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ABSTRACT 

Investigating The Origin of The Weekly Cycle 

During The COVID-19 Virus Pandemic and Its 

Relation to Socio-economic Factors 
İsmail Emre YAĞMUR 

MSc. In Bioengineering  

Advisor: Asst. Prof. ALTAN ERCAN 

January 2024 

The Covid-19 virus, which started in China in 2019 and affected the whole world, 

has caused a global pandemic. Looking at the worldwide data of this pandemic, the 

number of daily cases appears to have a weekly cycle that is underestimated as an artifact 

of the number of daily tests administered. In this thesis study, a new model is developed 

to calculate the daily infection numbers from daily case numbers by using the Weibull 

distribution and the natural characteristics of the COVID-19 virus. According to the 

results obtained, it is found that the number of daily cases has a real weekly cycle. It has 

been determined that the daily infection numbers calculated in this weekly cycle are 

minimum on weekdays. According to the analysis by the new methos, these weekly 

minimums are controlled by socio-economic factors such as human development index 

and annual national income per capita. During the ascending and descending phases of 

the pandemic, the weekly minimum shifts from Monday to Friday, exposing the presence 

of two separate environments for the transmission of the virus among people: working 

and social. Moreover, the data reveal a variable rather than a fixed reproduction number. 

As a result, the model we developed in this study successfully identifies the socio-

economic factors as the effectors of the progression of the pandemic by taking into 

account the time of infection for the first time in the literature and is expected to guide 

the future pandemic studies and pandemic, itself.  

Keywords: SARS-CoV-2, COVID-19, Infection Time and Number, Weekly Cycle. 
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ÖZET 

COVID-19 Virüs Pandemisinde Haftalık Döngünün 

Kökeni ve Sosyo-Ekonomik Faktörlerle İlişkisinin 

Araştırılması 

 
İsmail Emre YAĞMUR 

Biyomühendislik Anabilim Dalı Yüksek Lisans 

Danışman: Dr. Öğr. Üyesi ALTAN ERCAN 

Ocak 2024 

 

2019 yılında Çin'de başlayıp tüm dünyayı etkisi altına alan Kovid-19 virüsü, 

küresel bir salgına neden oldu. Bu salgının dünya çapındaki verilerine bakıldığında, 

günlük vaka sayısının, uygulanan günlük test sayısının bir eseri olarak hafife alınan 

haftalık bir döngüye sahip olduğu görülmektedir. Bu araştırmada, Weibull dağılımı ve 

COVID-19 virüsünün özellikleri kullanılarak günlük vaka sayılarından günlük 

enfeksiyon sayılarına ulaşmak için yeni bir model geliştirilmiştir. Elde edilen sonuçlara 

göre günlük vaka sayısının gerçek bir haftalık döngüye sahip olduğu tespit edildi. Bu 

haftalık döngüde hesaplanan günlük enfeksiyon sayılarının hafta içi günlerde minimum 

olduğu saptandı. Bu haftalık minimumların insan gelişmişlik endeksi ve kişi başına düşen 

yıllık milli gelir gibi sosyo-ekonomik faktörler tarafından kontrol edildiği analiz 

edilmiştir. Pandeminin yükseliş ve azalış aşamalarında haftalık minimum süre 

pazartesiden cumaya kayıyor ve virüsün insanlar arasında bulaşması için çalışma ortamı 

ve sosyal ortam olmak üzere iki ayrı ortam oluşuyor. Üstelik veriler sabit bir üreme 

sayısından ziyade bir değişkeni ortaya koyuyor. Sonuç olarak bu çalışmada 

geliştirdiğimiz model, literatürde ilk kez pandeminin ilerlemesindeki sosyo-ekonomik 

faktörleri enfeksiyon zamanını dikkate alarak başarıyla tespit etmiş ve gelecekteki olası 

pandemiler için ışık olma potansiyeline sahiptir. 

Anahtar Kelimeler: SARS-CoV-2, COVID-19, Enfeksiyon zamanı ve sayısı, 

Haftalık Döngü. 
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Chapter 1 
 

INTRODUCTION 

 
1.1 Coronaviruses 

Coronaviruses (CoV) are categorized in the group of RNA viruses according to 

their nucleic acids. They contain single-stranded positive-sense ribonucleic acid 

(ssRNA+) and are also enveloped viruses [1]. Characteristically, they appear as a 

crown under the electron microscope and corona means crown in Latin. The 

ultrastructural morphology of the coronavirus is shown in Figure 1.1.1. The reason 

why it looks crown-shaped is the presence of club-shaped surface glycoprotein 

projections on its surface [2]. 

 

 
Figure 1.1.1: Illustration of ultrastructural morphology of coronaviruses by Centers 
for Disease Control and Prevention (CDC). This figure adapted from: [3]. 
 

Coronaviruses historically spread widely among mammals and birds, and cause 

respiratory and intestinal-based diseases but very rarely in humans [4]. It can also 

cause hepatitis and neurological diseases in some cases [5]. Coronavirus infection 

appears to be both acute and chronic and has been found to infect its hosts in a 

species-specific manner. Their species-specific nature arises from the virus's ability 

to interact with specific cell receptors in a host species, determining its infectivity 

and adaptation to different animals or humans [4].  
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The most important distinguishing feature of coronaviruses is that they have the 

largest genomes and large coding capacity among all RNA viruses [4]. 

 

1.2 Classification 
Coronavirus was first recognized in the 1960s with the discovery of a few new 

human respiratory pathogens that appeared to be similar to the previously identified 

avian infectious bronchitis virus and mouse hepatitis virus [6]. 

The Coronaviridae family belongs to the order Nidovirales which also includes 

Arteriviridae, Mesoniviridae, and Roniviridae. Coronaviruses are the largest group 

of viruses of this order [7]. The common feature of all viruses in the Nidovirales 

order is that they are unsegmented, enveloped and positive sense RNA viruses. These 

viruses have large genomes compared to the other RNA viruses, containing 

approximately 33.5 kb of genome [1]. Another important common feature of the 

Nidovirales order is their highly conserved genomic organization. They have a large 

replicase gene preceding structural and accessory genes. Differences within the 

Nidovirales order occur depending on the type, number and size of structural 

proteins. As a result of these differences, the morphology of the virus changes 

significantly [8].  

RNA group viruses are divided into 3 groups: Nidovirales, Picornavirales and 

Tymovirales (Figure 1.2.1). The Nidovirales order, which includes the coronavirus, 

is divided into 4 families as described above [9]. The Coronaviridae family includes 

two subfamilies: Coronavirinae and Torovirinae. The Coronavirinae subfamily 

includes 4 genera: Alphacoronaviruses, Betacoronaviruses, Gammacoronaviruses, 

and Deltacoronaviruses, according to serology and phylogenetic classification 

(Figure 1.2.1) [10]. 

The detailed classification of the coronavirus (SaRS CoV-2) that causes severe 

acute respiratory syndrome is shown in figure 1.2.1. 
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Figure 1.2.1: The schematic representation of the classification and the origin of SARS 
CoV-2 [1]. 
 

1.3 History of Coronavirus 
Coronavirus was first identified as a new respiratory tract virus in 1962, in the 

samples from patients who presented symptoms and complaints of respiratory tract 

infection [11]. The genomes of the first discovered coronaviruses were generally smaller, 

approximately 27-32 kilobase pairs (kb), but the genome of SARS-CoV-2 consists of 

approximately 30 kilobase pairs. Another difference is genetic difference. The genome 

of SARS-CoV-2 is quite different from other coronaviruses. In particular, it has a 
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structural protein called spike protein, which is markedly different from that of other 

coronaviruses[12]. 

In November 2002, the first case of SARS infection appeared in Guangdong province 

in China. According to WHO, 305 people were infected and 5 people died. This was the 

first official report for the SARS epidemic by WHO. An interesting point in this report is 

that nearly 30% of the cases were healthcare personnel involved in patient care [13]. In 

addition, the first cases of the epidemic occurred among people working in food 

establishments of animal origin. A total of 24 countries were affected by SARS virus, 

which started in November 2002 and continued for a while, in Cambodia, Hong Kong, 

Singapore, Hanoi and Canada. In total, approximately 8,500 SARS-CoV cases and 813 

deaths were reported [14]. 

MERS (Middle East Respiratory Syndrome) is a disease caused by the virus called 

MERS-CoV, which belongs to the coronavirus family and emerged in Saudi Arabia in 

2012, causing serious respiratory diseases. MERS is generally transmitted to humans 

from dromedary camels, with limited transmission potential between humans. MERS has 

been observed to cause serious complications such as acute respiratory failure and kidney 

failure[15]. 

