

image over and over again, YOLO separate given image into grids for detection. For each 

grid in an image, neural networks can analyze relationships between them and after that 

analyze, it can suppress grids that has lower relationship value to create bounding boxes 

around the object. In this work, we use YOLO algorithm to detect the target object by the 

drones’ onboard cameras. 

 

        In YOLO, they are many different versions varying from original updated versions 

to seperately personalized versions for specific tasks that can expand its usage area and 

can enhance its detection power. Currently, YOLO v5 is the latest published version 

which has better detection power than previous updates at the expanse of more processing 

power requirements. If we want to use YOLO algorithms in any work, we need to 

consider its processing power requirements to be able to use them well and without any 

problem. YOLO can run on the main processor or on a separate graphics card. Usually, 

implementing YOLO on a separate dedicated board improves the detection quality. We 

implemented YOLO on the dedicated Jetson Nano boards for improved detection rates 

and quality. 
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Figure 4.5 Figure shows how the YOLO algorithm and neural network griding and 

detection works 

 

        For our system, we decided to use YOLO version 3 which has moderate power 

consumption and also can detect required objects very well. To be able to use our installed 

camera module’s image data with YOLOv3, we should create a connection between our 

system and the YOLO algorithm. To be able to attach YOLOv3 to ROS, we used Darknet-

Ros [50] ROS packages that run YOLO algorithms within the ROS environment so we 

can get results of YOLO algorithms as a ROS topic in our network. After installation of 

these packages, to be able to use them within our system, we need to change some 

parameters and files. In YOLOv3, we have two different versions of it for different 

purposes which are normal YOLOv3 and tiny versions of it. In YOLOv3-tiny, we have 

the same algorithms as YOLOv3 but we have less power consumption and also it requires 

less processing power. So, this version is a better option for our robotic system which has 

onboard computers. After deciding on our YOLO algorithm’s version, we need to find a 

proper data set that will include all the objects that we want to detect with YOLOv3-tiny. 

For that purpose, we used COCO [51] dataset from Microsoft, which is a pre-trained 

dataset and has eighty different objects varying from foods to daily use objects such as 

television or car. By using this data set with YOLOv3-tiny, we can detect our object of 

interest in the warehouse environment and get bounding box data to analyze it and define 

our position in the environment. 

 

        In our simulation, after we run Gazebo with ROS environment together, we start 

Darknet-Ros package within ROS to start image processing. From our pre-installed 

camera sensor on Iris drone model, we can get onboard image data and transfer this data 

to our Darknet-Ros topics created by Darknet-Ros package. While the drones are running, 

YOLOv3-tiny can process transferred image data and detect the object of interest. After 

the detection occurs, YOLOv3-tiny can create a bounding box, which cover detected 
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object with 4 corner points around it, then it can send position of this bounding box by 

using specific topic in our network so we can use it in our code as we want.    

 

 

        

Figure 4.6 Image frame and detection of object of interest in simulated drones 

 

After detection, our image frame and bounding boxes looks like in Figure 4.6. Created 

bounding boxes can be in different shapes because of our detection quality and movement 

of the drones and image frames but these differences will not effect our calculation 

because after detection happened, center point of created bounding box is used for pixel 

distance calculation, so even if we have different sized bounding boxes, our calculation 

will not get effected. 

4.4 Simulation Results 

        We carried out a comprehensive simulation study to analyze the performance of the 

proposed framework. A sample simulation environment is seen in Figure 4.2 where the 

two drones reside in an industrial environment. We placed the object to be detected at the 

position 𝑝𝑇 = [0,7.35]𝑇 meters in the Gazebo frame at 2 meter high from the ground. 

