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Geography of irreducible plane sextics

Ayşegül Akyol and Alex Degtyarev

Abstract

We complete the equisingular deformation classification of irreducible singular plane sextic
curves. As a by-product, we also compute the fundamental groups of the complement of all
but a few maximizing sextics.

1. Introduction

Throughout the paper, all varieties are over the field C of complex numbers.
Our principal result is the completion of the classification of irreducible plane sextics (curves

of degree 6) up to equisingular deformation. We confine ourselves to simple sextics only, that
is, those with A–D–E singularities (see § 2.2). The non-simple ones require completely different
techniques and are well known; surprisingly, their study is much easier: the statements were
announced by the second author long ago, and formal proofs can be found in [15]. Note also
that degree 6 is the first non-trivial case (see [15] for the statements on quintics, and quartics
were already known to Klein; see also Namba [28] for an excellent account of the sets of
singularities realized by curves of degree up to 5) and, probably, the last case that can be
completely understood, thanks to the close relation between plane sextics and K3-surfaces.

The systematic study of simple sextics based on the theory of K3-surfaces was initiated by
Persson [33], who proved that the total Milnor number μ of such a curve does not exceed 19.
Based on this approach, Urabe [36] listed the possible sets of singularities with μ � 16, and
this result was extended to a complete list of the sets of singularities realized by simple sextics
by Yang [37]. Later, using the arithmetical reduction [10], Shimada [34] gave a complete
description of the moduli spaces of the maximizing (μ = 19) sextics. In the meanwhile, a
number of independent (not explicitly related to the K3-surfaces) attempts to attack the
classification problem has also been made, see, for example, [3, 4] (defining equations of a
number of maximizing sextics), [30, 31] (sets of singularities and explicit equations of sextics
of torus type), [11, 12, 14] (sextics admitting stable projective symmetries), [15] (sextics with
a triple point), etc.

At some point, it was clearly understood, partially in conjunction with Oka’s conjecture [21]
and partially due to the arithmetical reduction of the problem [10], that irreducible sextics D
should be subdivided into classes according to the maximal generalized dihedral quotient QD

that the fundamental group π1(P2\D) admits. If this quotient is large, |QD| > 6, then the
curves are relatively few in number and can easily be listed manually (see [9] and § 2.5),
using Nikulin’s sufficient uniqueness conditions [29]. The present paper fills the gap and covers
the two remaining cases: non-special sextics (QD = 0, see Theorem 2.5) and 1-torus sextics
(QD = D6, see Theorem 2.10). On the arithmetical side, our computation is based on the
stronger (non-)uniqueness criteria due to Miranda–Morrison [25–27]. For an even further
illustration of the power of [27], we solve a few more subtle geometric problems, namely, we
compute the monodromy representation of the fundamental groups of the equisingular strata
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(in other words, we classify sextics with marked singular points, see § 4.7 and Theorem 4.10),
we discuss whether the strata are real and whether they contain real curves (the interesting
discovery here is Proposition 2.7), and we give a complete description of the adjacencies of the
strata (see § 6.5 and Propositions 6.5, 6.7, 6.8).

There are three sets of singularities that deserve special attention: to the best of our
knowledge, phenomena of this kind have not been observed before. It is quite common that the
(discrete) moduli spaces of maximizing sextics are disconnected, see [34]. For about a dozen of
the sets of singularities with μ = 18, the moduli space (of dimension 1) consists of two complex
conjugate components (see Table 4; the first such example, viz. E6 ⊕A11 ⊕A1, was found
in [1]). We discover a set of singularities, viz. E6 ⊕ 2A5 ⊕A1, with μ = 17 and disconnected
moduli space (two conjugate components of dimension 2), and another one, 2A9, with μ = 18
and the moduli space consisting of two disjoint real components (see Proposition 2.6). Finally,
the moduli space corresponding to the set of singularities A7 ⊕A6 ⊕A5, μ = 18, consists of a
single component, which is hence real, but it contains no real curves (see Proposition 2.7).

As another important by-product of Theorems 2.5 and 2.10, we obtain Corollaries 2.9
and 2.12, computing the fundamental groups of the complements of all but a few maximizing
irreducible sextics. In fact, no computation is found in this paper: we merely use the
classification, the degeneration principle, and previously known groups. Most statements on the
fundamental groups were known conjecturally; more precisely, the groups of some sextics with
certain sets of singularities were known, and our principal contribution is the connectedness of
the moduli spaces.

1.1. Contents of the paper

The principal results of the paper are stated in § 2, after the necessary terminology and notation
have been introduced. For the reader’s convenience, we also discuss the other irreducible simple
sextics (see § 2.5) and list the known fundamental groups. In § 3, we recall the fundamentals
of Nikulin’s theory of discriminant forms and lattice extensions, give a brief introduction to
Miranda–Morrison’s theory [27], and recast some of their results in a form more suitable
for our computations. In § 4, we recall the notion of (abstract) homological type and the
arithmetical reduction [10] of the classification problem (see §§ 4.1 and 4.2) and begin the
proof of our principal results, classifying the plane sextics up to equisingular deformation and
complex conjugation. As a digression, we classify also sextics with marked singular points, see
§ 4.7. With the classification in hand, the computation of the fundamental groups is almost
straightforward; it is outlined in § 5. Finally, in § 6, we discuss real strata and real curves,
completing the deformation classification of simple sextics. As another digression, in § 6.5 we
describe the adjacencies of the non-real strata. A few further results obtained after this paper
was submitted are outlined briefly in § 2.6.

2. Principal results

2.1. Notation

We use the notation Gn := Z/nZ (reserving Zp and Qp for p-adic numbers) and D2n for the
cyclic group of order n and dihedral group of order 2n, respectively. As usual, SL(n, k) is the
group of (n× n)-matrices M over a field k such that detM = 1.

The notation Bn stands for the braid group on n stings. The reduced braid group (or the
modular group) is the quotient Γ = B3/(σ1σ2)3 of B3 by its center; one has Γ = PSL(2, Z) =
G2 ∗G3. The braid group is generated by the Artin generators σi, i = 1, . . . , n− 1, subject to
the relations

[σi, σj ] = 1 if |i− j| > 1, σiσi+1σi = σi+1σiσi+1.
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1309

Throughout the paper, all group actions are right, and we use the notation (x, g) �→ x ↑ g.
The standard action of Bn on the free group 〈α1, . . . , αn〉 is as follows:

σi :

⎧⎪⎨
⎪⎩

αi �−→ αiαi+1α
−1
i ,

αi+1 �−→ αi,

αj �−→ αj , if j 	= i, i + 1.

The element ρn := α1 · · ·αn ∈ 〈α1, . . . , αn〉 is preserved by Bn. Given a pair α1, α2, we use the
notation {α1, α2}n := α−1

2 (α2 ↑ σn
1 ) ∈ 〈α1, α2〉 for n ∈ Z. Explicitly, the relation {α1, α2}n = 1

in a group boils down to

(α1α2)k = (α2α1)k if n = 2k is even,

(α1α2)kα1 = (α2α1)kα2 if n = 2k + 1 is odd.

In particular, {α1, α2}1 = 1 means α1 = α2, and {α1, α2}2 = 1 means [α1, α2] = 1.
We denote by P = {2, 3, . . .} the set of all primes.
The group of units of a commutative ring R is denoted by R×. We recall that Z×

p /(Z×
p )2 =

{±1} for p ∈ P odd, and Z×
2 /(Z×

2 )2 = (Z/8)× ∼= {±1} × {±1} is generated by 7 mod 8
and 5 mod 8. If m ∈ Z is prime to p, then its class in Z×

p /(Z×
p )2 is the Legendre symbol

(m
p ) ∈ {±1} if p is odd or m mod 8 ∈ (Z/8)× if p = 2.

2.2. Simple sextics

A sextic is a plane curve D ⊂ P2 of degree 6. A sextic is simple if all its singular points are
simple, that is, those of type A–D–E, see [19]. If this is the case, then the minimal resolution of
singularities X of the double covering of P2 ramified at D is a K3-surface. The intersection index
form H2(X) ∼= 2E8 ⊕ 3U is (the only) even unimodular lattice of signature (σ+, σ−) = (3, 19)
(see § 3.4; here, U is the hyperbolic plane). We fix the notation L := 2E8 ⊕ 3U.

For each simple singular point P of D, the components of the exceptional divisor E ⊂ X
over P span a root lattice in L (see § 3.3). The (obviously orthogonal) sum of these sublattices
is denoted by S(D) and is referred to as the set of singularities of D. (Recall that the types of
the individual singular points are uniquely recovered from S(D), see § 3.3.) The rank rk S(D)
equals the total Milnor number μ(D). Since S(D) ⊂ L is negative definite, one has μ(D) � 19,
see [33]. If μ(D) = 19, the sextic D is called maximizing. We emphasize that both the inequality
and the term apply to simple sextics only.

An irreducible sextic D ⊂ P2 is called special (more precisely, D2n-special) if its fundamental
group π1 := π1(P2\D) factors to a dihedral group D2n, n � 3.

A sextic D is said to be of torus type if its defining polynomial f can be written in the form
f = f3

2 + f2
3 , where f2 and f3 are homogenous polynomials of degree 2 and 3, respectively. A

representation f = f3
2 + f2

3 as above, up to the obvious equivalence, is called a torus structure
on D. According to [9], an irreducible sextic D may have one, four, or twelve distinct torus
structures, and we call D a 1-, 4-, or 12-torus sextic, respectively. An irreducible sextic is of
torus type if and only if it is D6-special, see [9]. In this case, the group π1(P2\D) factors to Γ,
see [38].

The points of the intersection f2 = f3 = 0 are singular for D; they are called the inner
singularities of D (with respect to the given torus structure), whereas the other singular
points are called outer. When listing the set of singularities of a 1-torus sextic (or describing a
particular torus structure), it is common to enclose the inner singularities in parentheses, cf.
Table 3. Conversely, the presence of a pair of parentheses in the notation indicates that the
sextic is of torus type.

Denote byM∼= P27 the space of all plane sextics. This space is subdivided into equisingular
strataM(S); we consider only those with S simple. The space of all simple sextics and each of
its strataM(S) are further subdivided into familiesM∗,M∗(S), where the subscript ∗ refers
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1310 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

to the sequence of invariant factors of a certain finite group, see § 4.1 for the precise definition.
Our primary concern are the spaces

• M1(S): non-special irreducible sextics, see Theorem 4.7 and
• M3(S): irreducible 1-torus sextics, see Theorem 4.8.

In this notation, irreducible 4- and 12-torus sextics constitute M3,3 and M3,3,3, respectively,
whereas irreducible D2n-special sextics, n = 5, 7, constituteMn. For each subscript ∗, we denote
by M̄∗(S) and ∂M∗(S) := M̄∗(S) \M∗(S) the closure and boundary ofM∗(S) in M∗.

Remark 2.1. The relation between torus type and the existence of certain dihedral
coverings (the families M3, M3,3, etc.), discovered for irreducible sextics in [9, 13] (see also
Ishida and Tokunaga [23] for reducible simple sextics), is a manifestation of a much more
general phenomenon, viz. a relation between the fundamental group of a curve D and ‘special’
pencils containing D (with an even further generalization to quasi-projective varieties). This
was studied in depth by Artal, Cogolludo, Libgober, and others, see, for example, recent
papers [2, 7].

If S is a simple set of singularities, then the dimension of the equisingular moduli space
M(S)/PGL(3, C) equals 19− μ(S), as follows from the theory of K3-surfaces.

The coordinatewise conjugation (z0 : z1 : z2) �→ (z̄0 : z̄1 : z̄2) in P2 induces a real structure
(that is, anti-holomorphic involution) conj : M→M, which takes a sextic to its conjugate.
A sextic D ∈M is real if conj(D) = D. A connected component C ⊂ M∗(S) is real if it is
preserved by conj as a set; this property of C is independent of the choice of coordinates in P2.
Clearly, any connected component containing a real curve is real. The converse is not true;
however, in the realm of irreducible sextics, the only exception is M1(A7 ⊕A6 ⊕A5), see
Proposition 2.7.

Most results of the paper are stated in terms of degenerations/perturbations of sets of
singularities and/or sextics (or, equivalently, in terms of adjacencies of the equisingular strata
ofM). As shown in [24], the deformation classes of perturbations of a simple singular point P of
type S are in a one-to-one correspondence with the isomorphism classes of primitive extensions
S′ � S of root lattices, see § § 3.3 and 3.4. Thus, by a degeneration of sets of singularities we
merely mean a class of primitive extensions S′ � S of root lattices. Recall (see [20]) that S′

admits a degeneration to S if and only if the Dynkin graph of S′ is an induced subgraph of that
of S. A degeneration D′ � D of simple sextics gives rise to a degeneration S(D′) � S(D).
According to [12], the converse also holds: given a simple sextic D and a root lattice S′,
any degeneration S′ � S(D) is realized by a degeneration D′ � D of simple sextics, so that
S(D′) = S′.

2.3. Lists and fundamental groups

A complete list of the sets of singularities realized by simple plane sextics is found in [37], and
the deformation classification of all maximizing simple sextics is obtained in [34] (see also [15]
for an alternative approach to sextics with a triple singular point). The relevant part of these
results is collected in Tables 1, 2 (irreducible maximizing non-special sextics) and 3 (irreducible
maximizing 1-torus sextics). In the tables, the column (r, c) refers to the numbers of real (r)
and pairs of complex conjugate (c) curves realizing the given set of singularities; thus, the total
number of connected components of the stratumM1(S) (orM3(S) for Table 3) is n := r + 2c.
Some sets of singularities are prefixed with a link of the form [n]: this link refers to the listings
of the fundamental groups found below. Some pairs of singular points are marked with a ∗.
This marking is related to the real structures; it is explained in § 6.2.
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Table 1. The spaces M1(S), µ(S) = 19, with a triple point in S.