In December 2019, a significant escalation in the incidence of acute respiratory 

distress, marked by the manifestation of symptoms akin to pneumonia, identified within 

the urban areas of Wuhan, the capital city of Hubei province in the People's Republic of 

China. It was subsequently reported that this group of patients was infected with a new 

coronavirus (nCoV) that has never been seen to infect humans before [16]. This new 

virus, which has a similar symptom to SARS, was first called as "nCoV 2019". Later, the 

World Health Organization and the China Bureau reported this virus, a new coronavirus 

called COVID-19 and disease it causes as Severe Acute Respiratory Syndrome 

Coronavirus 2 (SARS-CoV-2) The discovery of this new coronavirus was made by 

isolating it from individuals with pneumonia [17].  

It has been determined that COVID-19 infects people more efficiently than SARS 

and MERS viruses, which caused epidemics in 2002 and 2012, respectively [18]. Another 

factor as effective as genetic factors in the rapid spread of this virus all over the world is 

that it spread from Wuhan, an important transportation center of China and a crowded 

province where 11 million people live [17]. 

As of October 15, 2023, WHO documented a total of 771 million confirmed cases of 

SARS-CoV-2, along with 6.9 million fatalities on a global scale. 
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1.4 Global Spread of COVID-19 and Health Crisis 
The insightful and prescient perspective, as illuminated by the pioneering research 

of Kermack and McKendrick in 1927, highlights the interconnected nature of population 

growth with the increased likelihood of infectious disease outbreaks [19]. This 

underscores the ongoing challenge posed by such situations in modern society. In short, 

it is not a realistic perspective to imagine living without epidemics and pandemics in the 

future. 

Towards the end of 2019, an unidentified illness surfaced in Wuhan, China, 

characterized by symptoms related to upper respiratory tract infections. In a relatively 

brief period thereafter, the origin of this disease was traced back to a virus named as 

COVID-19 and the disease named as the SARS-CoV-2, a designation conferred by the 

WHO [20]. Unfortunately, the COVID-19 virus has spread at a speed never seen before 

and first became an epidemic and then a pandemic in the world [21]. 

The fact that this strain of Coronavirus has a very high transmission capacity which 

allowed it to turn into a global pandemic all over the world. This caused the collapse of 

healthcare systems around the world, surprising governments and almost rendering them 

unable to act. It is obvious that there was an imperative need to take urgent and effective 

measures to manage this epidemic to reduce its effects [21]. 

 

1.5 The Initial Response to the COVID-19 Pandemic 
The first interventions to the COVID-19 pandemic, which had a great impact in the 

world, included the implementation of various non-pharmaceutical interventions (NPIs) 

to prevent the transmission of the virus [22]. This included information explaining the 

benefits of using face masks, personal hygiene and frequent hand/face washing. In 

addition, the concept of social distancing was explained to the public. According to the 

status of the pandemic, harsher and stricter interventions than those were imposed such 

as staying at home and restrictions on working hours. All of these non-pharmaceutical 

interventions varied from country to country and over time [23].  

Differences in the implementation of NPIs can be exemplified by the different 

implementation by different states in the United States. While NPIs in some states were 

followed early and strictly, the situation in some states was the opposite. Of course, this 
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has caused differences in the spread of the virus and the number of cases between these 

states [24]. 

Similarly, important findings were found in the study conducted in Germany on the 

change of reproduction number (R0) in the number of SARS-CoV-2 cases. The timing of 

the measures determined by the political authorities in this country and the frequency of 

these measures have caused the change in the number of daily case numbers. The 

importance of the time and frequency of these measures for the health system was clearly 

revealed [25]. 

The initial measures included staying at home and restricting working hours and 

extended to travel restrictions. A study conducted in China revealed that travel bans, and 

stay-at-home measures were very important in controlling the virus, but it wasn’t enough 

to stop the spread of the virus. Therefore, much more strict measures in China were 

implemented intensively, literally shutting down cities and regions in order to prevent the 

rapid spread of the virus. This meant strict curfews and quarantines. In particular, the city 

of Wuhan was considered to be the center of the pandemic, so a complete lockdown was 

implemented and people's movements in and out of the city were limited. The 

implementation of these radical measures helped to bring the epidemic under control 

quickly. These NPIs resulted in the considerable decrease in new daily case numbers, 

easing high pressure on the healthcare system. However, such strict measures also 

brought out economic and social difficulties. For example, business closures and curfews 

have seriously affected the daily lives of many people. At this point, the development of 

the countries in different areas such as education and Gross domestic product (GDP) are 

seen as important points [26]. 

 In conclusion, the response to the SARS-CoV-2 pandemic involved a variety of 

NPIs, from personal hygiene recommendations to more drastic measures depending on 

the evolving understanding of how the virus spread and the specific precautions according 

to the perspectives by each country or region. These interventions have clearly played an 

important role in mitigating the impact of the epidemic and continued to be adapted to 

the evolving nature of the crisis [27]. 
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1.6 Concept of Herd Immunity and Lessons from COVID-19 Pandemics 
Understanding and achieving herd immunity against a pathogen like COVID-19 

virus is a critical aspect in managing its transmission within a population. Traditionally, 

this immunity is established by either exposing individuals to a milder strain of the 

pathogen or more commonly through widespread vaccination efforts, particularly in the 

case of COVID-19 virus [28]. 

Vaccination of a large proportion of populations is necessary to achieve herd 

immunity to reduce COVID-19 transmission and save vulnerable individuals from the 

severe effects of the disease. Herd immunity requires a 75-85% vaccination rate in the 

population. Additionally, as the intensity of the infection increases, the number of 

individuals who need to be vaccinated also increases [28]. Another study estimated that 

83% of the population needed to become immune to reach the herd immunity threshold 

[29]. However, at this point, the fair distribution of the vaccine, people's acceptance of 

vaccination and the unknown response of the new variants of the virus towards the 

vaccine were among the difficulties in the effort to achieve herd immunity. 

Effective collaboration of different institutions in the fight against the pandemic, such 

as researchers, health experts and policy makers, is also very important for the future of 

the pandemic and its impact on society. The joint and harmonious effort for vaccination 

campaigns put forward to reach a successful herd immunity. However, the vaccination 

campaigns didn’t result in reaching the expected level for lowering the daily case numbers 

while lowering the daily death number [30]. This experience shows that vaccination may 

not be enough to lower the daily case numbers and points to need for the alternatives 

based on the mechanism of virus probation. 

 

1.7 Effect of vaccination 
To begin, it has become evident that the swift global propagation of this virus with 

four million daily cases recorded worldwide from December 21, 2021, to April 30, 2022, 

constitutes a significant public health challenge. Conducting research to reveal the most 

important factors affecting the transmission of the COVID-19 virus can offer significant 

perspectives on limiting the virus transmission [30]. The high contagiousness of the 

COVID-19 virus is the main factor that causes rapid spread. It may be possible for the 

infectious rate to increase further as a result of the evolution of different variants of this 

virus [30-32] . 
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One of the most important factors in preventing the spread of the virus is a 

successful vaccine and vaccination process. The development of vaccines with an 

effectiveness of up to 95% is one of the important achievements [33, 34]. The availability 

of multiple vaccines, especially those from Novavax, BioNTech and Moderna, has 

supported the effort to protect populations against the virus. Highly effective vaccines 

have been proven in slowing the spread of the virus and reducing the impact of the 

pandemic [35, 36]. 

In summary, the rapid transmission of COVID-19 virus and the production of the 

effective vaccines helped to control rapid spread of the virus between 21 December 2021 

and 30 April 2022. In order to control such epidemics that affected the whole world, 

scientific research was of great importance due to a good understanding of the 

characteristics of the virus and the development of effective vaccines. This pandemic 

process has taught valuable lessons on ways to protect public health and limit the growth 

of the pandemic's impact. 

Despite comprehensive restrictions and global vaccination campaigns, the SARS-CoV-2 

pandemic continued to affect life in 2023. The distinctive nature of the COVID-19 virus 

and the different variants it has evolved and have made the pandemic difficult to manage 

and control. 

 

1.8 Mutations and Variants of COVID-19 Virus 
The COVID-19 virus possesses a single-stranded positive sense RNA. Its mutation 

rate is relatively low at approximately 1.3 x 10-6 ± 0.2 x 10-6 per cycle [37]. Despite this, 

its efficiency in spreading during the pandemic wasn’t fully impeded due to its high 

replication rate, infectivity rates and large number of naive populations. The virus 

undergoes rapid evolution leading to the emergence of new variants within a short 

timeframe [38]. 

Mutations in the virus have led to the emergence of new variants with faster 

replication rates and transmission characteristics, especially alpha, beta, gamma and delta 

variants resulting in the diversification of existent variants [37, 39]. 

The formulation and modification of the pandemic management plans, vaccination 

programs, and the public health policies are greatly aided by this information, which also 

highlights crucial and intricate problems that require constant surveillance. At the end, 

the mutation rates of COVID-19 virus are what causes the fast spread of many variations, 
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including the development of specific variants like alpha, beta, gamma, and delta. This 

demonstrates the growing significance of gaining a better comprehension of evolutionary 

dynamics of the virus and the population's alterations. 