The drones were started from various initial locations and aimed at docking around the 

target 𝑇. Our simulations included an initialization phase and an operation phase. We 

assumed that the drones were at rest on the ground. In the initialization phase, the drones 

were commanded to take off and hover at the altitude 𝑧 = 2 meters at their initial locations 

on the 𝑥𝑦-plane by utilizing the px4 low-level controllers. Then, the EKF code was ran 

and the drones started moving in the operation phase. 
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        We demonstrate a simulation result in Figure 4.7. In this simulation, the drones 

started from the initial locations 𝑝1 = [−2.25,0.45]𝑇 , 𝑝2 = [2.25,0.15]𝑇 meters on the 

Gazebo 𝑥𝑦-plane. In Figure 4.7, the target object location is shown with the blue diamond, 

while the red and yellow lines depict the traces of the drones 𝑅1, 𝑅2, respectively. The 

purple and green diamonds show the initial locations of the drones. The blue and purple 

circles denote the discs 𝐵(𝑝𝑇 , 𝜌des − 𝜌th) and 𝐵(𝑝𝑇 , 𝜌des + 𝜌th), where 𝜌th is the pre-

defined threshold value to avoid chattering. Thus, the aim of the drones is to enter the 

zone between these discs, align their headings toward the target, and adjust the inter-drone 

distance at its desired value 𝜌0
des. We illustrate the start times of the four phases 

(Approach, Converge, Rotate, and Orient) in the simulation in Figure 4.7. 

       The Approach mode took 14.6 seconds in which the drones move toward the target 

by using the control law (3.16). When both drones enter the disc 𝐵(𝑝𝑇 , 𝜌des) at 𝑡 = 14.6 

seconds, the drones switch to the Converge mode where they try to align their headings 

toward the target and regulate their distances 𝜌1, 𝜌2 toward the target at its desired value 

𝜌des by using the control law (3.17). The drones’ headings are shown with the cyan arrows. 

It is observed that the drones aligned their headings toward the target successfully by 

adjusting the angular velocity control term 𝜔𝑖. Also, since the bearings 𝜙𝑖 ∈ (−𝜋, 𝜋), 𝑖 ∈

(1,2), the control law 𝑣𝑖(𝑡) = 𝐾𝑣𝑒𝜌𝑖
(𝑡) applied on the 𝑦 −axes of the drones’ body frames 

regulated the error 𝑒𝜌𝑖
(𝑡), steering the drones on the circle 𝐶(𝑝𝑇 , 𝜌des). In the Converge 

mode, the drones utilized the second measurement modal, i.e., 𝐲𝟐 =

[𝜌0, 𝜌1, 𝜌2, 𝜙1, 𝜙2, 𝛾1, 𝛾2]
T + 𝝐𝒚. That is, the drones used the bearing angles produced by 

the deep learning method. In the lower-left figure in Figure 4.7, it is observed that at the 

end of the Converge mode (𝑡 = 14.6 seconds), the drones entered the zone defined by the 

discs 𝐵(𝑝𝑇 , 𝜌des − 𝜌th) and 𝐵(𝑝𝑇 , 𝜌des + 𝜌th) and aligned their headings toward the 

target with a small error. 
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Figure 4.7 The modes of the drones in a simulation. The solid lines and the cyan 

arrows show the traces and the heading angles of the drones, respectively 

 

After satisfying the conditions in the Converge mode, both drones switched to the Rotate 

mode at 𝑡 = 19.7 seconds, where the aim was to regulate the inter-drone distance 𝜌0 at 

its desired value 𝜌0
des. In this state, the drones use the controller (3.18) where they move 

in the 𝑥 −axes of their body frames, which correspond to the axes which are perpendicular 

to the lines combining the drones with the target. Meanwhile, they continue regulating 

their bearing angles toward the target. Therefore, the drones move on the circle 

𝐶(𝑝𝑇 , 𝜌des) while maintaining the bearings at 𝜙𝑖 = 0. Once the inter-drone distance is 

within the threshold |𝜌0 − 𝜌0
des| ≤ 𝜌0

th, where 𝜌0
th > 0 is a design parameter to avoid 

chattering, the drones switch to the Orient mode where they maintain their distances and 

bearing angles toward the target at their desired values. In this simulation, we observed 

that the drones spent 1.2 seconds in the Rotate mode. 
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Figure 4.8 Ranges and their estimations in the simulation: The vertical lines denote 

the start times of the states: Blue: Converge; Purple: Rotate; Green: Orient 

 

       We present the estimation results of the same simulation in Figure 4.8 and Figure 4.9. 