Singularities (r, c)

2E8 ⊕ A3 (1,0)
2E8 ⊕ A2 ⊕ A1 (1,0)
E8 ⊕ E7 ⊕ A4 (0,1)
E8 ⊕ E7 ⊕ 2A2 (1,0)
E8 ⊕ E6 ⊕ D5 (1,0)
E8 ⊕ E6 ⊕ A5 (0,1)
E8 ⊕ E6 ⊕ A4 ⊕ A1 (1,0)
E8 ⊕ E6 ⊕ A3 ⊕ A2 (1,0)
E8 ⊕ D11 (1,0)
E8 ⊕ D9 ⊕ A2 (1,0)
E8 ⊕ D7 ⊕ A4 (1,0)
E8 ⊕ D5 ⊕ A6 (0,1)
E8 ⊕ D5 ⊕ A4 ⊕ A2 (1,0)
E8 ⊕ A11 (0,1)
E8 ⊕ A10 ⊕ A1 (1,1)
E8 ⊕ A9 ⊕ A2 (1,0)
E8 ⊕ A8 ⊕ A3 (1,0)
E8 ⊕ A8 ⊕ A2 ⊕ A1 (1,1)
E8 ⊕ A7 ⊕ A4 (0,1)
E8 ⊕ A7 ⊕ 2A2 (1,0)
E8 ⊕ A6 ⊕ A5 (0,1)
E8 ⊕ A6 ⊕ A4 ⊕ A1 (1,1)
E8 ⊕ A6 ⊕ A3 ⊕ A2 (1,0)
E8 ⊕ A6 ⊕ 2A2 ⊕ A1 (1,0)
E8 ⊕ A5 ⊕ A4 ⊕ A2 (2,0)

[1]E8 ⊕ A4 ⊕ A3 ⊕ 2A∗
2 (1,0)

E7 ⊕ 2E∗
6 (1,0)

E7 ⊕ E6 ⊕ A6 (0,1)
E7 ⊕ E6 ⊕ A4 ⊕ A2 (2,0)
E7 ⊕ A12 (0,1)
E7 ⊕ A10 ⊕ A2 (2,0)
E7 ⊕ A8 ⊕ A4 (0,1)
E7 ⊕ A6 ⊕ A4 ⊕ A2 (2,0)
E7 ⊕ 2A6 (0,1)

[2]E7 ⊕ 2A4 ⊕ 2A∗
2 (1,0)

2E∗
6 ⊕ A7 (1,0)

2E∗
6 ⊕ A6 ⊕ A1 (1,0)

[3]2E6 ⊕ A4 ⊕ A3 (1,0)
E6 ⊕ D13 (1,0)
E6 ⊕ D11 ⊕ A2 (1,0)

Singularities (r, c)

E6 ⊕ D9 ⊕ A4 (1,0)
E6 ⊕ D7 ⊕ A6 (1,0)
E6 ⊕ D5 ⊕ A8 (1,1)
E6 ⊕ D5 ⊕ A6 ⊕ A2 (2,0)
E6 ⊕ D5 ⊕ 2A4 (1,0)
E6 ⊕ A13 (0,1)
E6 ⊕ A12 ⊕ A1 (0,1)
E6 ⊕ A10 ⊕ A3 (2,0)
E6 ⊕ A10 ⊕ A2 ⊕ A1 (1,1)
E6 ⊕ A9 ⊕ A4 (1,1)
E6 ⊕ A8 ⊕ A4 ⊕ A1 (1,1)
E6 ⊕ A7 ⊕ A6 (0,1)
E6 ⊕ A7 ⊕ A4 ⊕ A2 (2,0)
E6 ⊕ A6 ⊕ A4 ⊕ A3 (1,0)
E6 ⊕ A6 ⊕ A4 ⊕ A2 ⊕ A1 (1,1)
E6 ⊕ A5 ⊕ 2A4 (2,0)
D19 (1,0)
D17 ⊕ A2 (1,0)
D15 ⊕ A4 (1,0)
D13 ⊕ A6 (0,1)
D13 ⊕ A4 ⊕ A2 (1,0)
D11 ⊕ A8 (1,0)
D11 ⊕ A6 ⊕ A2 (1,0)
D11 ⊕ A4 ⊕ 2A∗

2 (1,0)
D9 ⊕ A10 (1,0)
D9 ⊕ A6 ⊕ A4 (1,0)
D9 ⊕ 2A∗

4 ⊕ A2 (1,0)
D7 ⊕ A12 (1,1)
D7 ⊕ A10 ⊕ A2 (0,1)
D7 ⊕ A8 ⊕ A4 (2,0)
D7 ⊕ A6 ⊕ A4 ⊕ A2 (1,0)
D7 ⊕ 2A6 (0,1)
D5 ⊕ A14 (0,1)
D5 ⊕ A12 ⊕ A2 (1,0)
D5 ⊕ A10 ⊕ A4 (1,1)
D5 ⊕ A10 ⊕ 2A∗

2 (1,0)
D5 ⊕ A8 ⊕ A6 (0,1)
D5 ⊕ A8 ⊕ A4 ⊕ A2 (1,1)
D5 ⊕ A6 ⊕ 2A4 (2,0)
D5 ⊕ A6 ⊕ A4 ⊕ 2A∗

2 (1,0)

The fundamental groups of most irreducible maximizing sextics are computed in [15, 18];
the latest computations, using Orevkov’s recent equations [32], are contained in [16]. (Due
to [32], the defining equations of all maximizing irreducible sextics with double points only
are known now.) Quite a few sporadic computations of the fundamental groups are also found
in [3, 4, 8, 12, 14, 21, 22, 31, 39] and a number of other papers, see [15] for more detailed
references.

The known fundamental groups π1 := π1(P2\D) of the maximizing non-special irreducible
sextics D are as follows (depending on the set of singularities):

(1) for E8 ⊕A4 ⊕A3 ⊕ 2A2, the group is the central product

π1 = SL(2, F5)
G12 := (SL(2, F5)×G12)/(−id = 6),

where −id is the generator of the center G2 ⊂ SL(2, F5);
(2) for E7 ⊕ 2A4 ⊕ 2A2, the group is π1 = SL(2, F19)×G6;
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1312 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Table 2. The spaces M1(S), µ(S) = 19, with double points only.

Singularities (r, c)

A19 (2,0)
A18 ⊕ A1 (1,1)
A16 ⊕ A3 (2,0)
A16 ⊕ A2 ⊕ A1 (1,1)
A15 ⊕ A4 (0,1)

[6]A14 ⊕ A4 ⊕ A1 (0,3)
[6]A13 ⊕ A6 (0,2)

A13 ⊕ A4 ⊕ A2 (2,0)
[6]A12 ⊕ A7 (0,1)
[4]A12 ⊕ A6 ⊕ A1 (1,1)

A12 ⊕ A4 ⊕ A3 (1,0)
[4]A12 ⊕ A4 ⊕ A2 ⊕ A1 (1,1)
[5]A11 ⊕ 2A∗

4 (2,0)
A10 ⊕ A9 (2,0)

[4]A10 ⊕ A8 ⊕ A1 (1,1)

Singularities (r, c)

A10 ⊕ A7 ⊕ A2 (2,0)
[6]A10 ⊕ A6 ⊕ A3 (0,1)
[4]A10 ⊕ A6 ⊕ A2 ⊕ A1 (1,1)

A10 ⊕ A5 ⊕ A4 (2,0)
[6]A10 ⊕ 2A∗

4 ⊕ A1 (1,1)
A10 ⊕ A4 ⊕ A3 ⊕ A2 (1,0)
A10 ⊕ A4 ⊕ 2A2 ⊕ A1 (2,0)

[4]A9 ⊕ A6 ⊕ A4 (1,1)
[6]A8 ⊕ A7 ⊕ A4 (0,1)
[4]A8 ⊕ A6 ⊕ A4 ⊕ A1 (1,1)
[6]A7 ⊕ 2A6 (0,1)

A7 ⊕ A6 ⊕ A4 ⊕ A2 (2,0)
A7 ⊕ 2A4 ⊕ 2A∗

2 (1,0)
2A∗

6 ⊕ A4 ⊕ A2 ⊕ A1 (2,0)
A6 ⊕ A5 ⊕ 2A∗

4 (2,0)

Table 3. The spaces M3(S), µ(S) = 19.

Singularities (r, c)

[1](3E6) ⊕ A1 (1,0)
[2](2E6 ⊕ A5) ⊕ A2 (2,0)
[3](2E6 ⊕ 2A∗

2) ⊕ A3 (1,0)
(E6 ⊕ A11) ⊕ A2 (1,0)
(E6 ⊕ A8 ⊕ A2) ⊕ A3 (1,0)
(E6 ⊕ A8 ⊕ A2) ⊕ A2 ⊕ A1 (1,1)

[4](E6 ⊕ A5 ⊕ 2A∗
2) ⊕ A4 (2,0)

D5 ⊕ (A8 ⊕ 3A∗
2) (1,0)

Singularities (r, c)

(A17) ⊕ A2 (1,0)
(A14 ⊕ A2) ⊕ A3 (1,0)
(A14 ⊕ A2) ⊕ A2 ⊕ A1 (1,0)
(A11 ⊕ 2A∗

2) ⊕ A4 (1,0)
(2A8) ⊕ A3 (1,0)

[6](A8 ⊕ A5 ⊕ A2) ⊕ A4 (0,1)
[5](A8 ⊕ 3A∗

2) ⊕ A4 ⊕ A1 (1,0)

(3) for 2E6 ⊕A4 ⊕A3, the group is π1 = SL(2, F5) � G6, the generator of G6 acting on
SL(2, F5) by (any) order 2 outer automorphism;

(4) for the six sets of singularities marked with [4] in Table 2, one has (r, c) = (1, 1), and
only for the real curve the group π1 = G6 is known;

(5) for A11 ⊕ 2A4, only for one of the two curves the group π1 = G6 is known;
(6) for the seven sets of singularities marked with [6] in Table 2, the fundamental group is

still unknown.

In all other cases, the fundamental group is abelian: π1 = G6.
The fundamental groups of sextics of torus type are large and more difficult to describe. To

simplify the description, we introduce a few ad hoc groups:

G(s̄) := 〈α1, α2, α3 | ρ4
3 = (α1α2)3, {α2 ↑ σi

1, α3}si
= 1, i = 0, . . . , 5〉, (2.2)

where s̄ = (s0, . . . , s5) ∈ Z6 is an integral vector,

Lp,q,r := 〈α1, α2 | (α1α2α1)3 = α2α1α2, {α2, (α1α2)α1(α1α2)−1}p
= {α1, α2α1α

−1
2 }q = {α2, (α1α

2
2)α1(α1α

2
2)

−1}r = 1〉, (2.3)

where p, q, r ∈ Z, and

Ep,q := 〈α1, α2, α3 | ρ3α2ρ
−1
3 = α−1

2 α1α2 = ρ−1
3 α3ρ3,

ρ4
3 = (α1α2)3, {α2, α3}p = {α1, α3}q = 1〉, (2.4)
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1313

Table 4. Disconnected spaces M1(S), µ(S) < 19.

Singularities (r, c)

E8 ⊕ 2A5 (0,1)
E7 ⊕ E6 ⊕ A5 (0,1)
E7 ⊕ A7 ⊕ A4 (0,1)
E6 ⊕ A11 ⊕ A1 (0,1)
E6 ⊕ A7 ⊕ A5 (0,1)
E6 ⊕ A6 ⊕ A5 ⊕ A1 (0,1)
E6 ⊕ 2A5 ⊕ A1 (0,1)

Singularities (r, c)

D6 ⊕ 2A6 (0,1)
D5 ⊕ 2A6 ⊕ A1 (0,1)
2A9 (2,0)
A7 ⊕ A6 ⊕ A5 (1,0)
3A6 (0,1)
2A6 ⊕ 2A3 (0,1)
2A7 ⊕ A4 (0,1)

where p, q ∈ Z. Then, the fundamental groups of the maximizing irreducible 1-torus sextics are
as follows:

(1) for (3E6)⊕A1, the group is π1 = B4/σ2σ
2
1σ2σ

3
3 ;

(2) for (2E6 ⊕A5)⊕A2, the groups are E3,6, see (2.4), and L3,6,0, see (2.3);
(3) for (2E6 ⊕ 2A2)⊕A3, the group is E4,3, see (2.4);
(4) for (E6 ⊕A5 ⊕ 2A2)⊕A4, the groups are L5,6,3 and G(6, 5, 3, 3, 5, 6), see (2.3) and (2.2),

respectively;
(5) for (A8 ⊕ 3A2)⊕A4 ⊕A1, the group is

π1 = 〈α1, α2, α3 | [α2, α3] = {α1, α2}3 = {α1, α3}9 = 1,

α3α1α
−1
2 α3α1α3(α3α1)−2α2 = (α1α3)2α−1

2 α1α3α2α1〉;

(6) for the set of singularities (A8 ⊕A5 ⊕A2)⊕A4, the group is unknown.

In all other cases, the fundamental group is π1 = Γ. In each of items (2) and (4), it is not
known whether the two groups are isomorphic. The groups corresponding to distinct sets of
singularities (listed above) are distinct, except that it is not known whether the group in item
(5) is isomorphic to Γ.

2.4. Statements

There are 110 maximizing sets of simple singularities realized by non-special irreducible sextics.
We found that 2996 sets of simple singularities are realized by non-maximizing non-special
irreducible sextics. (This statement is almost contained in [37], although no distinction between
special and non-special curves is made there, nor a description of non-maximizing irreducible
sextics.) The corresponding counts for irreducible 1-torus sextics are 15 and 105, respectively,
see [30]. Our principal results (the deformation classification and a few consequences on the
fundamental group) are stated in the rest of this section, with references to the proofs given
in the headers.

Theorem 2.5 (see §§ 4.3 and 6.1). The space M1(S) is non-empty if and only if either S
is in one of the following two exceptional degeneration chains:

2D8 � D9 ⊕D8 � 2D9, 2D4 ⊕ 4A2 � D7 ⊕D4 ⊕ 3A2 � 2D7 ⊕ 2A2

or S degenerates to one of the maximizing sets of singularities listed in Tables 1 and 2. The
numbers (r, c) of connected components of M1(S) are as shown in Tables 1, 2, and 4; in all
other cases, M1(S) is connected and contains real curves.

Two lines in Table 4 deserve separate statements: to our knowledge, phenomena of this kind
have not been observed before.
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1314 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Proposition 2.6 (see § 4.5). Let S0 := 2A9,S1 := A19, and S2 := A10 ⊕A9. The space
M1(Si), i = 0, 1, 2, consists of two connected componentsM±

1 (Si), each containing real curves,
so that ∂Mε

1(S0) =Mε
1(S1) ∪Mε

1(S2) for each ε = ±.

Proposition 2.7 (see § 6.3). The space M1(A7 ⊕A6 ⊕A5) =M(A7 ⊕A6 ⊕A5) is
connected (hence, its only component is real), but it contains no real curves.