The emergence of new variants has demonstrated their capacity to re-infect 

individuals who have recovered from COVID-19 virus infection or have been vaccinated 

against previous variants [40]. This highlights that acquired immunity might not offer 

expected protection against new strains like the BQ and XBB subvariants of Omicron 

[41]. Despite this, world-wide vaccination efforts have shown success in reducing 

hospitalization and mortality rates [42]. Although the limitations of existing NPIs and 

vaccines have become evident [43], it is clear that they are not enough to stop the 

pandemics and therefore there is an urgent need to design alternative approaches to 

effectively manage the spread of the virus. 

Therefore, to control the spread of COVID-19, alternative approaches need to be 

developed alongside NPIs and vaccines. Relying solely on existing vaccines and NPIs is 

not sufficient, because as new variants develop and immune memory becomes 

ineffective, there is an increasing need to study additional treatment and protection 

strategies. Scientists are constantly striving to develop rapid and effective responses to 

these new threats. This reflects the need for a continuous learning process and flexibility 

to manage the pandemic. 

 

1.9 Human Development Index and GINI Index 
Human Development Index (HDI) is a term introduced by the United Nations 

Development Program (UNDP) and accepted as a unit of measurement that evaluates the 

development of countries from a broad perspective. Its primary objective is to consider 

not only economic advancement but also the standards of living and overall well-being 

of a society. HDI serves as a tool for both ranking countries and monitoring their 

advancement in the realm of human development. There are 3 fundamental indexes in the 

Human Developmental Index calculation [44]: 

 

1. Life Expectancy at Birth: This component reflects how long a country's 

population lives on average. Usually, this component is represented by life 

expectancy (life expectancy). 

2. Education: The education component is divided into two subcomponents: 
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a. Literacy and Basic Education: This component includes basic education indicators such 

as a country's literacy rate. 

b. Average Years of Education of People: This component reflects the average years of 

education of a country's population. 

      3. GDP (Gross Domestic Product) - Purchasing Power Parity (Gross Domestic 

Product - Purchasing Power Parity, GDP-PPP): This component represents the economic 

well-being of a country and calculates GDP per capita in purchasing power parity. This 

reflects a country's economic productivity. 

When calculating HDI, each component is compressed into a specific range and 

the results are combined to calculate the HDI value. The HDI value is a number between 

0 and 1. 1 represents the highest level of human development while 0 represents the 

lowest. 

HDI is a common tool for evaluating the development levels and differences of 

countries and helps policymakers in directing development efforts. However, HDI also 

has its criticisms, because this index is based only on some basic indicators and may not 

fully reflect all human development. Therefore, a more comprehensive assessment can 

be made by using other indicators and the HDI data together. 

The GINI index was developed by Italian statistician Corrado Gini in 1912. The 

GINI index, also known as the GINI coefficient, is the most common measure of 

inequality and is often used as a measure of income inequality [45]. 

The GINI index offers the benefit of summarizing the overall income distribution 

inequality through a single statistic that is straightforward to interpret, ranging between 0 

and 1. 

It is stated that as values increase, inequality increases, while when values 

decrease, inequality decreases. That is, a value of 0 represents perfect equality, where 

everyone in that society has the same value. On the other hand, a value of 1 indicates that 

one person receives all income and the rest receive no income [45]. 

 

1.10 The Weekly Cycle of Daily Case Number and Its Possible Origin 
It is obvious that it is necessary to develop more effective methods to prevent the 

transmission of the COVID-19 virus. The primary mechanism of virus spread is when an 

infected individual and a vulnerable individual interact with each other in close proximity 

in a shared time and space which potentially can lead to new infections [46].  
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The daily diagnosis numbers (𝐷𝑖𝑑) for most countries peak on weekdays (Monday to 

Friday) and dipped on weekends (Saturday and Sunday) [47]. This pattern was also 

visible in the number of daily tests performed with a peak during the weekdays and a 

bottom on the weekends at the relatively early days of the pandemic [48, 49]. For 

example, strong linear correlation coefficients between these variables were found in 

New York City, NY, and Los Angeles, CA, with R2 values of 0.96 and 0.83, respectively 

[49]. Consequently, a weekly cycle (WC) in 𝐷𝑖𝑑 was initially deemed as an outcome of 

the daily applied COVID-19 tests and discrepancies in reporting between weekdays and 

weekends at the pandemic's onset [49]. Subsequently, it was inferred that the WC of 𝐷𝑖𝑑 

is an artifact of the daily tests administered. 

In this study, the relationship between WC and the number of tests was examined and 

it was aimed to understand whether the above conclusion is correct or not. With this 

understanding, a Backtracking (BTrac) method was developed to calculate the total daily 

number of infections (𝐼𝑛t), implemented using 𝐷𝑖𝑑 data. Unlike 𝐷𝑖𝑑, 𝐼𝑛t shows a low level 

on a weekly basis during the week, which is affected by socio-economic factors such as 

GDP per capita income, HDI and national holidays. Additionally, the reproductive 

number (R0), which represents the average number of secondary infections caused by an 

individual per day, was calculated by dividing 𝐼𝑛t by the previous day's value and exhibits 

a similar WC pattern as 𝐷𝑖𝑑 and 𝐼𝑛t in real-world data. This discovery was combined with 

the previous method to form the Variable R0 value of infection (VarR0i) method. This 

new method can help us better understand the mechanism of virus spread and predict the 

changes in the course and the spread of infections based on real-world data. 

The VarR0i approach effectively mirrors the WC observed in real-world data, 

predicting a 50% reduction in infections if the infectivity of the virus decreases by 11% 

in the second half of seven consecutive weeks. By tracking and predicting changes in the 

rate of spread of the virus based on real-world data, this approach suggests that infections 

could be decreased significantly once there is a certain downward trend. This may 

actually offer a specific road map in controlling the virus and reducing the number of 

infections. 

Here in this study, it is proved that weekly cycle (WC) of 𝐷𝑖𝑑 is not an artifact. Based 

on this hypothesis, a Back Tracing (BTrac) method is developed to calculate 𝐼𝑛t from 𝐷𝑖𝑑. 

The calculated 𝐼𝑛t has WC as in 𝐷𝑖𝑑 but unlike 𝐷𝑖𝑑, WC of 𝐼𝑛t has a weekly minimum 

during the weekdays and is controlled by the socio-economic factors such as the Gross 
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Domestic Product per capita, Human Development Index and national holidays. In 

addition, R0i, which is defined here as the number of secondary infections caused by an 

infected individual per day in average and calculated by dividing 𝐼𝑛t by the same value 

for the day before, exhibits WC as in the case of 𝐷𝑖d and 𝐼𝑛t for real world data. Combining 

this observation with the above method gives rise to a Variable R0i (VarR0i) method. 

In this context, it is imperative to emphasize that the observed weekly cycle (WC) 

of 𝐷𝑖d, originally considered an artifact, bears significant implications for our 

understanding of the COVID-19 spread and pandemic dynamics. This research 

demonstrates that WC of 𝐷𝑖d is not a mere artifact, but rather a manifestation of intricate 

transmission patterns intertwined with numerous socio-economic variables. 

Consequently, we have developed a novel analytical framework, the Back Tracing 

(BTrac) method, to derive the daily total number of infections (𝐼nt) from 𝐷𝑖𝑑. Notably, our 

findings reveal that 𝐼𝑛t also exhibits a discernible weekly cycle, distinguished weekdays. 

This compelling insight underscores the significant influence of socio-economic factors, 

including GDP per capita, HDI, and national holidays, on the weekly fluctuations 

observed in 𝐷𝑖𝑑 and 𝐼𝑛t. 

Moreover, this study introduces a critical epidemiological metric, representing the 

average number of secondary infections attributed to an individual per day. It is computed 

by dividing 𝐼𝑛t for a given day by the corresponding value for the previous day. Strikingly, 

R0 exhibits a WC pattern mirroring that observed in 𝐷𝑖𝑑 and 𝐼𝑛t when applied to real-

world data. Building on this observation, we introduce a novel approach, the VarR0i 

method, which replicates the WC pattern evident in real-world data. As it indicated, our 

VarR0i approach proves invaluable for predictive modeling, illustrating that a modest 

11% reduction in virus transmission over the latter half of seven consecutive weeks could 

lead to a 50% decrease in projected infections. 