Figure 4.8 demonstrates the range values, their estimations, and the desired values. The 

grey background areas denote the threshold zones for the ranges allowed by the threshold 

value 𝜌0
th and 𝜌th. For instance, in the upper figure, the actual range 𝜌0 is desired to be in 

the in the range [𝜌0 − 𝜌0
th, 𝜌0 + 𝜌0

th] depicted by the grey zone. The vertical lines denote 

the start time of the states. We observed that the drones approached the target with 

monotonically decreasing range values to 𝜌1, 𝜌2 until the end of the Approach mode. 

Then, once both drones entered the disc 𝐵(𝑝𝑇 , 𝜌des) at 𝑡 = 14.6 seconds, the drones 

controlled their ranges 𝜌1, 𝜌2 to be in the grey zone in the middle and lower figures. We 

see from these figures that during this period, it took some time to regulate 𝜌1 while 𝜌2 

was already in the grey zone.  

 

        Next, the drones switched to the Rotate mode at 𝑡 = 19.7 seconds, where they 

utilized the actual range and bearing measurements instead of their estimations to adjust 

𝜌0. Thus, the range estimations remained constant during the Rotate mode. We remind 
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that the main reason why we did not utilize the EKF during the Rotate mode is because 

the system model (3.10) was no longer valid when we moved the drones in their body 𝑥-

axes. The drones brought 𝜌0 to its desired range [𝜌0 − 𝜌0
th, 𝜌0 + 𝜌0

th] (inside the grey zone 

in the upper figure in 1.2 seconds. Afterward, both drones switched to the Orient mode 

(the green vertical line) in which they maintained their distances and bearing angles 

toward the target. 

 

        We demonstrate the bearing angle estimations with their ground truth values 

obtained from the Gazebo environment in Figure 4.9. We note that in the Approach mode, 

none of these variables are measured directly, the drones can measure 𝜙𝑖 − 𝛾𝑖 only. 

Therefore, until the Converge mode starts, these variables are estimated to some degree 

of error only. Once the Converge mode starts, the drones can measure the bearing angles 

𝜙𝑖 and 𝛾𝑖 directly by utilizing the deep learning method thus the estimation outcomes 

converge to their ground truth values. However, it took some time for the estimated values 

to converge at the beginning of the Converge mode. The main reason for this issue is that 

the drones rotated their heading angles during the Approach mode in order to satisfy the 

control objective, which caused the bearing angles 𝜙𝑖 to increase in magnitude. Since the 

target was close to the sides of the image frames on both drones, the bearing angle 

estimation based on the detected bounding box performed poorly. Nevertheless, since the 

drones estimated the signs of the bearing angles, the angular velocity control was executed 

correctly, resulting in the decrease in the angles in magnitude. This motion brought the 

target object toward the center of the image frames, and at 𝑡 = 17 seconds, the correct 

bearing angles are estimated by the EKF. Since the EKF was not executed during the 

Rotate mode, the estimations diverged from their actual values in that mode. However, 

this divergence did not affect the convergence of the drones because they used the raw 

measurements coming from the sensors. We illustrate the entire traces of the drones with 

the final range and bearing angle values in Figure 4.10. We observe that the drones 

entered the desired zone defined by the discs 𝐵(𝑝𝑇 , 𝜌des − 𝜌th) and 𝐵(𝑝𝑇 , 𝜌des + 𝜌th), 

aligned their headings toward the target (shown by the purple arrows), and regulated the 

inter-drone distance 𝜌0 to its desired range [𝜌0 − 𝜌0
th, 𝜌0 + 𝜌0

th], meeting all conditions 

set in Chapter 3. 
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Figure 4.9 Bearing angles and their estimations in the simulation: The vertical 

lines denote the start times of the states: Blue: Converge; Purple: Rotate; Green: 