In the other cases in Table 4, the spaceM1(S) consists of two complex conjugate components.
The first such example, viz. S = E6 ⊕A11 ⊕A1, was discovered in [1]. The adjacencies of these
non-real components are studied in § 6.5. Note that one set of singularities, viz. E6 ⊕ 2A5 ⊕A1,
has Milnor number 17; it gives rise to an interesting adjacency phenomenon, see Proposition 6.7.

Corollary 2.8 (see § 4.4). With the same six exceptions as in Theorem 2.5, any non-
special irreducible simple sextic degenerates to a maximizing sextic with these properties, see
Tables 1 and 2.

Corollary 2.9 (see § 5.2). Let D ⊂ P2 be a non-special irreducible simple plane sextic.
If μ(D) = 19, then the fundamental group π1 := π1(P2\D) is as shown in Tables 1 and 2.
Otherwise, one has

• π1 = SL(2, F3)×G2 for 2D7 ⊕ 2A2, D7 ⊕D4 ⊕ 3A2, and 2D4 ⊕ 4A2;
• π1 = SL(2, F5)
G12, see § 2.3, for 2A4 ⊕ 2A3 ⊕ 2A2;

and π1 = G6 in all other cases.

The remaining statements deal with sextics of torus type, and we introduce the notion of
weight. The weight w(P ) of a simple singular point P is defined via w(A3p−1) = p, w(E6) = 2,
and w(P ) = 0 otherwise. The weight of a set of singularities S (or a simple sextic D) is the total
weight of its singular points. Recall (see [9]) that, if D is a 1-torus sextic, then 6 � w(D) � 7.
Conversely, if D is an irreducible sextic and either w(D) = 7 or w(D) = 6 and D has at least
one singular point P 	= A1 of weight 0, then D is a 1-torus sextic.

Theorem 2.10 (see §§ 4.6 and 6.4). A set of singularities S with w(S) � 6 is realized by
an irreducible simple 1-torus sextic D if and only if S degenerates to one of the maximizing
sets listed in Table 3. Furthermore, if μ(S) � 18, then a sextic D as above is unique up to
equisingular deformation and the spaceM3(S) contains real curves.

Corollary 2.11 (see § 4.6). Any irreducible simple 1-torus sextic degenerates to a
maximizing sextic with these properties, see Table 3.

There are 51 sets of singularities S (all of weight 6) realized by both 1-torus and non-special
irreducible sextics. Formally, these sets of singularities can be extracted from Theorems 2.5 and
2.10; an explicit list is found in [1]. The corresponding sextics constitute the so-called classical
Zariski pairs.

Corollary 2.12 (see § 5.3). Let D ⊂ P2 be an irreducible simple 1-torus sextic. If
μ(D) = 19, then the fundamental group π1 := π1(P2\D) is as shown in Table 3. Otherwise,
one has π1 = B4/σ2σ

2
1σ2σ

3
3 for the sets of singularities

(2E6 ⊕ 2A2)⊕ 2A1, (E6 ⊕ 4A2)⊕ 3A1, (E6 ⊕ 4A2)⊕A3 ⊕A1,

(6A2)⊕A3 ⊕ 2A1, (6A2)⊕ 4A1,

and π1 = Γ in all other cases.
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1315

Remark 2.13. In Corollary 2.12, the non-maximizing 1-torus sextics with the group π1 =
B4/σ2σ

2
1σ2σ

3
3 can be characterized as the degenerations of (6A2)⊕ 4A1.

2.5. Other irreducible sextics

For the reader’s convenience and completeness of the exposition, we recall the classification
of the other irreducible simple sextics, viz. the D10- and D14-special sextics and the 4- and
12-torus ones. The fundamental groups are computed in several papers, see [15] for detailed
references.

Theorem 2.14 (see [9]). The space M5 consists of eight connected components, one
component M5(S) for each of the following sets of singularities S:

2A9, A9 ⊕ 2A4 ⊕A2, A9 ⊕ 2A4 ⊕A1, A9 ⊕ 2A4,

4A4 ⊕A2, 4A4 ⊕ 2A1, 4A4 ⊕A1, 4A4.

All components are real and contain real curves.

The fundamental group π1 := π1(P2\D) of a simple sextic D ∈M5(S) can be described
as follows. Denoting temporarily by G′ the derived subgroup [G,G], one always has π1/π′′

1 =
D10 ×G3. Besides,

(1) if S = A9 ⊕ 2A4 ⊕A2, then π′′
1 is the only perfect group of order 120;

(2) if S = 4A4 ⊕ 2A1, then π′′
1/π′′′

1 = G4
2 and π′′′

1 = G2, so that ordπ1 = 960;
(3) in all other cases, π1 = D10 ×G3.

The precise presentations in (1) and (2) are rather lengthy, and we refer the reader to [14].

Theorem 2.15 (see [9]). The space M7 consists of two connected components, one
component M7(S) for each of the following sets of singularities S:

3A6 ⊕A1, 3A6.

Both components are real and contain real curves.

The fundamental groups of all D14-special sextics are D14 ×G3.

Remark 2.16. The sets of singularities 2A9, A9 ⊕ 2A4 ⊕A1, A9 ⊕ 2A4, 4A4 ⊕A1, 4A4

(cf. Theorem 2.14) and 3A6 (cf. Theorem 2.15) are also realized by non-special irreducible
sextics, each by a single connected deformation family.

Theorem 2.17 (see [9]). The unionM3,3 ∪M3,3,3 consists of eight connected components,
one component for each of the following sets of singularities S:

• M3,3 (4-torus sextics, idem weight w = 8): E6 ⊕A5 ⊕ 4A2,E6 ⊕ 6A2,
2A5 ⊕ 4A2,A5 ⊕ 6A2 ⊕A1,A5 ⊕ 6A2, 8A2 ⊕A1, 8A2;

• M3,3,3 (12-torus sextics, idem w = 9): 9A2.

All components are real and contain real curves.

All sets of singularities of weight 8 degenerate to E6 ⊕A5 ⊕ 4A2 and can be characterized
as perturbations of the latter preserving all four torus structures. Note that 9A2 does not
degenerate to a maximizing sextic, irreducible or not!
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1316 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Introduce the group

H := 〈α, ᾱ, β, γ, γ̄ | {α, β}3 = {ᾱ, β}3 = {γ, β}3 = {γ̄, β}3 = βγαβγ̄ᾱ = 1〉.

In this notation (see also (2.2)), the fundamental group π1 := π1(P2\D) of a sextic D with a
set of singularities S of weight 8 or 9 is as follows:

(1) if S = 9A2 (w = 9), then

π1 = H3 := H/〈{γ̄, α} = {γ, ᾱ} = {γ, γ̄} = [β, α−1γ−1ᾱγ̄] = 1, γ̄−1αγ̄ = γ−1ᾱγ〉;

(2) if S = E6 ⊕A5 ⊕ 4A2, then

π1 = H2 := H/〈ᾱγα = αγ̄ᾱ = γαγ̄ = γ̄ᾱγ〉 ∼= G(3, 6, 3, 3, 6, 3);

(3) if S = A5 ⊕ 6A2 ⊕A1, then

π1 = H1 := H/〈{α, γ}3 = {ᾱ, γ̄}3 = [γ, γ̄] = 1, γαγ̄ = γ̄ᾱγ〉;

(4) for all other sextics of weight 8,

π1 = H0 := H/〈α = ᾱ, γ = γ̄, {α, γ}3 = 1〉 ∼= G(3, 3, 3, 3, 3, 3).

All perturbation epimorphisms H3 � H0 and H2 � H1 � H0, cf. Theorem 5.1, lift to the
identity H → H. We do not know whether the epimorphism H2 � H1 is proper; the others are.

2.6. Further generalizations

Altogether, there are 11 308 configurations (in the sense of [10]) of simple sextics, irreducible
or not. This result was first announced in [35], where configurations are called lattice types;
roughly, these are certain sets of lattice data invariant under equisingular deformations and
recording both the position of the singularities with respect to the irreducible components of
the curve and the existence of dihedral coverings.

The corresponding equisingular strata split into 11 272 real and 132 pairs of complex
conjugate components. As expected, this discrepancy is mainly due to the maximizing curves
(ergo definite transcendental lattices), see [34]; if μ < 19, then, in addition to Table 4, there is a
single stratumM2(2A9) consisting of two real components (the sextic splits into an irreducible
quintic and a line) and ten strata (eight sets of singularities) consisting of pairs of complex
conjugate components. Furthermore, the stratum M1(A7 ⊕A6 ⊕A5) remains the only real
connected component not containing real curves, cf. Proposition 2.7.

There are 629 maximizing configurations (μ = 19; see [34, 37]). Besides, there are 16 (with
μ = 18) and 2 (with μ = 17) other configurations extremal with respect to degeneration (cf.
the existence part of Theorem 2.5). A thorough analysis of the adjacencies of the strata and the
computation of various symmetry groups (in particular, analogs of Theorem 4.10 and § 6.5 for
reducible curves) still require some work; therefore, we postpone the details until a later paper.

3. Integral lattices

3.1. Finite quadratic forms (see [29])

A finite quadratic form is a finite abelian group N equipped with a symmetric bilinear form
b : N ⊗N → Q/Z and a quadratic extension of b, that is, a map q : : N → Q/2Z such that
q(x + y)− q(x)− q(y) = 2b(x, y) for all x, y ∈ N (where 2 is the isomorphism ×2: Q/Z→
Q/2Z); clearly, b is determined by q. If q is understood, we abbreviate b(x, y) = x · y and
q(x) = x2. In what follows, we consider non-degenerate forms only, that is, such that the
associated homomorphism N → Hom(N , Q/Z), x �→ (y �→ x · y) is an isomorphism.
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1317

Each finite quadratic form N splits into orthogonal sum N =
⊕

p∈PNp of its p-primary
components Np := N ⊗ Zp. The length 
(N ) of N is the minimal number of generators of
N . Obviously, 
(N ) = maxp∈P 
p(N ), where 
p(N ) := 
(Np). The notation −N stands for the
group N with the form x �→ −x2.

We describe non-degenerate finite quadratic forms by expressions of the form 〈q1〉 ⊕ · · · ⊕
〈qr〉, where qi := mi/ni ∈ Q, g.c.d.(mi, ni) = 1, mini = 0 mod 2; the group is generated by
pairwise orthogonal elements α1, . . . , αr (numbered in the order of appearance), so that α2

i =
qi mod 2Z and the order of αi is ni. (In the 2-torsion, there also may be indecomposable
summands of length 2, but we do not need them.) Describing an automorphism σ of such a
group, we only list the images of the generators αi that are moved by σ.

A finite quadratic form is called even if x2 = 0 mod Z for each element x ∈ N of order two;
otherwise, the form is called odd. In other words, N is odd if and only it contains 〈±1

2 〉 as an
orthogonal summand.

Given a prime p ∈ P, the determinant detpN is defined as the determinant of the ‘matrix’
of the quadratic form on Np in an appropriate basis (see [27] for the technical details); for
example, it is sufficient, although not necessary, to take for a basis the set of generators of the
indecomposable cyclic (and those of length 2 if p = 2) summands constituting an orthogonal
decomposition of Np. Alternatively, detpN is originally defined in [29] as the determinant of
the unique p-adic lattice Np such that rk Np = 
(Np) and discrNp = Np. The determinant is
an element of Qp well-defined modulo the group of squares (Q×

p )2; if Np is non-degenerate, then
one has detpN = u/|Np| for some u ∈ Z×

p /(Z×
p )2. In the case p = 2, the determinant det2N is

well defined only if N2 is even (as otherwise a 2-adic lattice N2 as above is not unique: there
are two isomorphism classes whose determinants differ by 5 ∈ Z×

2 ). By definition, one always
has |N |detpN ∈ Z×

p /(Z×
p )2.

The group of q-auto-isometries of N is denoted by AutN ; obviously, one has AutN =∏
p∈P AutNp. An element ξ ∈ Np is called a mirror if, for some integer k, one has pkξ = 0 and

ξ2 = 2u/pk mod 2Z, g.c.d.(u, p) = 1. If this is the case, the map x �→ 2(x · ξ)/ξ2 mod pk is a
well-defined functional Np → Z/pk; hence, one has a reflection tξ ∈ AutNp,

tξ : x �−→ x− 2(x · ξ)
ξ2

ξ.

Note that tξ = id whenever 2ξ = 0 and ξ2 = 1
2 mod Z.

3.2. Lattices and discriminant forms (see [29])

An (integral) lattice N is a finitely generated free abelian group equipped with a symmetric
bilinear form b : N ⊗N → Z. If b is understood, we abbreviate b(x, y) = x · y and b(x, x) =
x2. A lattice N is called even if x2 = 0 mod 2 for all x ∈ N ; it is called odd otherwise. The
determinant detN of a lattice N is the determinant of the Gram matrix of b. As the transition
matrix from one integral basis to another has determinant ±1, the determinant detN ∈ Z is
well defined. The lattice N is called non-degenerate if detN 	= 0 and unimodular if detN = ±1.
The signature (σ+N,σ−N) of a non-degenerate lattice N is the pair of the inertia indices of
the bilinear form b.

For a lattice N , the bilinear form extends to a Q-valued bilinear form on N ⊗Q. If N is
non-degenerate, then the dual group N � := Hom(N, Z) can be identified with the subgroup
{x ∈ N ⊗Q | x · y ∈ Z for all y ∈ N}. The lattice N is a finite index subgroup of N �. The
quotient discrN := N �/N is called the discriminant group of N ; it is often denoted by N ,
and we use the shortcut discrpN = Np for the p-primary components. One has detN =
(−1)σ−N |N |. The group N inherits from N ⊗Q a symmetric bilinear form b : N ⊗N → Q/Z,
called the discriminant form, and, if N is even, a quadratic extension of b.
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1318 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Convention 3.1. Unless specified otherwise, all lattices considered below are non-
degenerate and even. The discriminant group of such a lattice is always regarded as a finite
quadratic form.

The genus g(N) of a non-degenerate even lattice N can be defined as the set of isomorphism
classes of all even lattices L such that discr L ∼= N and σ±L = σ±N . If N is indefinite and
rk N � 3, then g(N) is a finite abelian group with the group law given by Theorem 3.8.