These findings underscore the vital role of detailed transmission dynamics, socio-

economic variables, and predictive models in the ongoing global effort to comprehend 

and mitigate the COVID-19 pandemic. By offering a refined understanding of the weekly 

fluctuations in COVID-19 diagnoses and infections, our research contributes to the 

development of more effective strategies for pandemic management, rooted in evidence-

based insights into the multifaceted factors at play in this global health crisis. 
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Chapter 2  

 
Material and Methods 
 

2.1 The online data sources:  
The data utilized in this analysis has been acquired from publicly available online 

platforms. The dataset concerning the correlation between daily COVID-19 positive cases 

and test numbers was acquired from the Our World In Data website 

(www.ourworldindata.org ). Additionally, for a more extensive examination 

encompassing 46 countries, the daily case number data was accessed from 

https://data.humdata.org/dataset/coronavirus-covid-19-casesand-deaths . Socio-

economic factors such as GDP, GDP per capita, GINI index, and HDI were gathered from 

reputable sources including the World Bank website 

(https://data.worldbank.org/indicators ) for GDP-related data and the World Population 

Review website (https://worldpopulationreview.com/countries ) for HDI information. 

 

2.2 Determining the relation between the daily case and test numbers 

using linear regression analysis 
The dataset pertaining to the temporal correlation between 𝐷𝑖𝑑 and daily test 

numbers was retrieved from www.ourworldindata.org. To ensure consistency and 

reliability, a meticulous examination was conducted on continuous 𝐷𝑖𝑑 and test numbers 

spanning from March 2020 to January 2021, considering countries with populations 

exceeding four million and reliable continuous data of test and diagnosis numbers. Out 

of these considerations, 23 countries were selected (refer to Table 2.2.1 for the 

comprehensive list of countries and associated dates) due to the limited available data. 

 

 

 

 

 

 

http://www.ourworldindata.org/
https://data.humdata.org/dataset/coronavirus-covid-19-casesand-deaths
https://data.worldbank.org/indicators
https://worldpopulationreview.com/countries
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Table 2.2.1 The list of the countries and time intervals for the linear correlation 
between daily diagnosis and the daily test numbers 

Name of the 
 

country 

The dates and related R2 values 

1. Argentine Initial phase from 03/03/2020 to 18/05/2020 

Middle phase from 19/05/2020 to 08/08/2020  

Late phase from 09/08/2020 to 12/01/2021  
2. Bolivia Initial phase from 15/03/2020 to 15/05/2020  

Middle phase from 16/05/2020 to 04/08/2020  

Late phase from 05/08/2020 to 14/01/2021  
3. Bulgaria Initial phase from 02/05/2020 to 09/06/2020  

Middle phase from 10/06/2020 to 17/08/2020  

Late phase from 18/08/2020 to 17/01/2021  
4. Chile Initial phase from 10/04/2020 to 12/07/2020  

Middle phase from 13/07/2020 to 13/09/2020 

Late phase from 14/09/2020 to 17/01/2021  
5. Colombia Initial phase from 06/06/2020 to 06/08/2020  

Middle phase from 07/08/2020 to 15/09/2020  

Late phase from 16/09/2020 to 17/01/2021  
6. Denmark Initial phase from 08/03/2020 to 09/04/2020  

Middle phase from 10/04/2020 to 12/09/2020  

Late phase from 13/09/2020 to 14/01/2021  
7. France Phase-Initial from 13/05/2020 to 17/07/2020  

Middle phase from 18/07/2020 to 11/09/2020  

Phase-late from 12/09/2020 to 14/01/2021  
8. Greece Phase-Initial from 13/03/2020 to 28/07/2020  

 
  Middle phase from 29/07/2020 to 21/09/2020  

  Late phase from 22/09/2020 to 2021-01-

17/01/2021 

9. Guatemala Phase-Initial from 19/03/2020 to 07/05/2020  

Middle phase from 08/05/2020 to 14/06/2020  

Phase-late from 15/06/2020 to 15/01/2021  
10. Hungary Phase-Initial from 13/03/2020 to 01/09/2020  
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Middle phase from 02/09/2020 to 13/10/2020  

Phase-late from 14/10/2020 to 17/01/2021  
11. Israel Phase-Initial from 05/03/2020 to 01/06/2020  

Middle phase from 2020-06-02 to 15/11/2020  

Phase-late from 16/11/2020 to 11/01/2021  
12. Italy   Phase-Initial from 25/02/2020 to 25/03/2020  

  Phase-Middle from 26/03/2020 to 06/10/2020  
 
  Phase-Late from 07/10/2020 to 17/01/2021  

13. Kazakhstan Phase-Initial from 14/03/2020 to 17/05/2020  

Middle phase from 18/05/2020 to 01/07/2020  

Phase-Late from 02/08/2020 to 13/01/2021  
14. Mexico Initial phase from 28/02/2020 to 22/04/2020  

Middle phase from23/04/2020 to 16/06/2020  

Late phase from 17/06/2020 to 16/01/2021  
15. Morocco Initial phase from 16/03/2020 to 23/07/2020  

Middle phase from 24/07/2020 to 18/10/2020  

Late phase from 19/10/2020 to 15/01/2021  
16. Nepal   Phase-Initial from 11/03/2020 to 03/06/2020  

Middle phase from 04/06/2020 to 30/09/2020  

Late phase from 01/10/2020 to 15/01/2021  
17. Poland Initial phase from 29/04/2020 to 22/05/2020  

Middle phase from 23/05/2020 to 17/09/2020  

Late phase from 18/09/2020 to 16/01/2021  
18. Portugal Initial phase from 4/3/2020 to 6/4/2020  

Middle phase from 7/4/2020 to 8/9/2020  

Late phase from 9/9/2020 to 13/01/2021  
19. Romania Initial phase from 13/03/2020 to 10/04/2020  

Middle phase from 11/04/2020 to 07/10/2020  

Later phase from 01/10/2020 to 10/01/2021  
20. Serbia Initial phase from 10/03/2020 to 15/04/2020  

Middle phase from 16/04/2020 to 25/10/2020  

Late phase from 26/10/2020 to 17/01/2021  
21. South Africa Initial phase from 12/03/2020 to 07/05/2020  

Middle phase from 08/05/2020 to 19/08/2020  
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Later phase from 20/08/2020 to 17/0/2021  
22. United Kingdom Phase-Initial from 31/03/2020 to 11/07/2020  

Middle phase from 12/07/2020 to 24/09/2020  

Late phase from 25/09/2020 to 14/01/2021  
23. US Initial phase from 01/03/2020 to 31/03/2020  

Middle phase from 01/04/2020 to 20/10/2020  

Late phase from 21/10/2020 to 12/01/2021  
 

 

Due to the inherent disparities within the data, stemming from factors like varying 

test supply logistics and reporting inconsistencies, particularly during the initial stages of 

the pandemic, a three-phase analysis was undertaken. The dates for these phases are 

adjusted so that to give the best possible three linear relations between the daily test and 

diagnosis numbers. These phases—initial, middle, and late—are aimed at establishing the 

most optimal linear correlation trends between 𝐷𝑖𝑑 and daily test numbers through non-

linear regression analysis (expressed as y = y0 + a 𝐷𝑖𝑑, where y represents the daily test 

number and a is a constant). For example, the outcomes revealed differing linear 

correlation coefficients for the United States: 0.900 for the period from 1st to 31st March 

2020, 0.556 for 1st April to 20th October 2020, and 0.225 for 21st October 2020 to 12th 

January 2021 (refer to Fig. 3.1.1 – 3.1.2 for graphical representations). 

 

2.3 Development of a model to backtrack the time of infection from the 

daily number of diagnosis 
The transmission dynamics of the COVID-19 virus follow a distinct sequence: 

initial exposure of a susceptible individual to the virus, an incubation period, and 

subsequent diagnosis of the infected individual. In the case of COVID-19, the minimum 

incubation period is estimated to be 3 days with diagnosis typically occurring around the 

6 day post-infection and possibly extending up to 14 days after exposure to COVID-19 

virus [50, 51]. These estimations are derived from various methodologies, including 

contact tracing, filiation studies, and mathematical models. Additionally, the distribution 

of the day of diagnosis conforms to a Weibull distribution [52]. By utilizing above 

parameters these parameters, a novel method has been developed in this context. 
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This novel approach involves retroactively determining infection time by 

COVID-19 virus using Rayleigh distribution, a special case of Weibull distribution (with 

k = 2 and L = 0.5) (Fig. 2.3.1). Aligning the peak of the Rayleigh distribution with the 

average peak of 𝐷𝑖𝑑, it covers a lag of 3 to 14 days.  

 

 
Figure 2.3.1 The conversion of the daily diagnosis number to daily infection number 
by BTrac and its time dependent variation. The contribution of 𝐼𝑛t to 𝐷𝑖𝑑 for the next 
14 days is presented with different colors. 