Orient 

 

Figure 4.10 The initial and final locations and orientations of the drones and the 

final range values 
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We illustrate another simulation result in Figure 4.11-Figure 4.13, where the desired 

drone-target distances are increased to 5.65 meters.  We observed that the drones 

approach the target and dock around it successfully. Also, the estimation performance 

was sufficient. In Figure 4.13, the estimated variables are represented where they 

converge to their actual values in a short time in the Converge mode (between the yellow 

and purple vertical lines).  

 

 

Figure 4.11 The drones’ modes in the second experiment with image processing. 

 

Figure 4.12 Bearing angles and their estimations in the second simulation with 

image processing. 
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Figure 4.13 The initial and final locations and orientations of the drones in the 

second simulation with image processing. 

 

4.5 Analysis 

      In this part, we analyze the system performance of each stage (mode). In the Approach 

mode, the drones are controlled with purely distance measurement data. The drones need 

to start from a suitable initial condition to realize this mode successfully. Particularly, the 

drones need to start their heading angles such that 𝛾1 ∈ (
𝜋

2
− 𝜖,

𝜋

2
+ 𝜖) , 𝛾2 ∈

(
−𝜋

2
− 𝜖,

−𝜋

2
+ 𝜖) with an arbitrarily small 𝜖 so that they can approach to the target in the 

first few seconds. Distance-based formation control with global convergence guarantees 

is an open research problem in the literature, and a more advanced control technique can 

be designed for the Approach mode of our proposed framework. Nevertheless, the 

proposed distributed control algorithm here sufficed to obtain small errors in the 

Approach mode. 

        Once both drones detect the target object with the YOLO method, they enter the 

Converge mode where they utilize the bearing data together with the distance 

measurements in the control algorithm. Since we design the drones to switch to the 
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Converge mode after both drones detect the target object simultaneously, the EKF 

algorithm is guaranteed to obtain both bearing data as the input. As can be observed from 

the estimation figures of the previous section, the drones can detect the relative positions 

toward the target up to a small error in the Converge mode. Since we use a multi-rate 

EKF algorithm with two measurement models, the drones continue estimating the relative 

position in the absence of the visual target detection, which enhances the performance. 

We emphasize that the drones may drift in their body 𝑥-axis in the Converge mode, which 

can be compensated with a proportional controller in that axis. 

        In the Rotate mode, the drones aimed at regulating the inter-drone distance by 

moving on the circle around the target. In the simulations, we observed that the drones 

were able to detect the target object in the Rotate mode, which helped regulating the 

heading angle toward the target all the time. Notably, this behavior is expected because 

the drones enter the Rotate mode after the Converge mode where the drone-target 

distances allow the target object detection. Since the drones moved on their body 𝑥-axes, 

the non-holonomic motion behavior was not satisfied in this mode. Thus, EKF was not 

running during this mode, and the drones had to move based on the distance 

measurements and visual detection results. We observed sufficient accuracy in the Rotate 

mode, and the drones maintained the inter-drone distance around the desired values. 
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Chapter 5 

5 Experiment 
 

        After our simulation results analyzed, to be able to test our designed system in real 

world, we created an experimental testbed. While carrying out our simulation setup to the 

real-world experiments, we had to tune some parameters and functions in the algorithm 

to fit the real drone requirements. In this chapter, we describe the complete experimental 

setup to realize the proposed system and our primary results on the object detection. 