An isometry of lattices is a homomorphism of abelian groups preserving the forms. (Note
that we do not assume the surjectivity.) The group of auto-isometries of a lattice N is denoted
by O(N). There is an obvious natural homomorphism d : O(N)→ AutN , and we denote by
dp : O(N)→ AutNp its restrictions to the p-primary components. For an element u ∈ N such
that 2u/u2 ∈ N �, the reflection tu : x �→ 2u(x · u)/u2 is an involutive isometry of N . Each image
dp(tu), p ∈ P, is also a reflection. If u2 = ±1 or ±2, then d(tu) = id.

3.3. Root lattices (see [5])

In this paper, a root lattice is a negative definite lattice generated by vectors of square (−2)
(roots). Any root lattice has a unique decomposition into orthogonal sum of indecomposable
ones, which are of types Ap, p � 1, Dq, q � 4, E6, E7, or E8.

Given a root lattice S, the vertices of the Dynkin graph G := GS can be identified
with the elements of a basis for S constituting a single Weyl chamber. This identification
defines a homomorphism SymG→ O(S), s �→ s∗, where SymG is the group of symmetries
of G. The image consists of the isometries preserving the distinguished Weyl chamber. For
indecomposable root lattices, the groups SymG are as follows:

• SymG = 1 if S is A1, E7, or E8;
• SymG ∼= S3

∼= D6 if S is D4; and
• SymG = G2 in all other cases.

In the latter case, unless S = Deven, the generator of SymG induces −id on the discriminant
S := discr S. If S = E8, then S = 0. For S = A1, E7, or Deven, the discriminant groups S are
F2-modules and −id = id in AutS.

A choice of a Weyl chamber gives rise to a decomposition O(S) = R(S) � SymG, where
R(S) ⊂ O(S) is the subgroup generated by reflections tu, u ∈ S, u2 = −2. Furthermore,

Ker[d : O(S) −→ AutS] = R(S) � Sym0G,

where Sym0G is the group of permutations of the E8-type components of G. Thus, denoting
by Sym′G ⊂ SymG the group of symmetries acting identically on the union of the E8-type
components, we obtain an isomorphism Sym′G = Im d. For future references, we combine these
statements in a separate lemma.

Lemma 3.2. Let S be a root lattice. Then, the epimorphism d : O(S) � Im d has a splitting
Im d = Sym′GS ↪→ O(S), and one always has −id ∈ Im d.

3.4. Lattice extensions (see [29])

An extension of a lattice S is an isometry S → L. Two extensions S → L1, L2 are (strictly)
isomorphic if there is a bijective isometry L1 → L2 identical on S. More generally, given
a subgroup O′ ⊂ O(S), two extensions are O′-isomorphic if they are related by a bijective
isometry whose restriction to S is an element of O′.

We use the notation S ↪→ L for finite index extension ([L : S] <∞). There is a unique
embedding L ⊂ S ⊗Q and, hence, inclusions S ⊂ L ⊂ L� ⊂ S�. The kernel of a finite index
extension S ↪→ L is the subgroup K := L/S ⊂ S�/S = S. Since L is an even integral lattice,
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1319

the kernel K is isotropic, that is, the restriction to K of the quadratic form q : S → Q/2Z is
identically zero. Conversely, any isotropic subgroup K ⊂ S gives rise to an extension S ↪→ L,
where L = {x ∈ S� | (x mod S) ∈ K} ⊂ S�. Thus, we have the following theorem.

Theorem 3.3 (Nikulin [29]). The map L �→ K = L/S ⊂ S establishes a one-to-one corre-
spondence between the set of strict isomorphism classes of finite index extension S ↪→ L and
that of isotropic subgroup K ⊂ S. One has L = K⊥/K.

An isometry a ∈ O(S) extends to a finite index extension L if and only if d(a) preserves the
kernel K (as a set). Hence, O′-isomorphism classes of finite index extensions of S correspond
to the d(O′)-orbits of isotropic subgroups K ⊂ S.

Another extreme case is that of a primitive extension S → L, that is, such that the group
L/S is torsion free; we use the notation S � L. If L is unimodular, then one has discrS⊥ ∼= −S:
the graph of this anti-isometry is the kernel of the finite index extension S ⊕ S⊥ ↪→ L. Hence,
the genus g(S⊥) is determined by those of S and L. If L is also indefinite, then it is unique
in its genus. Then, for each representative N ∈ g(S⊥), an extension S � L with S⊥ ∼= N is
determined by a bijective anti-isometry ϕ : S → N (L is the finite index extension of S ⊕N
whose kernel is the graph of ϕ), and the latter induces a homomorphism dϕ : O(S)→ AutN .
If ϕ is not fixed, then this map is well defined up to an inner automorphism of AutN .

Theorem 3.4 (Nikulin [29]). Let L be an indefinite unimodular even lattice, S ⊂ L
be a non-degenerate primitive sublattice, and O′ ⊂ O(S) be a subgroup. Then, the O′-
isomorphism classes of primitive extensions S � L are enumerated by the pairs (N, cN ), where
N ∈ g(S⊥) and cN ∈ dϕ(O′)\AutN/Im d is a double coset (for given N and some anti-isometry
ϕ : S → N ).

Theorem 3.5 (Nikulin [29]). Let S � L be a lattice extension as in Theorem 3.4, N = S⊥,
and ϕ : S → N be the corresponding anti-isometry. Then, a pair of isometries aS ∈ O(S),
aN ∈ O(N) extends to L if and only if dϕ(aS) = d(aN ).

Fix the notation L := 2E8 ⊕ 3U, where U is the hyperbolic plane, U = Zu + Zv, u2 =
v2 = 0, u · v = 1, and E8 is the root lattice, see § 3.3. For the ease of references, we recast
Nikulin’s existence theorem from [29] to the particular case of primitive extensions S � L.
Note that we do not need the restriction on the Brown invariant: by the additivity, it would
hold automatically.

Theorem 3.6 (Nikulin [29]). Given a non-degenerate even lattice S, a primitive extension
S � L exists if and only if the following conditions hold: σ+S � 3, σ−S � 19, 
(S) � δ :=
22− rk S, and

• for all odd p ∈ P, either 
p(S) < δ or |S|detp S = (−1)σ+S−1 mod (Z×
p )2;

• either 
2(S) < δ, or S2 is odd, or |S|det2 S = ±1 mod (Z×
2 )2.

3.5. Miranda–Morrison results (see [25–27])

Classically, the uniqueness of a lattice N in its genus and the surjectivity of the map d : O(N)→
AutN are established using the sufficient conditions found in [29]. Unfortunately, these results
do not cover our needs, and we use the stronger criteria developed in [25–27]. Throughout the
rest of this section, we assume that

(∗) N is a non-degenerate indefinite even lattice, rk N � 3.
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1320 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Warning 3.7. The convention used in this paper (following Nikulin [29] and, eventually,
Gauss) differs slightly from that of Miranda–Morrison, where quadratic and bilinear forms
are related via q(x + y)− q(x)− q(y) = b(x, y). Roughly, the values of all quadratic (but not
bilinear) forms in [25–27], both on lattices and finite groups, should be multiplied by 2. In
particular, all lattices in [25–27] are even by definition. Note though that this multiplication
by 2 is partially incorporated in [25–27]: for example, the isomorphism class of a finite quadratic
form generated by an element α with q(α) = (u/pk) mod Z, which is (2u/pk) mod 2Z in our
notation, is designated by the class of 2u in (Z×

p )/(Z×
p )2.

Given a lattice N and a prime p ∈ P, we define the number ep := ep(N) ∈ N and the subgroup
Σ̃p := Σ̃p(N) ⊂ Γ0 := {±1} × {±1} as in (3.11). Algorithms computing ep(N) and Σ̃p(N) are
given explicitly in [26]. Computations are in terms of rk N , det N , and N only, which means
that the genus g(N) determines ep(N), Σ̃p(N) and, moreover, Cokerd. One has ep = 1 and
Σ̃p = Γ0 for almost all p ∈ P.

Theorem 3.8 (Miranda–Morrison [25, 26]). For N as in (∗), there is an F2-module E(N)
and an exact sequence

O(N) d−→ AutN e−→ E(N) −→ g(N) −→ 1,

where g(N) is the genus group of N . One has |E(N)| = e(N)/[Γ0 : Σ̃(N)], where e(N) :=∏
p∈P ep(N) and Σ̃(N) :=

⋂
p∈P Σ̃p(N).

The group E(N) and homomorphism e: AutN → E(N) given by Theorem 3.8 will be called,
respectively, the Miranda–Morrison group and Miranda–Morisson homomorphism of N . The
next statement follows from Theorems 3.4, 3.8, and the fact that a unimodular even indefinite
lattice is unique in its genus.

Corollary 3.9 (Miranda–Morrison [25, 26]). Let L be a unimodular even lattice and
S ⊂ L be a primitive sublattice such that N := S⊥ is as in (∗). Then the strict isomorphism
classes of primitive extensions S � L are in a canonical one-to-one correspondence with the
Miranda–Morrison group E(N).

Generalizing, fix an anti-isometry ϕ : S → N and consider the induced map dϕ : O(S)→
Aut N , see § 3.4. Since Im d ⊂ AutN is a normal subgroup with abelian quotient, this map
factors to a homomorphism d⊥ : O(S)→ AutN → E(N) independent of ϕ. Then, the following
statement is an immediate consequence of Theorems 3.4 and 3.8.

Corollary 3.10. Let S ⊂ L be as in Corollary 3.9, and let O′ ⊂ O(S) be a subgroup. Then
the O′-isomorphism classes of primitive extensions S � L are in a one-to-one correspondence
with the F2-module E(N)/d⊥(O′).

Theorem 3.8 and Corollary 3.9 cover most of our needs. However, in a few special cases, we
need the more advanced treatment of [27]. Introduce the groups

Γp,0 := {±1} × Z×
p /(Z×

p )2 ⊂ Γp := {±1} ×Q×
p /(Q×

p )2, p ∈ P

and

ΓA,0 :=
∏
p

Γp,0 ⊂ ΓA := ΓA,0 ·
∑

p

Γp ⊂ Γ :=
∏
p

Γp.

(Since the groups involved are multiplicative, although abelian, we follow [27] and use · to
denote the sum of subgroups. However, we retain the notation

∑
and

∏
to distinguished
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1321

between direct sums and products. Thus, the adelic version ΓA is the set of sequences
{(sp, tp)} ∈ Γ such that (sp, tp) ∈ Γp,0 for almost all p.) Let also ΓQ := {±1} ×Q×/(Q×)2 ⊂ ΓA.
Then ΓA,0 · ΓQ = ΓA and the intersection ΓA,0 ∩ ΓQ is the group Γ0 = {±1} × {±1} introduced
above. We recall that Q×/(Q×)2 is the F2-module on the basis {−1} ∪ P, that is, it is the set
of all square free integers.

On various occasions, we will also consider the following subgroups:

• Γ++
p := {1} × Z×

p /(Z×
p )2 ⊂ Γp,0;

• Γ2,2 ⊂ Γ++
2 is the subgroup generated by (1, 5);

• Γ−−
Q ⊂ ΓQ is the subgroup generated by (−1,−1) and (1, p), p ∈ P;

• Γ−−
0 := Γ−−

Q ∩ Γ0 ⊂ Γ0 is the subgroup generated by (−1,−1).

We denote by ιp : Γp ↪→ ΓA, p ∈ P, and ιQ : ΓQ ↪→ ΓA the inclusions. The images ιQ(1, q) and
ιq(1, q), q ∈ P, differ by an element of

∏
p Γ++

p , viz., by the sequence {(1, sp)}, where sq = 1
and sp is the class of q in Z×

p /(Z×
p )2 for p 	= q.

Defined and computed in [27] are certain F2-modules

Σ�
p(N) := Σ�(N ⊗ Zp) ⊂ Σp(N) := Σ(N ⊗ Zp),

which depend on the genus of N only. One has Σ�
p ⊂ Γp,0, Σp ⊂ Γp, and Σp ⊂ Γp,0 for almost

all p. (In fact, for almost all p ∈ P one has Σ�
p = Σp = Γp,0.) Hence,

Σ�(N) :=
∏
p

Σ�
p(N) ⊂ ΓA,0, Σ(N) :=

∏
p

Σp(N) ⊂ ΓA.

In these notations, the invariants used in Theorem 3.8 are

ep(N) = [Γp,0 : Σ�
p(N)], Σ̃p(N) = Σ�

0(N ⊗ Zp) := ϕ−1
p (Σ�

p(N)), (3.11)

where ϕp : Γ0 → Γp,0 is the projection, and E(N) is the quotient ΓA,0/Σ�(N) · Γ0. (Clearly,
Σ̃(N) = Σ�(N) ∩ Γ0.) Unfortunately, the map

∏
p AutNp → E(N) given by Theorem 3.8 does

not respect the product structures. The following statement refines Theorem 3.8, separating
the genus group and the p-primary components.

Theorem 3.12 (Miranda–Morrison [27]). Let N be as in (∗). Then:

(1) there is an isomorphism g(N) = ΓA/Σ(N) · ΓQ (hence, N is unique in its genus if and
only if ΓA = Σ(N) · ΓQ);

(2) there is a commutative diagram

AutN =
∏

p AutNp
γ−−−−→

∏
p Σp(N)/Σ�

p(N)⏐⏐
 ⏐⏐
β

Cokerd
∼=−−−−→ Σ(N)/Σ�(N) · (Σ(N) ∩ ΓQ),

where all maps are epimorphisms, γ is the product of certain epimorphisms
γp : AutNp � Σp(N)/Σ�

p(N), p ∈ P, and β is the quotient projection.

3.6. A few simple consequences

The homomorphism γ in Theorem 3.12(2) is easily computed on reflections: for a mirror ξ ∈ Nr,
r ∈ P, modulo Σ�

r(N) one has

γr(tξ) = (−1,mrk) where ξ2 =
2m

rk
mod 2Z, g.c.d.(m, r) = 1, k ∈ N.

If r = 2 and ξ2 = 0 mod Z, then this value is only well defined mod Γ++
2 ; if r = 2 and ξ2 =

1
2 mod Z, it is well defined mod Γ2,2. In these two cases, the disambiguation of γr(tξ) needs
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1322 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

more information about ξ and N : one needs to represent ξ in the form 1
2x for some x ∈ N ⊗ Z2.