 

The equation 𝐼𝑐𝑑 = 𝐷𝑖 𝑑 𝑘 𝐿 𝑘 𝑑 𝑘−1 𝑒 − (𝑙 𝑑) ^k computes daily contributions to total 

diagnoses over 14 days from the day of infection (Fig. 3.2.1). Utilizing this equation, past 

14-day 𝐷𝑖𝑑 distribution is calculated, and daily total 𝐼𝑛t numbers are derived by summing 

𝐼𝑐𝑑 contributions (Fig. 3.2.1). This method is applied to data for 46 countries (refer to 

Table 2.3.1) with populations of four million or more, containing consistent daily new 

case data sourced from the official United Nations webpage 

(https://data.humdata.org/dataset/coronavirus-covid-19-cases-and-deaths ) without any 

anomalies in their time-dependent continuity.  

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://data.humdata.org/dataset/coronavirus-covid-19-cases-and-deaths
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Table 2.3.1 The list of 46 countries, related dates for the increasing and decreasing 
phases of the COVID 19 pandemic. 

 Peak 1 Peak 2 Peak 3 
 Increasing 

Phase 
Decreasing 

Phase 
Increasing 

Phase 
Decreasing 

Phase 
Increasing 

Phase 
Decrease 
Phase 

Argentina 21/9/2020 26/10/2020 26/4/2021 31/5/2021 20/12/2021 24/1/2022 
Armenia 21/9/2020 9/11/2020 22/2/2021 12/4/2021 13/9/2021 1/11/2021 
Austria 12/10/2020 23/11/2020 15/2/2021 29/3/2021 25/10/2021 29/11/2021 

Azerbaijan 9/11/2020 14/12/2020 15/3/2021 19/4/2021 2/8/2021 6/9/2021 
Bangladesh 25/5/2020 13/7/2020 1/3/2021 19/4/2021 20/12/2021 7/2/2022 

Belarus 20/4/2020 1/6/2020 16/11/2020 28/12/2020 20/9/2021 1/11/2021 
Brazil 29/6/2020 3/8/2020 15/2/2021 29/3/2021 3/1/2022 7/2/2022 

Bulgaria 12/10/2020 30/11/2020 1/3/2021 5/4/2021 27/9/2021 8/11/2021 
Canada 30/11/2020 11/1/2021 15/3/2021 19/4/2021 6/12/2021 17/1/2022 
Chile 11/5/2020 22/6/2020 8/3/2021 19/4/2021 3/1/2022 21/2/2022 

Colombia 20/7/2020 24/8/2020 21/12/2020 25/1/2021 24/5/2021 5/7/2021 
Croatia 2/11/2020 21/12/2020 8/3/2021 26/4/2021 27/9/2021 15/11/2021 
Czechia 21/9/2020 9/11/2020 1/2/2021 22/3/2021 27/12/2021 14/2/2022 

Dominican 
Republic 

22/6/2020 3/8/2020 14/12/2020 25/1/2021 3/5/2021 14/6/2021 

Egypt 18/5/2020 29/6/2020 30/11/2020 4/1/2021 12/4/2021 24/5/2021 
France 5/10/2020 9/11/2020 8/3/2021 19/4/2021 20/12/2021 31/1/2022 

Germany 16/11/2020 28/12/2020 15/3/2021 26/4/2021 25/10/2021 6/12/2021 
Greece 5/10/2020 23/11/2020 8/3/2021 19/4/2021 6/12/2021 17/1/2022 

Guatemala 15/6/2020 27/7/2020 19/7/2021 6/9/2021 10/1/2022 21/2/2022 
Hungary 19/10/2020 7/12/2020 22/2/2021 5/4/2021 25/10/2021 6/12/2021 

India 10/8/2020 28/9/2020 5/4/2021 17/5/2021 20/12/2021 31/1/2022 
Indonesia 21/12/2020 8/2/2021 14/6/2021 26/7/2021 17/1/2022 21/2/2022 

Iraq 3/8/2020 21/9/2020 15/3/2021 3/5/2021 21/6/2021 9/8/2021 
Iran 26/10/2020 7/12/2020 15/3/2021 3/5/2021 12/7/2021 30/8/2021 

Israel 24/8/2020 12/10/2020 7/12/2020 25/1/2021 26/7/2021 13/9/2021 
Italy 5/10/2020 23/11/2020 8/2/2021 29/3/2021 6/12/2021 17/1/2022 
Japan 7/12/2020 18/1/2021 12/7/2021 30/8/2021 3/1/2022 21/2/2022 

Kazakhstan 15/3/2021 3/5/2021 14/6/2021 2/8/2021 13/12/2021 31/1/2022 
Lebanon 14/12/2020 25/1/2021 5/7/2021 23/8/2021 27/12/2021 14/2/2022 
Mexico 14/12/2020 25/1/2021 12/7/2021 30/8/2021 13/12/2021 31/1/2022 

Morocco 5/10/2020 23/11/2020 28/6/2021 16/8/2021 13/12/2021 31/1/2022 
Nigeria 25/5/2020 13/7/2020 14/12/2020 1/2/2021 12/7/2021 30/8/2021 
Norway 7/9/2020 26/10/2020 15/2/2021 5/4/2021 3/1/2022 21/2/2022 
Pakistan 4/5/2020 22/6/2020 26/10/2020 14/12/2020 15/3/2021 3/5/2021 
Poland 5/10/2020 23/11/2020 22/2/2021 5/4/2021 25/10/2021 13/12/2021 

Portugal 12/10/2020 23/11/2020 21/12/2020 8/2/2021 27/12/2021 7/2/2022 
Romania 12/10/2020 30/11/2020 15/2/2021 5/4/2021 13/9/2021 1/11/2021 
Russia 16/11/2020 4/1/2021 7/6/2021 26/7/2021 27/9/2021 15/11/2021 

Saudi Arabia 11/5/2020 29/6/2020 24/5/2021 12/7/2021 13/12/2021 31/1/2022 
Serbia 26/10/2020 14/12/2020 22/2/2021 12/4/2021 23/8/2021 11/10/2021 

South Africa 8/6/2020 27/7/2020 30/11/2020 18/1/2021 24/5/2021 12/7/2021 
Spain 21/12/2020 8/2/2021 14/6/2021 9/8/2021 13/12/2021 7/2/2022 
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Turkey 9/11/2020 28/12/2020 8/3/2021 26/4/2021 27/12/2021 14/2/2022 
United Arab 
Emirates 

13/4/2020 1/6/2020 21/12/2020 8/2/2021 6/12/2021 24/1/2022 

United 
Kingdom 

30/11/2020 18/1/2021 7/6/2021 26/7/2021 6/12/2021 17/1/2022 

United States 30/11/2020 18/1/2021 2/8/2021 20/9/2021 6/12/2021 24/1/2022 
 

2.4 Weekly Minimum Graphs and Simulation Model using Var0i 
Here's a breakdown of the process involved in the VarR0 model: 

1. Calculation of 𝐼c𝑑 (Infection on the Current Day): 

Multiply the 𝐼𝑛t value with the R0 value for the following day to obtain the 𝐼cd 

value. 

2. Distribution of 𝐼cd for Future Days: 

Distribute this 𝐼cd value for the next 14 days using a Rayleigh distribution to 

determine the day of diagnosis (Di). 

3. Calculation of 𝐷𝑖d (Daily Diagnosed Cases): 

Sum up 𝐼cd values from the past 14 days following the day of transmission to 

determine 𝐷id. 

4. Adjustment of Total Infected but Undiagnosed Population (It): 

Subtract 𝐷id from the total infected but not diagnosed (It) population to calculate 

It at the end of the day. 

Regarding the simulation for VarR0i: 

The simulation initiates with two weeks of variable high R0i values (0.7, 0.8, 0.9, 

1.0, 1.2, 1.3 from Mon to Sun), followed by lower variable R0i values to simulate the 

onset and progression of the SARS-CoV-2 pandemic. 

Additionally, the time interval from infection to diagnosis averages at a maximum 

of two weeks. 

This methodology essentially simulates how infections occur, progress, and are 

diagnosed over a specified time period, considering variations in R0i values and the time 

taken for diagnosis. 
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2.5 Statistical Analysis 
Statistical analysis involved the conversion of 𝐷𝑖𝑑 to 𝐼𝑛t, as well as the 

normalization of 𝐼𝑛t and simulations incorporating constant and variable R0i values, 

executed through SigmaPlot for Windows Version 10.0 software. Spearman's r, one-

tailed, was employed for assessing correlations among different variables, utilizing 

GraphPad Prism 4. Additionally, distinctions between two groups were ascertained via 

the one-tailed Mann-Whitney test in GraphPad Prism 4. Graphs representing the 

outcomes were generated using GraphPad Prism 4 and SigmaPlot for Windows Version 

10.0 software. 

After obtaining Int values, these values were normalized by value on Monday of 

each week for each of the 46-country using Microsoft Excel 2019 version. Then, 27 charts 

covering 108 weeks were drawn for each country using the following codes in the Python 

3.12.1 programming language (An example Fig. 3.2.2). 