 

5.1 Experiment Setup 

To realize our study in a real-world experiment, we need to set up some hardware and 

software parts that should be different than our simulation setup. In the simulation, by 

fixing pre-defined parameters in Gazebo simulation files and our code, we can summon 

our drones in a simulation environment, change parameters on them, use services such as 

take-off and land that our drones have them and we can control them in off-board mode, 

which is a mode that helps us to send control commands to make them follow. So, first, 

to be able to create an experiment setup, those parameters should be fixed. 

        For this experiment, we used Mavic 2 rpo and Mavic mini 2 drones from DJI 

company. These drones have smaller size with respect to other same level drones, also 

they can fly smootly without so much vibration and shifting, they can fly at least 20 

minutes and also they can takeoff and land automatically. In normal use, we can only 

control these drones by using their remote controller or mobile phone applications which 

connect drones’ wifi signals for connection. So, by using our system, which we created 

for our simulation environment, we cannot send movement command to our drones to fly 

with them and apply our study. DJI company created a software development kit, which 

is in a form of mobile phone application, that can modified and can control drones as 

customer want. So, for this study, we modified this published application for our case 

which can send movement command to our drones by runnig our code. 

        We modified the MSDK applications by using Swift and Android Studio 

applications, which are mainly used to create applications for IOS and Android platforms. 

We add some control buttons that allows us to recieve data from our code and send it to 
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the drones  as velocity commands. To create servers between our main computer and our 

applications, we mounted a Jetson Nano computer on each drone. So, basically, our code 

send required data to the our application over Jetson Nano’s server to fly drones 

automatically as shown in Figure 5.1.  

 

 

 

Figure 5.1 Block diagram shows how movement commands are sent to DJI drones 

 

        Our final drone setup is shown in Figure 5.2. Each drone has the identical 

components, which help them to fly autonomously with velocity input commands. We 

used Jetson Nano computers, as in the simulations, to realize the deep learning method 

and the image processing techniques which require a GPU and sufficient computational 

power. To be able to feed the Jetson Nano computer with enough power, we used a small 

LiPo battery, 3C1S 1100 mAh, and power regulater which gives 5 V and 3 A output. 

Also, we placed a RasPicam camera sensor to get image data and a UWB sensor to get 

distance data. After this setup, all hardware part for the experiment was ready. 

        As the initial step for the real experiments, we conducted detection tests with the 

Jetson Nano computer. As shown in Figure 5.4, we power up the Jetson Nano computer 

with a new power module and connect it to the monitor and start the image processing 

module within the ROS system. As we can observe in Figure 5.5, image processing was 

working fine and we can detect the monitor object shown in Figure 5.6 with our system.  
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Figure 5.2 DJI “Mavic 2” and “Air 2” drones that were modified for experiment 

purposes. 

 

Figure 5.3 Image shows each component that was added to DJI drones 

 

Figure 5.4 Image shows image processing test setup for DJI drones 

RasPicam 

camera sensor 

Jetson Nano 

UWB sensor 

Battery & 

Power module 
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Figure 5.5 Monitor detection with Jetson Nano and onboard camera sensor 

 

 

 

Figure 5.6 Detected monitor in our image processing system 

 

After the sucessful initial detection tests with the individual Jetson boards, we set up the 

complete system, connected the two drones, and ran the detection code to detect our object 

of interest simultaneously. As demonstrated in Figure 5.7 and Figure 5.8, our drones can 

detect monitor objects with the YOLOv3 at the same time. We noticed that the camera 

FOV allows good detection rates at the bearing angle interval 𝜙𝑖 ∈ [−
𝜋

6
,
𝜋

6
] radians. 

Notably, if a camera with a larger FOV is used (e.g., a fish-eye camera), bigger intervals 
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can be obtained. Also, the Jetson Nano boards yielded the detection rate at around 10 

frame per second (fps) under default configurations, which was sufficient for our 

particular application. 