Given another prime p, consider the homomorphism χp : Z×
p /(Z×

p )2 � {±1},

χp(m) :=
(

m

p

)
if p 	= 2, χ2(m) := m mod 4,

and define the p-norm |ξ|p ∈ {±1} and the ‘Kronecker symbol’ δp(ξ) ∈ {±1} via

|ξ|p :=

{
χp(rk) if r 	= p,

χp(m) if r = p,
δp(ξ) = (−1)δp,r ,

where δp,r is the conventional Kronecker symbol. (If p = 2 and ξ2 = 0 mod Z, then |ξ|2 is
undefined.) Finally, introduce a few ad hoc notations for a lattice N :

• the group Ep(N) = {±1} if p = 1 mod 4 and ep(N) · |Σ̃p(N)| = 8; in all other cases,
Ep(N) = 1;

• the map γ̄p sending a mirror ξ to |ξ|p ∈ Ep(N), with the convention that γ̄p(ξ) = 1
whenever Ep(N) = 1;

• the map β̄p sending a mirror ξ to an element of the group Γ0: if p = 1 mod 4, then we let
β̄p(ξ) = (δp(ξ) · |ξ|p, 1); otherwise, β̄p(ξ) = δp(ξ)× |ξ|p.

Following [27], we say that a lattice N is p-regular, p ∈ P, if Σ�
p(N) = Γp,0, that is, if

ep(N) = 1. We will also say that the prime p is regular with respect to N ; otherwise, p is
irregular. In several statements below, we make a technical assumption that Σ�

2(N) ⊃ Γ2,2;
this inclusion does hold for the transcendental lattices of all primitive homological types (see
§ 4.1) except S = A15 ⊕A3, see [27].

Lemma 3.13. Let N be a lattice as in (∗), Σ�
2(N) ⊃ Γ2,2, and assume that N has one

irregular prime p. Then E(N) = Ep(N) and m(tξ) = γ̄p(ξ) for a mirror ξ.

Lemma 3.14. Let N be a lattice as in (∗), Σ�
2(N) ⊃ Γ2,2, and assume that N has two

irregular primes p, q. Then

E(N) = Ep(N)× Eq(N)× (Γ0/Σ̃p(N) · Σ̃q(N))

and one has m(tξ) = γ̄p(ξ)× γ̄q(ξ)× (β̄p(ξ) · β̄q(ξ)) for a mirror ξ ∈ N , provided that ξ2 	=
0 mod Z if p = 2 or q = 2.

Corollary 3.15. Under the hypotheses of Lemma 3.14, assume, in addition, that
|E(N)| = |Ep(N)| = 2. Then E(N) = Ep(N) and m(tξ) = |ξ|p for a mirror ξ.

Proof of Lemmas 3.13 and 3.14. Let Γ′
p,0 := Γp,0 for p 	= 2 and Γ′

2,0 := Γ2,0/Γ2,2, so that we
can identify Γ′

p,0
∼= {±1} × {±1} for all p ∈ P. If p 	= 1 mod 4, then the map ϕp : Γ0 → Γ′

p,0 is
an epimorphism; if p = 1 mod 4, then one has ϕp(Γ0) = {±1} × {1}. Modulo Γ−−

Q , the image
γ(tξ) equals γ̄(tξ) := {(δs(ξ), |ξ|s)} ∈

∏
Γ′

s,0.
Now, the first statement of each lemma is a computation of E(N) = ΓA,0/Σ�(N) · Γ0, which

can be done in Γ′
p,0 or Γ′

p,0 × Γ′
q,0; our group Ep(N) is the quotient Γp,0/Σ�

p(N) · Imϕp. The
second statement is the computation of the image of γ̄(ξ) in E(N): the maps γ̄p and β̄p are the
projections Γp,0 → Ep(N) and Γp,0 → Imϕp, respectively. For the latter, we use the following
fact, see [27]: if a prime p = 1 mod 4 is irregular for N and Σ�

p(N) 	⊂ Imϕp, then Σ�
p(N) is

generated by (−1,−1).
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1323

3.7. The positive sign structure

A positive sign structure on a lattice N is a choice of an orientation of a maximal positive
definite subspace of N ⊗ R. (Recall that the orthogonal projection of one such subspace to
another is an isomorphism and, hence, all these spaces admit a coherent orientation.) We will
use the map det+ : O(N)→ {±1} sending an auto-isometry to +1 or −1 if it preserves or,
respectively, reverses a positive sign structure. Thus, O+(N) := Ker det+ is the subgroup of
auto-isometries preserving positive sign structures. (In the notation of [27], one has det+ =
det · spin and O+ = O−−.) The following statement is essentially contained in [27].

Proposition 3.16 (Miranda–Morrison [27]). Let N be a lattice as in (∗). Then one has
Σ̃(N) ⊂ Γ−−

0 if and only if det+ a = 1 for all a ∈ Ker[d : O(N)→ AutN ].

Thus, if Σ̃(N) ⊂ Γ−−
0 , then there is a well-defined descent det+ : Im d→ {±1}. The next

lemma computes the values of det+ on reflections.

Lemma 3.17. Let N be a lattice as in (∗), Σ�
2(N) ⊃ Γ2,2, and assume that there is a prime p

such that Σ̃p(N) ⊂ Γ−−
0 . Then, for a mirror ξ ∈ N such that tξ ∈ Im d and ξ2 	= 0 mod Z if

p = 2, one has det+ tξ = δp(ξ) · |ξ|p.

Proof. The proof is similar to that of Lemmas 3.13 and 3.14: we assume that the
element γ̄(tξ) · ιQ(δp(ξ), δp(ξ)) representing tξ lies in Σ�(N) · Γ0 and compute its image in
Σ�(N) · Γ0/Σ�(N) · Γ−−

0 = {±1}. This can be done in Γp,0.

Proposition 3.16 can be restated in a form closer to Theorem 3.8: introducing the group
E+(N) := ΓA,0/Σ�(N) · Γ−−

0 , one has an exact sequence

O+(N) d−→ AutN m+−→ E+(N) −→ g(N) −→ 1. (3.18)

The groups E+(N), as well as a few other counterparts, are also computed in [26]: for the order
|E+(N)|, one merely replaces Σ̃(N) with Σ̃(N) ∩ Γ−−

0 in Theorem 3.8. In the special case of at
most two irregular primes, the computation is very similar to § 3.6. For an irregular prime p,
denote Σ̃+

p (N) := Σ̃p(N) ∩ Γ−−
0 ⊂ Γ−−

0 and introduce the groups E+
p (N) and maps γ̄+

p , β̄+
p

defined on the set of mirrors and taking values in E+
p (N) and Γ−−

0 = {±1}, respectively, as
follows:

• if p = 1 mod 4, then E+
p (N) = Ep(N), γ̄+

p = γ̄p, and β̄+
p (ξ) = δp(ξ) · |ξ|p;

• if p 	= 1 mod 4, then E+
p (N) = Γ0/Σ̃p(N) · Γ−−

0 (if p 	= 2 or Σ�
2(N) ⊃ Γ2,2, then one has

E+
p (N) = {±1} if ep(N) · |Σ̃+

p (N)| = 4 and E+
p (N) = 1 otherwise);

• if p 	= 1 mod 4 and E+
p (N) 	= 1, then γ̄+

p (ξ) = δp(ξ) · |ξ|p and β̄+
p (ξ) = |ξ|p;

• if p 	= 1 mod 4 and E+
p (N) = 1, then γ̄+

p (ξ) = 1 and β̄+
p (ξ) is the image of the product

β̄(ξ) = δp(ξ)× |ξ|p, see § 3.6, under the projection Γ0 → Γ0/Σ̃p(N) = Γ−−
0 .

(In the last case, one has β̄+
p (ξ) = |ξ|p unless p = 2.) The proof of the next two statements

repeats literally that of Lemmas 3.13 and 3.14.

Lemma 3.19. Let N be a lattice as in (∗), Σ�
2(N) ⊃ Γ2,2, and assume that N has a single

irregular prime p. Then one has E+(N) = E+
p (N) and m+(tξ) = γ̄+

p (ξ) for a mirror ξ ∈ N such
that ξ2 	= 0 mod Z if p = 2.
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1324 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Lemma 3.20. Let N be a lattice as in (∗), Σ�
2(N) ⊃ Γ2,2, and assume that N has two

irregular primes p, q. Then

E+(N) = E+
p (N)× E+

q (N)× (Γ−−
0 /Σ̃+

p (N) · Σ̃+
q (N))

and one has m+(tξ) = γ̄+
p (ξ)× γ̄+

q (ξ)× (β̄+
p (ξ) · β̄+

q (ξ)) for a mirror ξ ∈ N such that ξ2 	=
0 mod Z if p = 2 or q = 2.

Corollary 3.21. Under the hypotheses of Lemma 3.20, assume, in addition, that
|E+(N)| = |E+

p (N)| = 2. Then E+(N) = E+
p (N) and m(tξ) = γ̄+

p (ξ) for a mirror ξ ∈ N such
that ξ2 	= 0 mod Z if p = 2.

4. The deformation classification

4.1. The homological type

Consider a simple sextic D ⊂ P2. Recall (see § 2.2) that we denote by X → P2 the minimal
resolution of singularities of the double covering of P2 ramified at D, and that the set of
singularities of D can be identified with the sublattice S ⊂ L spanned by the classes of the
exceptional divisors. Let τ : X → X be the deck translation of the covering.

Lemma 4.1. The induced action of τ on the Dynkin graph G := GS preserves the
components of G; it acts by the only non-trivial symmetry on the components of type Ap�2,
Dodd, or E6, and by the identity otherwise.

Remark 4.2. In other words, τ : G→ G can be characterized as the ‘simplest’ symmetry
of G inducing −id on discrS.

In addition to S, we have the class h ∈ L of the pull-back of a generic line in P2. Obviously, h
is orthogonal to S and h2 = 2. Let Sh := S⊕ Zh. The triple H := (S, h,L), that is, the lattice
extension Sh ↪→ L regarded up to isometries of L preserving S (as a set) and h, is called the
homological type of D. This extension is subject to certain restrictions, which are summarized
in the following definitions.

Definition 4.3. Let S be a root lattice. A homological type (extending S) is an extension
Sh := S⊕ Zh ↪→ L satisfying the following conditions:

(1) any vector v ∈ (S⊗Q) ∩ L with v2 = −2 is in S;
(2) there is no vector v ∈ S̃h := (Sh ⊗Q) ∩ L with v2 = 0 and v · h = 1.

Note that condition (2) in this definition can be restated as follows: if a is a generator of an
orthogonal summand A1 ⊂ S, then the vector a + h is primitive in L.

Given a homological type H = (S, h,L), we let

• S̃ := (S⊗Q) ∩ L be the primitive hull of S;
• S̃h := (Sh ⊗Q) ∩ L be the primitive hull of Sh; and
• T := S⊥

h with T = discrT be the transcendental lattice.

Since σ+T = 2, all positive definite 2-spaces in T⊗ R can be oriented in a coherent way. A
choice o of one of these coherent orientations, that is, a positive sign structure on T, see § 3.7, is
called an orientation ofH. The homological type of a plane sextic D has a canonical orientation,
viz. the one given by the real and imaginary parts of the class of a holomorphic form ω on X.
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1325

An automorphism of a homological type H = (S, h,L) is an auto-isometry of L preserving S
(as a set) and h. The group of automorphisms of H is denoted by AutH. Let Aut+H ⊂ AutH
be the subgroup of the automorphisms inducing id on T. On the other hand, we have the group
AuthS̃h ⊂ O(S̃h) of the isometries of S̃h preserving h. There are obvious homomorphisms

Aut+H ↪→ AutH −→ AuthS̃h ↪→ O(S), (4.4)

where the latter inclusion is due to item (1) in Definition 4.3, as S ⊂ S̃h is recovered as
the sublattice generated by the roots orthogonal to h. If the primitive extension S̃h � L
is defined by an anti-isometry ϕ : discr S̃h → T (see § 3.4), so that we have a homomorphism
dϕ : AuthS̃h → Aut T , then, for ε = + or empty,

Im[AutεH −→ AuthS̃h] = (dϕ)−1d(Oε(T)). (4.5)

The deformation classification of sextics is based on the following statement.

Theorem 4.6 (see [10]). The map sending a plane sextic D ⊂ P2 to its oriented
homological type establishes a bijection between the set of equisingular deformation classes
of simple sextics and the set of isomorphism classes of oriented homological types. Complex
conjugate sextics have isomorphic homological types that differ by the orientations.

A homological type is called symmetric if it admits an orientation-reversing automorphism.
According to Theorem 4.6, symmetric are the homological types corresponding to real, that is,
conjugation invariant components ofM(S).

Recall that, in § 2.2, the equisingular strata M(S) were subdivided into families M∗(S).
The precise definition is as follows: the subscript ∗ is the sequence of invariant factors of the
kernel K of the finite index extension Sh ↪→ S̃h. (Obviously, K is invariant under equisingular
deformations.) Theorems 4.7 and 4.8 single out the families M1 and M3, which are of our
primary interest; they correspond to K = 0 and K = G3, respectively.

A homological type H = (S, h,L) is called primitive if Sh ⊂ L is a primitive sublattice,
that is, if K = 0. In this case, one has discr S̃h = S ⊕ 〈12 〉 and the inclusion AuthS̃h ↪→ O(S),
see (4.4), is an isomorphism.

Theorem 4.7 (see [9]). A simple plane sextic D is irreducible and non-special if and only
if its homological type is primitive.

The fact that primitive homological types give rise to irreducible sextics was also observed
in [37], where the primitivity is stated as a sufficient condition.

Theorem 4.8 (see [9]). A simple plane sextic D is irreducible and p-torus, p = 1, 4,
or 12, if and only if the kernel K of the extension Sh ↪→ S̃h is G3, G3 ⊕G3, or G3 ⊕G3 ⊕G3,
respectively.

There is a similar characterization of other special sextics: a sextic is irreducible and D2n-
special, n > 3, if and only if the kernel K is Gn; one necessarily has n = 5 or 7. Note that these
statements cover all possibilities for the kernel K free of 2-torsion, and K has 2-torsion if and
only if the sextic is reducible, see, for example, [15].

4.2. Extending a fixed set of singularities S to a sextic

By Theorem 4.6, given a simple set of singularities S, the connected components of the space
M(S) modulo the complex conjugation conj : P2 → P2 are enumerated by the isomorphism
classes of the homological types extending S. If a subscript ∗ is specified, then the set
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1326 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Table 5. Exceptional sets of singularities (see § 4.3).