 

 

#from builtins import int 

#from mpl_tools import * 

import numpy as np 

from matplotlib import pyplot as plt 

import pandas as pd 

 

sheets = '''Argentina 

Austria 

Azerbaijan 

Bangladesh 

Belarus 

Bolivia 

Brazil 

Bulgaria 

Canada 

Chile 

Colombia 

Costa Rica 
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Czechia 

Denmark 

Dominican Republic 

Egypt 

France 

Germany 

Greece 

Guatemala 

Honduras 

Hungary 

India 

Indonesia 

Iran 

Israel 

Italy 

Japan 

Kazakhstan 

Lebanon 

Mexico 

Morocco 

Netherlands 

Nigeria 

Norway 

Pakistan 

Peru 

Poland 

Portugal 

Romania 

Russia 

Saudi Arabia 

Serbia 

South Africa 

Spain 

Sweden 
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Turkey 

United Arab Emirates 

Ukraine 

United Kingdom 

United States 

Hong Kong 

Croatia 

Armenia 

Kuwait 

Iraq''' 

 

sheet_done = '''''' 

 

def save_figures(sheet_name, file_dir, excel_dir, start_line, end_line): 

    #xls = pd.ExcelFile('IEY.xlsx') 

    df = pd.read_excel(excel_dir, sheet_name=sheet_name, engine='openpyxl') 

 

     

    country = sheet_name 

     

 

     

    arr2 = df["Norm Equ"][start_line:end_line] 

    date = df["Date"][start_line:end_line] 

 

    xticks = ["Monday", "Tuesday", "Wednesday", "Thursday", "Friday", 

"Saturday", "Sunday"] 

 

    for ind, i in enumerate(range(0, len(arr2), 28)): 

        month = list(arr2[i:i + 28]) 

        week1 = month[:7] 

        week2 = month[7:14] 

        week3 = month[14:21] 

        week4 = month[21:] 
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        subtitle_string = f'{sheet_name} \n {date[i].strftime("%m/%d/%Y")} - 

{date[i + 27].strftime("%m/%d/%Y")}' 

 

        plt.title(subtitle_string, fontsize=10) 

        plt.plot(xticks, week1, label="Week 1", linestyle="-", marker='o') 

        plt.plot(xticks, week2, label="Week 2", linestyle="-", marker='o') 

        plt.plot(xticks, week3, label="Week 3", linestyle="-", marker='o') 

        plt.plot(xticks, week4, label="Week 4", linestyle="-", marker='o') 

        plt.legend() 

        plt.savefig(f'{file_dir}/{sheet_name}_month-{(ind+1)}.png') 

        #plt.show() 

        plt.clf() 

 

     

with open('readme.txt', 'w') as f: 

    f.writelines("___________________________\n") 

 

for country in sheets.split('\n'): 

    print(country) 

     

    save_figures(country.strip(), 'figures', 'XXXnormalized.xlsx', 0, 756) 

    #save_figures('Belarus', 'figures') 
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Chapter 3  

 
RESULTS 

 
3.1 WC Is a Part of The Mechanism for Virus Transmission but Not an 

Artifact of The Daily Test Number 
During the onset of the COVID-19 pandemic, a noticeable weekly pattern 

emerged in the recorded daily case and test numbers. The trend is that the number of cases 

increases on certain days of the week as in the number of tests performed. Moreover, a 

strong linear relationship between them was identified [49]. This led to an early 

conclusion that this correlation resulted from the test numbers, indicating it might be an 

outcome of testing policies rather than a genuine connection. 

The current study is based on the hypothesis that WC is a result of 𝐷𝑖𝑑 rather than 

by the daily test count. Therefore, this must be an intrinsic nature of virus propagation in 

general such as COVID-19 virus in specific. In this context, this investigation delves into 

the cause-and-effect relationship between the daily case and test numbers, utilizing the 

linear correlation coefficient (R2) as an indicator. From March 2020 to January 2021, 𝐷𝑖𝑑 

and test numbers from 23 countries were selected for investigation across three phases—

initial, middle, and late—aiming to identify the best three linear correlation coefficients 

(R2) to optimize the each R2 value and minimize the possible mistakes.  

 The selection of 23 countries for analysis was based on data availability regarding 

their daily case and test numbers, considering irregularities and unique characteristics 

within each country's dataset (see the Table 3.1.1 for the list of countries, phases dates 

and R2 values). This spanned from March 2020 to January 2021, aiming for consistency 

and completeness in the available information. 
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Table 3.1.1 The list of the countries, time intervals and R2 values for the linear 
correlation between daily diagnosis and the daily test numbers 

Name of the 
 

country 

The dates and related R2 values 

1. Argentine Initial phase from 03/03/2020 to 18/05/2020 with R2 = 0.656 

Middle phase from 19/05/2020 to 08/08/2020 with R2 = 0.934 

Late phase from 09/08/2020 to 12/01/2021 with R2 = 0.487 
2. Bolivia Initial phase from 15/03/2020 to 15/05/2020 with R2 = 0.769 

Middle phase from 16/05/2020 to 04/08/2020 with R2 = 0.901 

Late phase from 05/08/2020 to 14/01/2021 with R2 = 0.878 
3. Bulgaria Initial phase from 02/05/2020 to 09/06/2020 with R2 = 0.0569 

Middle phase from 10/06/2020 to 17/08/2020 with R2 = 0.362 

Late phase from 18/08/2020 to 17/01/2021 with R2 = 0.190 
4. Chile Initial phase from 10/04/2020 to 12/07/2020 with R2 = 0.531 

Middle phase from 13/07/2020 to 13/09/2020 with R2 = 
0.000223 

Late phase from 14/09/2020 to 17/01/2021 with R2 = 0.585 
5. Colombia Initial phase from 06/06/2020 to 06/08/2020 with R2 = 0.845 

Middle phase from 07/08/2020 to 15/09/2020 with R2 = 0.613 

Late phase from 16/09/2020 to 17/01/2021 with R2 = 0.448 
6. Denmark Initial phase from 08/03/2020 to 09/04/2020 with R2 = 0.742 

Middle phase from 10/04/2020 to 12/09/2020 with R2 = 0.161 

Late phase from 13/09/2020 to 14/01/2021 with R2 = 0.592 
7. France Phase-Initial from 13/05/2020 to 17/07/2020 with R2 = 0.0344 

Middle phase from 18/07/2020 to 11/09/2020 with R2 = 0.358 

Phase-late from 12/09/2020 to 14/01/2021 with R2 = 0.0276 
8. Greece Phase-Initial from 13/03/2020 to 28/07/2020 with R2 = 0.0974 

  Middle phase from 29/07/2020 to 21/09/2020 with R2 = 

0.0091 

  Late phase from 22/09/2020 to 17/01/2021 with R2 = 0.58 

9. Guatemala Phase-Initial from 19/03/2020 to 07/05/2020 with R2 = 0.295 

Middle phase from 08/05/2020 to 14/06/2020 with R2 = 0.165 

Phase-late from 15/06/2020 to 15/01/2021 with R2 = 0.0744 
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10. Hungary Phase-Initial from 13/03/2020 to 01/09/2020 with R2 = 0.0474 

Middle phase from 02/09/2020 to 13/10/2020 with R2 = 0.213 

Phase-late from 14/10/2020 to 17/01/2021 with R2 = 0.345 
11. Israel Phase-Initial from 05/03/2020 to 01/06/2020 with R2 = 0.158 

Middle phase from 2020-06-02 to 15/11/2020 with R2 = 0.625 

Phase-late from 16/11/2020 to 11/01/2021 with R2 = 0.653 
12. Italy   Phase-Initial from 25/02/2020 to 25/03/2020 with R2 = 0.927 

  Phase-Middle from 26/03/2020 to 06/10/2020 with R2 = 
0.00121 
 
  Phase-Late from 07/10/2020 to 17/01/2021 with R2 = 0.481
  

13. Kazakhstan Phase-Initial from 14/03/2020 to 17/05/2020 with R2 = 0.614 

Middle phase from 18/05/2020 to 01/07/2020 with R2 = 
0.00470 

Phase-Late from 02/08/2020 to 13/01/2021 with R2 = 0.00215 
14. Mexico Initial phase from 28/02/2020 to 22/04/2020 with R2 = 0.665 

Middle phase from23/04/2020 to 16/06/2020 with R2 = 0.527 

Late phase from 17/06/2020 to 16/01/2021 with R2 = 0.208 
15. Morocco Initial phase from 16/03/2020 to 23/07/2020 with R2 = 0.194 

Middle phase from 24/07/2020 to 18/10/2020 with R2 = 0.734 

Late phase from 19/10/2020 to 15/01/2021 with R2 = 0.583 
16. Nepal   Phase-Initial from 11/03/2020 to 03/06/2020 with R2 = 0.556 