     

Figure 5.7  Detection of the object in a straight direction with a) Left drone and b) 

right drone 

 

     

Figure 5.8 Oriented yaw angle detection of the object with a) Left drone and b) 

right drone 

 

Figure 5.9 Experimental setup in a lab environment 
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Afterwards, we tested the Converge mode of the formation control algorithm with one 

drone while the other drone was at rest. As shown in Figure 5.9, we put the monitor object 

and our drones in a way that they can start the experiment from converge state.  The first 

drone (left drone in Figure 5.9) aimed at maintaining the desired distance toward the target 

and regulating the bearing angle 𝜙1. We observed a successful performance in three tests.  

In the future, we plan to tune the system parameters and conduct a complete test of the 

proposed framework. 

 

 

  



47 

 

Chapter 6 

6 Conclusions and Future Prospects  
 

6.1 Conclusions 

        Localization methods are needed for many different applications such as search and 

rescue missions or automation. For two main different environments, outdoor and indoor 

environments, we have different types of data and sensors which help us to get the 

required knowledge on the position of the robots. To be able to locate our agent in the 

outdoor environment, we mainly rely on GPS data which we can get from  GPS sensors 

and at least three or four satellites around the world. This signal is very helpful for finding 

our position in an outdoor environment but in indoor environments, we cannot use this 

signal clearly. In an indoor environment, we have many obstacles and objects that 

interfere with GPS signals that prevent us from using them clearly. With this study, we 

created a new approach for indoor localization by using image processing techniques and 

distance sensors. In this work, two identical drones can fly in their respective body frames, 

they can move freely in an indoor environment and be able to mimic harsh environments, 

these drones do not use a magnetometer sensor that gives rotation angle for drones which 

result in, drones do not know their yaw angles. To be able to give sense to drones for their 

environment, a forward-looking camera sensor is placed and used to receive image data 

for localization. With UWB sensors placed on them, they can get distance measurements 

between drones and objects of interest, which can be detected by the image processing 

system. Also, by using these distances, we can define the angle between drones and object 

which help us to define our yaw angle for drones. By using an Extended Kalman Filter, 

we can use these distance measurements and angle calculations to filter them and estimate 

our position in the environment. By using image data from camera sensors and image 

processing techniques, we can detect objects of interest within the image frame to estimate 

our relative position and improve our Extended Kalman Filter results. Drones will move 
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in 4 different states that in each state they will try to move and fix different data to make 

localization better.  

 

6.2 Social Impact and Contribution to Global 

Sustainability 

        Localization systems are used in many different areas which robotic systems involve 

in our life. With new research, we started to use those systems in many different areas 

such as farming, agricultural spraying, and cinematography. In those systems, gathering 

position data of the agent is so important and needed to execute the requested objective, 

which will be helpful for humans and our societies in many different ways. With this 

study, we created a new localization method for indoor environments which robot swarms 

with two drones work together to detect a defined object to localize themselves around it 

to estimate their respective position. While realizing this mission, they can use image 

processing techniques that can detect pre-defined objects placed in the environment. By 

this detection, the position of this object can be defined in the image frame and this data 

can be used by autonomous systems to create position data. With this system, we can 

solve the indoor localization problem which resulted from interfering with GPS signals, 

by combining estimation and image processing techniques in a way that we can estimate 

our relative position by checking detected objects in our image frame. By using the 

proposed system, we can localize any robot in a different indoor environment which has 

different objects and shapes, and we can use this system for different purposes such as 

search and rescue missions, which we can detect a wounded person that needs to be 

rescued and define its respective position to send required help to them. In many situations 

where we cannot rely on GPS data, such as interference and signal blocage, we can use 

the proposed study to localize any agent in the system, and moreover, we can modify this 

work by adding different kinds of sensors or different robots to make it better and suitable 

for requested work. Also, by using this system, we can improve its working mechanism 

to speed up the ongoing process to make it better. 
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6.3 Future Prospect 

For future prospects, this system can be improved in a way that we can add more drones 

or ground robots to improve our image data and detection power, which can be resulted 

in better detection and more possibilities. For future research, improving the estimation 

method and image data will be a good way to create a better system for future works. 
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