[1]E6 ⊕ 2A4 ⊕ 2A2
[1]A5 ⊕ 2A4 ⊕ 2A2 ⊕ A1
[2]3A4 ⊕ 3A2

[3]E7 ⊕ A7 ⊕ 2A2
[3]E6 ⊕ A7 ⊕ A5
[3]2A7 ⊕ 2A2

[3]A7 ⊕ A5 ⊕ A4 ⊕ A2
[4]2A6 ⊕ 2A2 ⊕ 2A1
[5]2A9

π0(M∗(S)/conj) is enumerated by the extensions with the kernel K of the finite index extension
Sh ↪→ S̃h in the given isomorphism class.

We are interested in the sets of singularities S with μ(S) � 18. In this case, T is indefinite
and rk T � 3; hence, Miranda–Morrison’s results apply and, with K and, hence, S̃h fixed, the
further extensions S̃h � L are enumerated by the cokernel of the well-defined homomorphism
d⊥ : AuthS̃h → E(T), see § 3.5. In the special case K = 0, due to the obvious isomorphism
AuthS̃h = O(S), we have a canonical bijection

π0(M1(S)/conj) = Coker[d⊥ : O(S) −→ E(T)], (4.9)

assuming that Sh does admit a primitive extension to L and taking for T any representative
of the genus S⊥

h .

4.3. Proof of Theorem 2.5

By Theorems 4.6 and 4.7, for the first part of the statement it suffices to list (using Theorem 3.6)
all sets of singularities extending to a primitive homological type; the resulting list is compared
against the list of all perturbations of the maximizing sets obtained. Since the homological
type is primitive, we have discr S̃h = S ⊕ 〈12 〉.

For the second part, let S be one of the sets of singularities found, μ(S) � 18, and let T be
a representative of the genus g(S⊥

h ). In most cases, Theorem 3.8 gives us E(T) = 0 and, due
to Corollary 3.9, a primitive homological type extending S is unique up to strict isomorphism.
In the remaining cases, it suffices to show that the map d⊥ : O(S)→ E(T) is onto, see (4.9).

There are 32 sets of singularities containing a point of type A4 and satisfying the hypotheses
of Lemma 3.13 or Corollary 3.15 (with p = 5); in these cases, a non-trivial symmetry of any
type A4 points maps to the generator −1 ∈ E(T). The remaining nine sets of singularities
are collected in Table 5, with references to the list below, where we indicate the Miranda–
Morrison homomorphism e : Aut T → E(T) (given by Lemma 3.14) and automorphism(s) of S
generating E(T).

(1) e : tξ �→ δ3(ξ) · δ5(ξ) · |ξ|5 ∈ {±1}; a transposition A4 ↔ A4;
(2) e : tξ �→ (δ3(ξ) · δ5(ξ) · |ξ|5, |ξ|5) ∈ {±1} × {±1}; a symmetry of A4 and a transposition

A4 ↔ A4 (two generators);
(3) e : tξ �→ δ2(ξ) · δ3(ξ) · |ξ|2 · |ξ|3 ∈ {±1}; a transposition A2 ↔ A2 or a symmetry of A4,

A5, or E6;
(4) e : tξ �→ δ3(ξ) · δ7(ξ) · |ξ|3 · |ξ|7 ∈ {±1}; a transposition A1 ↔ A1;
(5) e : tξ �→ |ξ|5 ∈ {±1}; none.

The last case S = 2A9 is special: the map d⊥ : O(S)→ E(T) is not surjective and there are
two deformation families, as stated.

To complete the proof, we need to analyze whether the space M1(S) contains a real curve
and, if it does not, whether the homological type H extending S is symmetric. This is done in
§ 6.2.

4.4. Proof of Corollary 2.8

Unless S = 2A9, the statement follows immediately from Theorem 2.5. Indeed, there is a degen-
eration S � S′ to a maximizing set of singularities S′. Due to [12, Proposition 5.1.1], there
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1327

is a degeneration D � D′ of some sextics D ∈M1(S) and D′ ∈M1(S′). Since M1(S)/conj
is connected, a degeneration exists for any sextic D ∈M1(S). The exceptional case S = 2A9

with disconnected moduli space is given by Proposition 2.6, see § 4.5.

4.5. Proof of Proposition 2.6

For S0 = 2A9, one has T ∼= Zu⊕ Zv ⊕ Zw, with u2 = v2 = 10, w2 = −2. The discriminant
group T is 〈 25 〉 ⊕ 〈

2
5 〉 ⊕ 〈

1
2 〉 ⊕ 〈

1
2 〉 ⊕ 〈

3
2 〉, and Aut T is generated by

σ1,2 : α1,2 �−→ −α1,2, σ3 : α1 ←→ α2, σ4 : α3 ←→ α4.

Let Sh := discr S̃h = S0 ⊕ 〈12 〉. According to § 3.3, the image of d : O(S0)→ AutSh is generated
by −id on each of the two copies of discrA9 and by the transposition of the two copies. Since
|E(T)| = 2, the image Im[d : O(T)→ Aut T ] is generated by the images σ1, σ2, σ3σ4 of the
auto-isometries u �→ −u, v �→ −v, u↔ v, respectively. It is straightforward that the image
Im d⊥ = 0 ⊂ E(T); hence, by Corollary 3.10, 2A9 ⊕ Zh extends to L in two ways. The proof
of the fact that both homological types are represented by real curves is postponed till § 6.1.

The two homological types can be distinguished as follows. In T , there are two non-
characteristic elements of square 1

2 and two pairs of opposite elements of square 2
5 , and the

map 1
2u �→ 1

5u, 1
2v �→ ± 1

5v establishes a bijection between these two-element sets. A similar
bijection in the other group Sh is due to the decomposition Sh = 2discrA9 ⊕ 〈12 〉. The two
homological types extending 2A9 differ by whether the anti-isometry Sh → T does or does not
respect these bijections.

Now, a simple computation shows that each of the two sublattices S0 ⊕ Zh ⊂ L extends to
both Si ⊕ Zh ⊂ L, i = 1, 2 (where S1 = A19 and S2 = A10 ⊕A9 are as in the statement), and
these are all possible degenerations of S0. On the other hand, each Si, i = 1, 2, extends to two
distinct real homological types, see [34], and each of the resulting families admits a unique, up
to deformation, perturbation to 2A9, cf. [12, Proposition 5.1.1]. These observations complete
the proof.

4.6. Proof of Theorem 2.10 and Corollary 2.11

Let S be a set of singularities of weight 6 or 7. As shown in [9], up to automorphism of S, there
is at most one isotropic order 3 element β ∈ S satisfying condition (1) in Definition 4.3. Such an
element does exist if and only if w(S) = 6 or w(S) = 7 and S contains A2 as a direct summand.
(In the latter case, the extra A2 point becomes an outer singularity; all other singular points
of positive weight are inner.) This element β has the form

∑
i(±αi), where αi are the only

(up to sign) order 3 elements in the discriminants of the inner singular points. Important for
Theorems 3.6 and 3.8 is the relation between S and S̃ := discr S̃. One has:

• 
p(S̃) = 
p(S) and detp S̃ = detp S for all primes p 	= 3;
• |S̃| = 1

9 |S| and det3 S̃ = −9 det3 S;
• 
3(S̃) = 
3(S)− δ, where δ = 1 if S contains (as a direct summand) A17 or 2A8 and δ = 2

otherwise.

Now, as in § 4.3, we compare two lists: the sets of singularities extending to a homological
types with kernel G3 (using Theorem 3.6) and those obtained by perturbations from the
maximizing sets, see Table 3. These lists coincide. For each set of singularities S found,
Theorem 3.8 gives us E(T) = 0; hence, there is a unique homological type and the space
M3(S)/conj is connected. In view of the first part, this fact implies Corollary 2.11, and it
remains to analyze the real structures. This is done in § 6.4.
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1328 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Table 6. Permutation groups (see Theorem 4.10).

[3E6]
[2E6] ⊕ A6

[2E6] ⊕ A5 ⊕ A1

[2E6] ⊕ A5

[2A2] ⊕ E7 ⊕ A7

[2A7 ⊕ 2A2]
[2A2 ⊕ 2A1] ⊕ 2A6

[2A4] ⊕ E6 ⊕ 2A2

[2A4] ⊕ A5 ⊕ 2A2 ⊕ A1

[2A4 ⊕ 2A2] ⊕ D6

[2A4 ⊕ 2A2] ⊕ 2A3

[2A4 ⊕ 3A2] ⊕ A3 ⊕ A1

[3A4] ⊕ [3A2]

4.7. Digression: permutations of the singular points

Consider a sextic D with the set of singularities S, and letM(D) be the connected equisingular
stratum containing D. Denoting by S(S) the group of the type-preserving permutations of
the singular points constituting the set S, we obtain the so-called monodromy representation
π1(M(D))→ S(S). In this section, we are interested in the image S+(D) of this homomorphism.
In other words, we can consider the covering M̃(D)→M(D) whose points are sextics with
marked singular points; then, [S(S) : S+(D)] is the number of the connected components
of M̃(D).

Theorem 4.10. The permutation group S+ := S+(D) of a non-special irreducible simple
sextic D with the set of singularities S is as follows:

• if μ(D) = 19, then S+ is the group of permutations of the E8 points of S;
• if S is one of the sets of singularities listed in Table 6, then S+ is as shown in the table

(see the explanation after the statement).

In all other cases, one has S+ = S(S).

The groups S+(D) are encoded in Table 6 by means of one or several subsets S1,S2, . . .
enclosed in brackets: a permutation σ ∈ S(S) belongs to S+(D) if and only if the restriction
of σ to each subset Si is even. Note that, in many cases, this condition actually implies that
S+(D) is the trivial group.

Proof. If μ(D) = 19, then S+(D) is the group of projective symmetries of D; these groups
are described in [11].

In general, let (H, o) be the oriented homological type of D. From the description of
the equisingular moduli spaces of sextics, see, for example, [10], it is immediate that the
monodromy representation can be factored as

π1(M(D)) � Aut+H −→ O(S) � S(S),

where the arrow in the middle is the homomorphism (4.4). If the type H is primitive and
μ(S) � 18, we have a well-defined homomorphism d⊥ : O(S)→ E+(T), cf. § 3.5, where T is
the transcendental lattice; this homomorphism factors through d′ : Sym′GS → E+(T), see
Lemma 3.2. Hence, combining the above observation with (3.18) and (4.5), we conclude that
S+ ⊂ S(S) is the image of Ker d′.

The groups E+(T) are computed using Lemmas 3.19 and 3.20. For most curves, one has
E+(T) = 1 and hence S+ = S(S).

There are 171 sets of singularities S containing a point of type A2 and satisfying the
hypotheses of Lemma 3.19 or Corollary 3.21 with p = 3. For such curves, a non-trivial symmetry
of A2 maps to the generator −1 ∈ E+(T); hence, S+ = S(S).

Similarly, there are 28 sets of singularities S containing a point of type A4 and satisfying the
hypotheses of Lemma 3.19 or Corollary 3.21 with p = 5: a non-trivial symmetry of A4 maps
to the generator −1 ∈ E+(T).
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1329

In the very few remaining cases, the group Sym′GS, identified with its image in AutS,
see Lemma 3.2, is generated by reflections, and the map d′ is computed explicitly using
Lemmas 3.19 and 3.20. Details are left to the reader.

5. The fundamental group

5.1. The degeneration principle

Our computation of the fundamental groups is indirect; it is based on a few previously known
results and the following statement, often referred to as the degeneration principle.

Theorem 5.1 (Zariski [38]). If a plane curve D′ degenerates to a reduced plane curve D,
then there is an epimorphism π1(P2\D) � π1(P2\D′).

Corollary 5.2. If a plane sextic D′ degenerates to D and π1(P2\D) = G6, then also
π1(P2\D′) = G6.

Corollary 5.3. If a sextic D′ of torus type degenerates to D and π1(P2\D) = Γ, then
also π1(P2\D′) = Γ.

Proof. Since any sextic D′ of torus type is a degeneration of Zariski’s six-cuspidal sextic,
there is an epimorphism π1(P2\D′) � Γ, see [38] and Theorem 5.1. Since Γ is a Hopfian group,
the statement follows from Theorem 5.1.

5.2. Proof of Corollary 2.9

We need a slightly stronger statement, which is proved in the same way as Corollary 2.8, see
§ 4.4, by comparing two independent lists: with few exceptions listed below, any non-special
irreducible plane sextic degenerates to one with known abelian fundamental group.

The exceptions are the six sets of singularities listed in Theorem 2.5 and

2A4 ⊕ 2A3 ⊕ 2A2 � E8 ⊕A4 ⊕A3 ⊕ 2A2,

3A4 ⊕ 3A2, 2A4 ⊕A3 ⊕ 3A2 ⊕A1 � E7 ⊕ 2A4 ⊕ 2A2.

The fundamental groups of the curves listed in Theorem 2.5 are computed in [15], using the
degenerations

2D9 � D10 ⊕D9, 2D7 ⊕ 2A2 � D10 ⊕D7 ⊕A2

to reducible maximizing sextics. The groups of some curves realizing the three other sets
of singularities are computed together with those of the corresponding maximizing sextics,
by analyzing the perturbations (see [15] for references). In view of the uniqueness given by
Theorem 2.5, the results hold for all curves.

5.3. Proof of Corollary 2.12

With one exception, viz. the set of singularities (A8 ⊕A5 ⊕A2)⊕A4, the fundamental groups
of all maximizing irreducible sextics of torus type are known, see [15, 17] for references.
Comparing the two lists, one can easily see that all but fourteen non-maximizing deformation
families degenerate to maximizing sextics D with π1(P2\D) = Γ known; for these curves, the
fundamental group is Γ due to Corollary 5.3. All sextics with at least one type E6 type point
are treated in [15]. The remaining exceptions are

(6A2)⊕ 4A1 � (6A2)⊕A3 ⊕ 2A1,
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1330 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

studied in [8] as perturbations of (3E6)⊕A1, and

(6A2)⊕A4 ⊕A1 � (A5 ⊕ 4A2)⊕A4 ⊕A1,

studied in [17] as perturbations of (A8 ⊕ 3A2)⊕A4 ⊕A1.

6. Real structures

6.1. Real sextics

A real structure on a complex analytic variety X is an anti-holomorphic involution c : X → X.
A real variety is a pair (X, c), where X is a complex variety and c is a real structure. The fixed
point set XR := Fixc is called the real part of X. (We routinely omit c in the notation when it
is understood.)