Middle phase from 04/06/2020 to 30/09/2020 with R2 = 0.608 

Late phase from 01/10/2020 to 15/01/2021 with R2 = 0.864
  

17. Poland Initial phase from 29/04/2020 to 22/05/2020 with R2 = 0.0420 

Middle phase from 23/05/2020 to 17/09/2020 with R2 = 0.218 

Late phase from 18/09/2020 to 16/01/2021 with R2 = 0.430 
18. Portugal Initial phase from 4/3/2020 to 6/4/2020 with R2 = 0.798 

Middle phase from 7/4/2020 to 8/9/2020  with R2 = 0.00243 

Late phase from 9/9/2020 to 13/01/2021 with R2 = 0.435 
19. Romania Initial phase from 13/03/2020 to 10/04/2020 with R2 = 0.609 

Middle phase from 11/04/2020 to 07/10/2020 with R2 = 0.640 

Later phase from 01/10/2020 to 10/01/2021 with R2 = 0.387 
20. Serbia Initial phase from 10/03/2020 to 15/04/2020 with R2 = 0.831 
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Middle phase from 16/04/2020 to 25/10/2020 with R2 = 0.142 

Late phase from 26/10/2020 to 17/01/2021 with R2 = 0.876 
21. South Africa Initial phase from 12/03/2020 to 07/05/2020 with R2 = 0.902 

Middle phase from 08/05/2020 to 19/08/2020 with R2 = 0.825 

Later phase from 20/08/2020 to 17/0/2021 with R2 = 0.899 
22. United Kingdom Phase-Initial from 31/03/2020 to 11/07/2020 with R2 = 0.678 

Middle phase from 12/07/2020 to 24/09/2020 with R2 = 0.714 

Late phase from 25/09/2020 to 14/01/2021 with R2 = 0.639 
23. US Initial phase from 01/03/2020 to 31/03/2020 with R2 = 0.900 

Middle phase from 01/04/2020 to 20/10/2020 with R2 = 0.556 

Late phase from 21/10/2020 to 12/01/2021 with R2 = 0.225 
 

During the investigation of these time frames, these countries exhibited a distinct 

and evident weekly cycle in their data patterns. As an example, the linear correlation 

coefficients for the US are 0.900, 0.556, and 0.225 during the initial, middle, and late 

phases, respectively. The initial correlation coefficient aligns closely with the published 

data [49], but it notably decreases over time, almost disappears (see the Fig. 3.1.1). Upon 

examining the correlation coefficients of other countries, there's a notable variance 

observed (see the Fig. 3.1.2). 

 

 
Figure 3.1.1 The time dependent linear correlation coefficients for different phases 
between the daily case and test number for US. As an example, for the determination 
of the time periods for the linear correlation coefficient determination, the data processing 
for the US is presented. The initial (01/03/2020 to 31/03/2020), middle (01/04/2020 to 
20/10/2020) and late (21/10/2020 to 12/01/2021) phases are presented in black, red and 
green colors, respectively. The X- and Y- axes are daily test numbers and Did, 
respectively. 
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Figure 3.1.2 The time dependent linear correlation coefficients for different phases 
between the daily case and test number for 23 countries. The linear correlation 
between the daily case and test numbers for 23 countries at different time periods (Table 
3.1.1) is presented in terms of R2 values. These countries are Argentina Bolivia Bulgaria 
Chile Colombia Denmark France Greece Guatemala Hungary Israel Italy Kazakhstan 
Mexico Morocco Nepal Poland Portugal Romania Serbia South Africa United Kingdom 
and United States. Each color represents one country. The X- and Y- axes are phases and 
R2 values, respectively. 
 

Moreover, certain countries like Italy and the United States exhibit a more 

pronounced presence of WC in the later stages of the pandemic. This suggests that the 

high correlation observed in some countries at the beginning of the pandemic might be 

attributed to the stringent test protocols implemented by filiation teams working in the 

field and doctors due to early logistical challenges in test supply. Consequently, the 

observed linear correlation between WC and test numbers appears to be driven by 𝐷𝑖𝑑 

rather than the daily test number itself. Notably, a new recent studies acknowledge the 

presence of WC as a recognized phenomenon in 𝐷𝑖𝑑 [49, 53] but not on the daily 

infection numbers and have already integrated it into pandemic simulations to develop 

new methodologies [54, 55]. 

 

3.2 The transmission of COVID-19 virus has WC with a minimum 

during the weekdays. 
Most studies in the literature primarily concentrate on 𝐷𝑖𝑑 rather than the time of 

virus infection. While these studies provide crucial insights into diagnosed cases, they 

overlook the specifics of virus transmission timing and the factors influencing it [56, 57]. 

In addition, these results can lead to misinforming the policy makers and public. 
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The virus transmission mechanism involves exposing a susceptible person to the 

virus, followed by an incubation period prior to the diagnosis of the infected individual. 

In the case of the SARS-CoV-2 virus, the minimum incubation period is around 3 days, 

and diagnosis peaks around the 6th day, extending up to 14 days post-infection. Various 

statistical models, such as contact tracing, location-based interaction studies between 

infectors and infectives, as well as diverse mathematical approaches, have contributed to 

these findings [50, 51]. Additionally, the day of diagnosis follows a Weibull distribution 

(Fig. 2.3.1) [52]. 

The Weibull distribution is frequently employed in analyzing daily new cases and 

deaths across countries with varying epidemic patterns. Known for its simplicity, 

effectiveness in modeling survival analysis data, and widespread availability in statistical 

software, it's a popular parametric lifetime model [58]. It is a posit that employing the 

Weibull distribution to model COVID-19 daily case and death data, along with other 

epidemic outbreaks, could yield crucial insights [58, 59]. These insights could serve as 

valuable support for governments and health authorities globally in implementing 

mitigation strategies. 

Using these defined parameters, BTrac is developed to pinpoint the infection time. 

According to this, this Int is the result of daily Did for 14 days with differential 

contributions. The findings reveal that 𝐼𝑛t exhibits a weekly cycle similar to 𝐷𝑖𝑑 (Fig. 

3.2.1). However, the time dependence of 𝐼𝑛t, exhibits a minimum during weekdays and 

maximum during the weekends in general (Fig. 3.2.1-3.2.3), contrasting with 𝐷𝑖𝑑, which 

peaks during weekdays. It is worth mentioning that Did is utilized in almost all studies 

and policies were made based on this approach. At the relatively early times of the 

pandemic, the minimum for 𝐼𝑛t occurs on Tuesdays with the progression of pandemic and 

gradually shifts towards Fridays later on (Fig. 3.2.3). This shift can be attributed to the 

early NPIs and behavioral changes resulting from observations that virus transmission 

requires close human contact [60, 61]. Consequently, these weekly cycles are not 

controlled by the test numbers and therefore has to be controlled by some other factors 

such as NPIs and other human activity patterns. 

The weekly cycle (WC) observed in 𝐼𝑛t holds significant insights into the daily 

dynamics of COVID-19 spread. To understand the information in detail and its time-

dependent nature, 𝐼𝑛t for a given week is normalized against the 𝐼𝑛t on Monday of the 

same week (Fig. 3.2.3). For the statistical analysis, weekdays from Monday through 

Sunday are assigned numbers such as 1 through 7, respectively (Fig. 3.2.3). Analysis of 
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the normalized 𝐼𝑛t reveals a consistent weekly minimum, indicating a systematic temporal 

variation. For instance, Germany exhibits a pronounced WC (Fig. 3.2.1-3.2.2). 

Examining Germany's weekly minimums from March 16 to April 12, 2020—a relatively 

early phase of the SARS-CoV-2 pandemic—reveals a distinct trend (Fig. 3.2.2). The 

weekly minimum of 𝐼𝑛t initiates on Tuesdays and progressively shifts towards Fridays 

(Fig. 3.2.2). Overall, these findings illustrate that the normalized weekly minimum of 𝐼𝑛t 

divides the week into two halves, indicating the decreasing to increasing virus 

transmission phases (Fig. 3.2.3). This observed pattern could be influenced by weekly 

activities in work and social environments, encompassing homes and social gatherings. 

Furthermore, these observations indicate abrupt changes in virus spread, likely attributed 

to public awareness about the presence of virus and initial NPIs [62]. 

 

 
Figure 3.2.1 The conversion of the daily diagnosis number to daily infection number 
by BTrac and its time dependent variation. An example of transformed 𝐼𝑛t from 𝐷𝑖𝑑 
(black) to 𝐼𝑛t (red) for Germany is presented using BTrac. The X- and Y- axes represent 
the dates and number of daily infections, respectively. 
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Figure 3.2.2 The conversion of the daily diagnosis number to daily transmission 
number by BTrac and its time dependent variation. 𝐼𝑛t is normalized by 𝐼𝑛t on Monday 
and normalized 𝐼𝑛t data for Germany is presented for the weeks starting at 16 March 
(black), 23 March (red), 30 March (green) and 6 April (yellow) 2020. The X- and Y- axes 
represent the days and value of normalized daily infection number, respectively.  
 