Let (X, c) be a real surface. A curve D ⊂ X is said to be real if c(D) = D. If X̄ → X is a
double covering branched over a (non-empty) real curve, then the real structure c lifts to two
distinct real structures on X̄; the two lifts differ by the deck translation of the covering, and
all three involutions commute.

Any real structure on P2 is equivalent to the standard complex conjugation; in appropriate
homogeneous coordinates, it is given by (z0 : z1 : z2) �→ (z̄0 : z̄1 : z̄2). In these coordinates, real
curves are those defined by real polynomials.

Theorem 6.1. A homological type H is realized by a real sextic if and only if H admits
an involutive orientation-reversing automorphism.

Proof. The necessity is obvious: the real structure on P2 lifts to a real structure on the
covering K3-surface X, which induces an involutive automorphism of the homological type.

For the converse, let a ∈ AutH be an automorphism as in the statement. Due to Lemma 3.2,
the restriction a|S has the form r ◦ (−s∗), where r ∈ Ker d and s∗ is induced by an involutive
symmetry s ∈ Sym′GS. Since Ker d ⊂ AutH (in the obvious way: automorphisms extend to
S⊥ by the identity, see Theorem 3.5), the involution r−1 ◦ a is also in AutH. Then, obviously,
the map c := r−1 ◦ a ◦ th ∈ O(L) is still an involution and c|T = a|T.

Let T± be the (±1)-eigenspaces of the action of c on T⊗ R. Since c reverses the orientation,
one has σ+T± = 1. Hence, one can choose generic (that is, maximally irrational) vectors
ω± ∈ T± such that ω2

+ = ω2
− > 0 and take ω := ω+ + iω− for the class of a holomorphic form.

Let, further, S− be the (−1)-eigenspace of the action of c on S̃h ⊗ R. Since h ∈ S−, one has
σ+S− = 1. By the construction, −c preserves a Weyl chamber of S; hence, condition (1) in
Definition 4.3 implies that S− is not orthogonal to a vector v ∈ S̃h of square (−2) and one can
find a generic vector ρ ∈ S−, ρ2 > 0, and take it for the class of a Kähler form. These choices
define a 2-polarized K3-surface X with Pic X = S̃h and, by an equivariant version of the global
Torelli theorem, c is induced by a real structure on X commuting with the deck translation τ
of the ramified covering X → P2 defined by h. This real structure descends to P2 and makes
the sextic corresponding to X (that is, the branch curve) real.

Let D be a real sextic with the set of singularities S. The real structure c lifts to two real
structures on the covering K3-surface; they take exceptional divisors to exceptional divisors
and, hence, induce two involutive symmetries c± : G→ G of the Dynkin graph G := GS. Define
another symmetry c0 : G→ G as follows: on each connected component Gi of G fixed by c±
and of type other than Deven let c0 = id; on all other components, let c0 = c±. In other
words, since c− = c+ ◦ τ , we just let v ↑ c0 = v for each vertex v such that v ↑ c+ 	= v ↑ c−, see
Lemma 4.1.
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1331

Table 7. Exceptional sets of singularities.

[3A6]7
[2A6]7 ⊕ D6

[2A6]7 ⊕ D5 ⊕ A1

[2A6]7 ⊕ 2A3

[2A5]3 ⊕ E8

[E6 ⊕ A11]3 ⊕ A1

[E6 ⊕ A5]3 ⊕ E7

[E6 ⊕ A5]3 ⊕ A7

[E6 ⊕ A5]3 ⊕ A6 ⊕ A1

[E6 ⊕ 2A5]3 ⊕ A1

[E7 ⊕ A7]2 ⊕ A4

[2A7]2 ⊕ A4

A7 ⊕ A6 ⊕ A5

2D7 ⊕ 2A2

D7 ⊕ D4 ⊕ 3A2

2D4 ⊕ 4A2

�2E7 ⊕ A4

�E7 ⊕ D5 ⊕ A6

�E7 ⊕ A11

�E7 ⊕ A6 ⊕ A5

�2D9

�D9 ⊕ D8

�2D8

�D5 ⊕ A7 ⊕ A6

E7 ⊕ 2A4 ⊕ A3

Corollary 6.2. If a homological type H is realized by a real sextic (D, c), then any
c0-invariant perturbation H′ of H is also realized by a real sextic D′.

Note that we do not assert that D′ degenerates to D in the class of real sextics. A real
perturbation can be found if H′ is invariant under one of c±.

Proof of Corollary 6.2. Let c∗ : L→ L be the automorphism of H induced by one of the two
lifts of c. Composing c∗ with −τ∗ on some of the indecomposable summands of S, we can change
it to another involutive automorphism c′ of H (see Lemma 3.2 and Theorem 3.5) inducing c0

on G. Then c′ preserves S′; hence, c′ ◦ th can be regarded as an involutive orientation-reversing
automorphism of H′, and Theorem 6.1 applies.

6.2. End of the proof of Theorem 2.5

It is easily confirmed that most sets of singularities S with μ(S) � 18 are symmetric
perturbations of maximizing sets of singularities realized by real sextics, see Tables 1 and 2. (In
the tables, marked with a ∗ are pairs of isomorphic singular points permuted by the complex
conjugation. These pairs should be taken into account when analyzing symmetric perturbations.
Note that singular points of type Deven do not appear in irreducible maximizing sextics.) Due
to Corollary 6.2, these sets of singularities are realized by real curves.

The remaining 25 sets of singularities are listed in Table 7. Each of these sets S extends
to a unique (up to isomorphism) primitive homological type H, and we denote by T the
corresponding transcendental lattice. In each case, the natural homomorphism d : O(T)→
Aut T is surjective.

By Theorem 3.5, the homological type H is symmetric if and only if there is an isometry
a ∈ O(T) with det+ a = −1 and such that d(a) ∈ dϕ(O(S)), where dϕ is induced by any anti-
isometry ϕ : S ⊕ 〈12 〉 → T . If (and only if) a as above can be chosen involutive, then so is d(a)
and, due to Lemma 3.2, a extends to L by an involutive isometry of S; hence,M1(S) contains
real curves, see Theorem 6.1.

Lemma 6.3. The first twelve sets of singularities in Table 7 (those with a [ · ]p pattern)
extend to asymmetric primitive homological types.

Proof. Let S be one of the sets of singularities in question. Then Σ̃(T) ⊂ Γ−−
0 , see § 3.7, and

there is a well-defined map det+ : Aut T → {±1}. We use Lemma 3.17 (with the ‘test prime’ p
indicated in the table) to show that det+ takes value +1 on the image of O(S). If p = 7 (the
first four lines), then the latter image is generated by reflections tξ such that either

• ξ2 = 6
7 (a symmetry of the Dynkin graph of A6), or

• ξ2 = 12
7 (interchanging of two copies of A6), or

• ξ ∈ T2 (isometries involving the other singular points);
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1332 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

on the other hand, one has (−3
7 ) = (−6

7 ) = (2
7 ) = 1. If p = 3 (the next six sets of singularities),

then the image of O(S) is generated by the following automorphisms a:

• tξ with ξ2 = 4
3 (a symmetry of the Dynkin graph of E6 or A5);

• tξtη with ξ2 = 2
3 , η2 = 1 (interchanging of two copies of A5);

• tξtη with ξ2 = 2
3 , η2 = 1

4 (a symmetry of the Dynkin graph of A11);
• tξ with ξ2 = 7

8 or ξ2 = 6
7 (a symmetry of the Dynkin graph of A7 or A6).

In each case, Lemma 3.17 (with p = 3) implies that det+ a = 1. Finally, if p = 2 (the last two
sets of singularities), then we have reflections tξ such that either

• ξ2 = 7
8 (a symmetry of the Dynkin graph of A7), or

• ξ2 = 7
4 (interchanging of two copies of A7), or

• ξ2 = 4
5 (a symmetry of the Dynkin graph of A4).

Lemma 3.17 (with p = 2) implies that det+ tξ = 1.

Listed in the last column in Table 7 are the sets of singularities S extending to symmetric
homological types due to Proposition 3.16. However, since we want to represent these types
by real sextics, we will attempt to find involutive orientation-reversing automorphisms, see
Theorem 6.1. A simplest automorphism with this property would be a reflection ta, a ∈ T,
a2 = 2.

Lemma 6.4. If S is one of the sets of singularities marked with a � in Table 7, then the
lattice T contains a vector a with a2 = 2.

Proof. It suffices to find an embedding Sh ⊕ Za ↪→ L, a2 = 2, with the image of Sh

primitive. In each case, there is an element α ∈ discrSh with α2 = − 1
2 mod 2Z. Let β ∈

discr (Za) = 〈12 〉 be the generator, and let S′
h be the finite index extension of Sh with the

kernel generated by α + β. On a case-by-case basis one confirms that Theorem 3.6 implies
the existence of a primitive embedding S′

h ↪→ L. (In the last case, the set of singularities
D5 ⊕A7 ⊕A6, the element α above should be chosen carefully, viz. α = 2α1 + 4α2 + α4 in
discrSh = 〈 34 〉 ⊕ 〈

9
8 〉 ⊕ 〈

8
7 〉 ⊕ 〈

1
2 〉.)

The set of singularities A7 ⊕A6 ⊕A5 is considered in Proposition 2.7, see § 6.3, and the
remaining four deformation families are real and contain real curves; for proof, we construct
explicit reflections in O(T).

If S = 2D7 ⊕ 2A2, then T = Zu⊕ Zv ⊕ Zw with u2 = 4, v2 = −12, w2 = 6, and the reflec-
tion tu extends to an involutive automorphism of H (via −id on one of the D7 components).
Hence, M1(S) contains a real curve; by Corollary 6.2, so do M1(D7 ⊕D4 ⊕ 3A2) and
M1(2D4 ⊕ 4A2).

Finally, if S = E7 ⊕ 2A4 ⊕A3, then T = Zu⊕ Zv ⊕ Zw with u2 = v2 = 10, w2 = −4.
Since d : O(2A4)→ discr 2A4 is obviously onto, the reflection tu extends to an involutive
automorphism of H.

6.3. Proof of Proposition 2.7

One has T = 〈78 〉 ⊕ 〈
6
7 〉 ⊕ 〈

4
3 〉 ⊕ 〈

3
2 〉 ⊕ 〈

3
2 〉, and the image of O(S) in Aut T is generated by the

reflections tαi
, i = 1, 2, 3. Furthermore, one has Σ̃2(T) = Γ−−

0 and the map det+ : Aut T →
{±1} is well defined. Applying Lemma 3.17 with p = 2, one finds that det+ tα1 = 1 and
det+ tα2 = det+ tα3 = −1. In particular, it follows that the homological type is symmetric,
that is,M1(S) consists of a single real component.
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GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1333

Figure 1. The graph C2.

Up to sign, any involutive isometry a ∈ O(T) with det+ a = −1 is a reflection, a = ±tx for
some x ∈ T, x2 > 0: one can take for x a primitive vector generating the (−1)-eigenlattice of
±a, whichever has rank 1. As explained above, tx must induce −id in one and only one of the
components T3, T7. Hence, x2 = 2kq, where k = 1, 3 and q = 3, 7. (Recall that x ∈ ( 1

2x2)T�; if
k = 2, then ξ := 1

2x ∈ T2 has square 0 mod Z and tξ is not in the image of O(S).) Obviously,
η := 1

q x is a generator of Tq; on the other hand, one can see that η2/α2 /∈ (Z×
q )2, where α = α2

or α3 for q = 7 or 3, respectively. This is a contradiction.

6.4. End of the proof of Theorem 2.10

As in § 6.2, one can easily see that each set of singularities S can be obtained by a symmetric
perturbation from a maximizing real one, see Table 3. Furthermore, the perturbation can be
chosen of torus type, that is, each inner singular point of weight w is perturbed to a collection
of points of total weight w. Such perturbations are known to preserve the torus structure.
Hence, by Corollary 6.2, the space M3(S) contains a real curve.

6.5. Adjacencies of the strata

Recall that, with the exception of the set of singularities S = 2A9, the spaces M1(S)/conj
are connected for all non-maximizing sextics (see Theorem 2.5). Together with [12, Proposi-
tion 5.1.1; 24], this fact gives us a clear picture of the adjacencies of the real strata; the only
doubtful case of the two components ofM(2A9) is treated in Proposition 2.6.

Consider the adjacency graph C of the strataM1(S) ⊂M1 containing non-real components,
and let C̃ be the adjacency graph of these non-real components. One can interpret the vertices
and edges of C as, respectively, asymmetric primitive homological types and isomorphism classes
of their degenerations, whereas those of C̃ are oriented homological types and their orientation-
preserving degenerations. With two exceptions, viz. A14 ⊕A4 ⊕A1 and A13 ⊕A6, see Table 2,
a vertex of C is determined by the corresponding set of singularities. Most degenerations are of
corank 1, in which case a degeneration S′ � S is uniquely determined by the pair (S′,S), see,
for example, [20]. The forgetful projection C̃→ C is a double covering, and we are interested
in the structure of this map, in particular, in the connected components of C̃.

The graph C has several isolated vertices, viz. D7 ⊕A10 ⊕A2, D5 ⊕A14, three vertices
representing A14 ⊕A4 ⊕A1, and all maximizing sets of singularities that are also represented
by real curves. The rest splits into three larger components, which we denote by Cp, p = 2, 3, 7,
and call clusters. For a fixed p, the vertices of Cp are all sets of singularities in Table 7 containing
a [ · ]p pattern and all their asymmetric degenerations, see Figures 1–3. Denote by C̃p ⊂ C̃ the
pull-back of Cp, p = 2, 3, 7. Each double covering C̃p → Cp is described by its characteristic
class, which we denote by ωp ∈ H1(Cp; F2).

Let Cp :=
⋃
M1(S), the union running over all S ∈ Cp, p = 2, 3, 7. These subspaces of M

are also called clusters; their connected components are in a one-to-one correspondence with
those of C̃p.

The graph C2 is shown in Figure 1. Since it is simply connected, we have the following
immediate statement.
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1334 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Figure 2. The graph C3 (where X0 := E6 ⊕ A5).

Proposition 6.5. The double covering C̃2 → C2 is trivial. Hence, the cluster C2 consists
of two complex conjugate components.

The graph C3 is depicted in Figure 2, where only corank 1 degenerations are shown. This
graph has a minimal vertex Smin := E6 ⊕ 2A5 ⊕A1, shown in gray. The closure of C3 contains
four real strata

2E6 ⊕A5 ⊕A1 � E7 ⊕ 2E6, 2E6 ⊕A7, 2E6 ⊕A6 ⊕A1.

In all four, the real structure interchanges the two E6 points; for the non-maximizing set of
singularities 2E6 ⊕A5 ⊕A1, this fact can be proved similar to Lemma 6.3.

Regarded as a diagram, C3 is not quite commutative. There are two isomorphism classes of
degenerations Smin � E8 ⊕E6 ⊕A5; in the self-explanatory notation, they are

[E6 ⊕A1]⊕ [A5]⊕ [A5], [A5 ⊕A1]⊕ [E6]⊕ [A5] � E8 ⊕E6 ⊕A5. (6.6)

The former factors through the edge e : 2A5 ⊕E8 � E8 ⊕E6 ⊕A5 represented by a dotted
arrow in Figure 2, and the latter factors through the three other edges ending at E8 ⊕E6 ⊕A5.
Denote by e� ∈ H1(C3; F2) the class sending a cycle α, regarded as a sequence of undirected
edges, to the multiplicity of e in α. Formally, e� is the image of the generator of the group
H1(e, ∂e; F2) = F2 under the relativization homomorphism

H1(e, ∂e; F2) = H1(C3,C3 \ e; F2)→ H1(C3; F2).

Proposition 6.7. The characteristic class ω3 of the double covering C̃3 → C3 is ω3 =
e� 	= 0. In particular, the cluster C3 is connected.

Proof. Let C′
3 be the graph obtained from C3 by removing the (open) edge e, and let C̃′

3 ⊂ C̃3

be the pull-back of C′
3. As explained above, C′

3 is a commutative diagram. Hence, the restricted
covering C̃′

3 → C′
3 is trivial: an orientation of the homological type extending Smin induces an

orientation of all other homological types. On the other hand, both degenerations (6.6) factor
through 2E6 ⊕A5 ⊕A1 and differ by a transposition of the two E6 type points, which extends
to an orientation-reversing automorphism of the homological type. Hence, the double covering
C̃3 → C3 is not trivial and the obstruction is e�.

The graph C7 is depicted in Figure 3, where shown in black are the vertices and edges
constituting undirected cycles. (There are two vertices corresponding to the set of singularities
A13 ⊕A6, see Table 2, each connected by an edge to 3A6.) The group H1(C7; F2) ∼= F3

2 is

 1460244x, 2015, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s/pdv053 by A

bdullah G
ul U

niversity, W
iley O

nline L
ibrary on [12/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1335

Figure 3. The graph C7.

generated by the three four-edge cycles γ1, γ2, γ3, and the characteristic class ω7 is determined
by its values on these cycles.

Proposition 6.8. The characteristic class ω7 of the double covering C̃7 → C7 is γ1, γ3 �→ 1,
γ2 �→ 0. In particular, the cluster C7 is connected.

Proof. Consider a quadratic F7-module X . Recall that the group AutX is generated
by reflections and there are well-defined homomorphisms det, spin : AutX → {±1} sending
a reflection tξ to (−1) and the class 14ξ2 mod (Z×

7 )2 ∈ Z×
7 /(Z×

7 )2 = {±1}, respectively, see, for
example, [6]. Assuming that |X | · det7 X = 1 mod (Z×

7 )2, define a spin-orientation of X as a
class of orthogonal bases α := {α1, . . . , α�}, α2

i = 2
7 mod 2Z, two bases α′, α′′ being equivalent

if the isometry σ : α′
i �→ α′′

i , i = 1, . . . , 
, has spinσ = 1. Note that the order or the signs of the
basis vectors are not important: isometries reversing the spin-orientation are more subtle. In
particular, the group discr7S for any S ∈ C7 has a canonical spin-orientation.

Let ds := det · spin. In a similar way, using bases with α2
i = − 2

7 mod 2Z, we can define
the notion of ds-orientation for an F7-module Y satisfying |Y| · det7 Y = (−1)� mod (Z×

7 )2,
where 
 := 
(Y). An anti-isometry X → Y takes spin-orientations to ds-orientations. There is
a unique ds-orientation on 〈−2

7 〉; hence, a ds-orientation on Y induces a ds-orientation on
any codimension 1 submodule Z ⊂ Y satisfying |Z| · det7 Z = (−1)�−1 mod (Z×

7 )2. A similar
statement holds for spin-orientations.

The essence of the proof of Lemma 6.3 is the fact that, for any vertex S ∈ C7, one has
Im[d7 : O+(T)→ Aut T7] ⊂ Ker ds. (If μ(S) = 19, then this follows from [34].) Hence, there is
a bijection conv : o �→ s between positive sign structures on T and ds-orientations on T7. (The
particular choice of conv is not important; it can be fixed separately for each isomorphism class.)
Thus, an oriented homological type (H, o) can be declared positive or negative according to
whether the anti-isometry S → T does or does not take the canonical spin-orientation of S7 to
conv(o).

Given a lattice extension ι : S ↪→ S′, the homomorphisms ι⊗Q and ι� induce additive
relations ι∗ : S7 ��� S ′7 and ι� : S ′7 ��� S7. If ι is one of the black arrows in Figure 3, then both
ι∗ and ι� are true homomorphisms; they give rise, in a canonical way, to either an isomorphism
S7 = S ′7 or a splitting S7 = S ′7 ⊕ 〈27 〉 (if S = 3A6), which respect the canonical spin-orientation.
Passing to the transcendental lattices, we conclude that, in either case, a ds-orientation on T7
induces one on T ′

7 . On the other hand, T′ ⊂ T is a maximal positive definite sublattice and T
and T′ have a common positive sign structure o = o′. Hence, we can assign to ι a sign ε = ±1
so that the ds-orientation on T ′

7 induced by conv(o) equals εconv(o′). This sign depends on the
conventions conv, but the product ε := ε1ε2ε3ε4 over a four-edge cycle c := (ι1, ι2, ι3, ι4) does
not, as each convention is used twice. It is immediate from the definitions that ε = (−1)ω7(c).
Now, the statement of the proposition is proved by a routine computation of the signs, cf.
Example 6.9.
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1336 AYŞEGÜL AKYOL AND ALEX DEGTYAREV

Example 6.9. We illustrate the computation of the signs in the previous proof. All rank
two lattices involved are of the form Zu⊕ Zv, u2 = 2r+1 · 7, v2 = 2s+1 · 7, r, s � 0, and for
such lattices, we define conv to take the positive basis {u, v} to a basis {α1, α2} with α1 :=
1
7 (2r+2u + 2s+1v). (For a module of length 2, one vector of square − 2

7 mod 2Z is enough to
define a ds-orientation. For the comparison purposes, it is convenient to consider the basis
β1 := 1

7 · 2ru, β2 := 1
7 · 2sv with β2

1 = β2
2 = 2

7 mod 2Z, so that α1 = 4β1 + 2β2. In terms of the
β-basis, the transposition of the two vectors or changing the sign of one of them reverses the ds-
orientation.) To avoid choices for rank 3 lattices, we consider a pair of arrows S′ � S � S′′.
Let S = D6 ⊕ 2A6 (the topmost pair in Figure 3). Then T = Zu⊕ Zv ⊕ Zw, u2 = v2 = 14,
w2 = −2, and T′,T′′ ⊂ T are spanned, respectively, by u′ := u, v′ := v and u′′ := 3u + 7w,
v′′ := v. (We use the fact that each transcendental lattice involved is known to be unique in
its genus and merely ‘guess’ a representation producing the correct discriminant. Since we
know that the sign is well defined, it suffices to consider a particular pair of sublattices.) The
orientations of the two bases are coherent, and the coefficient 3 /∈ (Z×

7 )2 in the expression
for u′′ tells us that the product of the signs associated with this pair of arrows is (−1): one
has β′′

1 = −β′
1 and β′′

2 = β′
2. To complete the cycle γ1, consider the other rank 3 lattice S̄ =

D5 ⊕A1 ⊕ 2A6 and its degenerations S′ � S̄ � S′′ (the second pair in Figure 3). Then, in
the self-explanatory notation, one has T̄ = Zū⊕ Zv̄ ⊕ Zw̄, ū2 = 14, v̄2 = 28, w̄2 = −2, and the
generators of T′,T′′ ⊂ T̄ can be represented as u′ := ū, v′ := 2v̄ + 7w̄ and u′′ := ū, v′′ := v̄.
Since 2 ∈ (Z×

7 )2, we can deduce that β̄1 = β′
1 and β̄2 = β′

2. Hence, the cumulative sign of the
cycle γ1 is ε = 1 · (−1) · 1 · 1 = −1, that is, ω7(γ1) = 1.

A similar computation, slightly more involved if S = 3A6 (where T = (Zu + Zv)⊕ Zw, u2 =
v2 = 0, u · v = 7, w2 = 14), shows that the sign convention for rank 3 lattices can be chosen so
that only the two arrows marked with a ‘−’ in Figure 3 have associated sign (−1); this proves
Proposition 6.8.
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4. E. Artal Bartolo, J. C. Ruber and J. I. Cogolludo Agust́ın, ‘Effective invariants of braid monodromy’,

Trans. Amer. Math. Soc. 359 (2007) 165–183 (electronic).
5. N. Bourbaki, ‘Lie groups and Lie algebras, Chapters 4–6’, Elements of mathematics (Berlin) (Springer,

Berlin, 2002). Translated from the 1968 French original by Andrew Pressley.
6. J. W. S. Cassels, Rational quadratic forms, London Mathematical Society Monographs 13 (Academic

Press [Harcourt Brace Jovanovich Publishers], London, 1978).
7. J.-I. Cogolludo-Agust́ın and A. Libgober, ‘Mordell–Weil groups of elliptic threefolds and the Alexander

module of plane curves’, J. reine angew. Math. 697 (2014) 15–55.
8. A. Degtyarev, ‘Fundamental groups of symmetric sextics’, J. Math. Kyoto Univ. 48 (2008) 765–792.
9. A. Degtyarev, ‘Oka’s conjecture on irreducible plane sextics’, J. London Math. Soc. (2) 78 (2008)

329–351.
10. A. Degtyarev, ‘On deformations of singular plane sextics’, J. Algebraic Geom. 17 (2008) 101–135.
11. A. Degtyarev, ‘Stable symmetries of plane sextics’, Geom. Dedicata 137 (2008) 199–218.
12. A. Degtyarev, ‘Irreducible plane sextics with large fundamental groups’, J. Math. Soc. Japan 61 (2009)

1131–1169.
13. A. Degtyarev, ‘Oka’s conjecture on irreducible plane sextics. II’, J. Knot Theory Ramifications 18 (2009)

1065–1080.

 1460244x, 2015, 6, D
ow

nloaded from
 https://londm

athsoc.onlinelibrary.w
iley.com

/doi/10.1112/plm
s/pdv053 by A

bdullah G
ul U

niversity, W
iley O

nline L
ibrary on [12/06/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



GEOGRAPHY OF IRREDUCIBLE PLANE SEXTICS 1337

14. A. Degtyarev, ‘On irreducible sextics with non-abelian fundamental group’, Singularities—Niigata–
Toyama 2007, Advanced Studies in Pure Mathematics 56 (Mathematical Society of Japan, Tokyo, 2009)
65–91.

15. A. Degtyarev, Topology of algebraic curves: an approach via dessins d’enfants, De Gruyter Studies in
Mathematics 44 (Walter de Gruyter, Berlin, 2012).

16. A. Degtyarev, ‘Maximizing plane sextics with double points’, electronic, 2012, http://www.fen.bilkent.
edu.tr/degt/papers/papers.htm.

17. A. Degtyarev, ‘On plane sextics with double singular points’, Pacific J. Math. 265 (2013) 327–348.
18. A. Degtyarev, ‘On the Artal–Carmona–Cogolludo construction’, J. Knot Theory Ramifications 23 (2014)

1450028 (35 pages).
19. A. H. Durfee, ‘Fifteen characterizations of rational double points and simple critical points’, Enseign.

Math. (2) 25 (1979) 131–163.
20. E. B. Dynkin, ‘Semisimple subalgebras of semisimple Lie algebras’, Mat. Sb. N.S. 30 (1952) 349–462 (3

plates), AMS Transl. (2) 6 (1957) 111–244 (English).
21. C. Eyral and M. Oka, ‘On the fundamental groups of the complements of plane singular sextics’, J.

Math. Soc. Japan 57 (2005) 37–54.
22. C. Eyral and M. Oka, ‘Fundamental groups of the complements of certain plane non-tame torus sextics’,

Topology Appl. 153 (2006) 1705–1721.
23. H. Ishida and H. Tokunaga, ‘Triple covers of algebraic surfaces and a generalization of Zariski’s example’,

Singularities—Niigata–Toyama 2007, Advanced Studies in Pure Mathematics 56 (Mathematical Society of
Japan, Tokyo, 2009) 169–185.

24. E. Looijenga, ‘The complement of the bifurcation variety of a simple singularity’, Invent. Math. 23 (1974)
105–116.

25. R. Miranda and D. R. Morrison, ‘The number of embeddings of integral quadratic forms. I’, Proc. Japan
Acad. Ser. A Math. Sci. 61 (1985) 317–320.

26. R. Miranda and D. R. Morrison, ‘The number of embeddings of integral quadratic forms. II’, Proc.
Japan Acad. Ser. A Math. Sci. 62 (1986) 29–32.

27. R. Miranda and D. R. Morrison, ‘Embeddings of integral quadratic forms’, electronic, 2009, http://www.
math.ucsb.edu/drm/manuscripts/eiqf.pdf.

28. M. Namba, Geometry of projective algebraic curves, Monographs and Textbooks in Pure and Applied
Mathematics 88 (Marcel Dekker, New York, 1984).

29. V. V. Nikulin, ‘Integer symmetric bilinear forms and some of their geometric applications’, Izv. Akad.
Nauk SSSR Ser. Mat. 43 (1979) 111–177, 238, Math USSR-Izv. 14 (1979/80) 103–167 (English).

30. M. Oka and D. T. Pho, ‘Classification of sextics of torus type’, Tokyo J. Math. 25 (2002) 399–433.
31. M. Oka and D. T. Pho, ‘Fundamental group of sextics of torus type’, Trends in singularities, Trends in
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