 
Figure 3.2.3 The conversion of the daily diagnosis number to daily transmission 
number by BTrac and its time dependent variation. The time dependence of the 
average weekly minimums (red) is presented for the 46 countries with the standard 
deviations. Numbers 1 to 7 refer to Monday to Sunday respectively. The X- and Y- axes 
represent dates and the day corresponding to the average weekly minimum, respectively. 
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3.3 The R0 values of infection also has WC driven human activities 
The investigation for 46 countries into the presence of a WC was extended to 

examine R0i, revealing a clear time-dependent pattern resembling 𝐼𝑛t but with less 

variability (Fig. 3.3.1). R0i consistently peaks on Saturdays for 40 out of 52 weeks and 

hits minimum on Wednesdays for 45 out of 52 weeks. Notably, the weekly minimum 

shifts to Tuesdays during the Christmas and New Year week of 2020, with R0i starting to 

increase a day before the holiday period begins. These findings effectively capture the 

impact of human activities prompted by holidays and underscore the efficacy of this new 

methodology in grasping the dynamics of COVID-19 virus spread. 

In general, R0i tends to rise after Wednesdays, aligning well with the three-day 

virus incubation period starting from Mondays—the onset of the workweek—reaching 

its peak on Saturdays. This indicates the synergistic transmission between work and social 

environments, forming a loop broken on Sundays, causing a decline in R0i until 

Thursdays. Moreover, the maximum R0i values per week increase while the minimum R0i 

values decrease, indicating a widening gap between them as the pandemic progresses. 

Considering that the continuous evolution and propagation processes of viruses are based 

on their interactions with their hosts and environmental factors, this result indicates the 

increasing infection potential of the virus under the increasing pressure of NPIs. 

In conclusion, the COVID-19 virus displays variable R0i values exhibiting a WC 

driven by the interplay between transmission in social and work environments. With the 

progression of pandemic, the virus evolves in terms of its infective capacity, influenced 

by the changing dynamics of social interaction and intervention strategies. 
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Figure 3.3.1 The variation of R0i values with respect to the progression of pandemic. 
The time dependence of R0s (black line) at different days for 46 countries are presented 
from Monday to Saturday with the color of black, red, green, blue, pink and cyan, 
respectively. The X- and Y- axes represent the dates and R0i values, respectively. 
 
3.4 The effect of the national holidays on WC as a social factor 

Continuing the exploration of potential impact of human behaviors on the weekly 

minimum of 𝐼𝑛t and to validate the developed BTrack model, major holidays like 

Christmas, New Year, and the Festival of Sacrifice were chosen. These holidays are 

observed by different countries, with Christmas and the Festival of Sacrifice observed in 

various nations, while New Year is a global celebration. The selection also considers the 

Christmas celebration on Thursday, December 24, 2020, followed by New Year's 

celebration on Thursday, December 31, 2020. Moreover, the Festival of Sacrifice, 

observed on Tuesday, June 20, 2021. It is worth to mention that the Festival of Sacrifice 

is relatively isolated from other national holidays. These choices provide an opportunity 

to demonstrate the BTrack model's capability, yet it poses a challenge in isolating their 

individual effects of the Christmas and new year celebrations on the weekly minimum of 

𝐼𝑛t due to their proximity to each other, data irregularities, and the diverse religious 

observances across countries.  

To distinguish between the effects of Christmas and New Year holidays, the data 

is categorized based on the predominant religion belief in each country. Countries where 

more than 50% of the population follows the Christian faith are classified as Christian 

countries, and thus expected to observe the Christmas holiday (See table 3.4.1). 
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Table 3.4.1 Religious faith of the countries 

Christian 

countries 

Non- Christian 
 

countries 

Muslim countries Non- Muslim 
 

countries 

Argentina Azerbaijan Azerbaijan Argentina 

Armenia Bangladesh Bangladesh Armenia 

Austria Egypt Egypt Austria 

Belarus India Indonesia Belarus 

Brazil Indonesia Iran Brazil 

Bulgaria Iran Iraq Bulgaria 

Canada Irak Kazakhstan Canada 

Chile Israel Lebanon Chile 

Colombia Kazakhstan Morocco Colombia 

Croatia Lebanon Nigeria Croatia 

Czechia Morocco Pakistan Czechia 

Dominican 

Republic 

Nigeria Saudi Arabia Dominican 

Republic 

France Pakistan Turkey France 

Germany Saudi Arabia United Arab 

Emirates 

Germany 

Greece Turkey  Greece 

Guatemala UAE  Guatemala 

Hungary   Hungary 

Italy   India 

Japan   Israel 

Mexico   Italy 

Norway   Japan 

Poland   Mexico 

Potugal   Norway 

Romania   Poland 

Russia   Portugal 

Serbia   Romania 
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South Africa   Russia 

Spain   Serbia 

UK   South Africa 

US   Spain 

   United Kingdom 

   United States 

 

To examine the impact of the Christmas and New Year holidays, the weekly 

minimums of 𝐼𝑛t were analyzed for 46 countries (Table 3.4.1 for the list of countries) 

across six weeks, from December 7, 2020, to January 8, 2021, to demonstrate the change 

in weekly minimum trends. A distinct trend emerged in the weekly minimums during this 

period (Fig. 3.4.1). Specifically, it remained consistent on Thursdays during the weeks 

starting December 7 and 14, 2020 (mean ± SD 4.326 ± 0.2368 vs 4.022 ± 0.2002; P = 

0.2375), and then shifted to Wednesdays for the weeks starting December 14 to 21, 2020. 

This shift perfectly coincides with human behavior related to holiday celebrations 

commencing on Wednesdays. This change was statistically significant (4.02 ± 1.36 vs 

3.41 ± 1.28; P = 0.0033) (see Table 3.4.2). The trend persisted, moving toward the middle 

of the week, but the difference between the weeks starting on December 21 and 28, 2020, 

was not significant (4.022 ± 0.2002 vs 3.130 ± 0.1775; P = 0.1201). Toward the end of 

the holiday season, the weekly minimum reverted from Wednesday back to Thursday for 

the weeks starting on December 28, 2020, to January 4, 2021, and this change was 

statistically significant (3.130 ± 0.1775 vs 3.891 ± 0.1971; P = 0.0005). For the 

subsequent weeks starting on January 4 and 11, 2021, the trend continued, but it was not 

statistically significant (3.891 ± 0.1971 vs 4.174 ± 0.2092; P = 0.1360). 
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Figure 3.4.1 The effect of the Christmas and New Year holidays on the worldwide 
weekly minimums of 𝑰𝒏f. The time dependent change of the weekly minimum in average 
for 46 countries, is presented where the blue colored lines are the averages for the weeks 
before the Christmas (red) and after the New Year (green). Numbers 1 to 7 refer to 
Monday to Sunday respectively. The X- and Y- axes represent the dates and the day 
corresponding to the average weekly minimum, respectively. 
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Table 3.4.2 The effect of the Christmas and New Year holiday on the minimum of 
the weekly cycle using Student’s t-test 

 The 
beginning 
day of the 
week 

7.12.2020 14.12.2020 21.12.2020 28.12.2020 4.01.2021 11.01.2021 

All 
count
ries 
(n=4
6) 

Mean ± SD 4.33 ± 1.61 4.02 ± 1.36 3.41 ± 1.28 3.13 ± 1.20 3.89 ± 1.34 4.17 ± 1.42 

P-value                0.2375         0.1201           0.1360 

              0.0033           0.0005  

Chris
tian 
count
ries(n
=30) 

Mean ± SD 4.47 ± 1.46 4.10 ± 1.10 3.20 ± 1.06 3.03 ± 1.27 3.97 ± 1.10 4.30 ± 1.12 

P-value                0.2013         0.2027           0.2712 

 0.0030 0.0060  
Non-
Christian 
countries 
(n=16) 

Mean ± SD 4.06 ± 1.88 3.88 ± 1.7842 3.81 ± 1.56 3.31 ± 1.08 3.75 ± 1.73 3.94 ± 1.88 

P-value                0.4472         0.2074           0.3667 

              0.3318           0.1711  

 

 

 
Figure 3.4.2 The effect of the Christmas and New Year on the weekly minimums of 
𝑰𝒏f for Cristian countries. The same values as in Fig 3.4.1 are presented for the Christian 
countries. 
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Figure 3.4.3 The effect of the Christmas and New Year on the weekly minimums of 
𝑰𝒏t for non-Cristian countries. The same values as in Fig 3.4.1 presented for non-
Christian countries. 
 

The observed trends and statistical variances, as previously outlined, become 

more pronounced within the group of Christian countries (n = 30) (for December 21 and 

28, 2020 (3.20 ± 1.06 vs 3.03 ± 1.27; P = 0.2027)) (Fig. 3.4.2, see table 3.4.2). Conversely, 

the trend among non-Christian countries (n = 16) dissipates, (for December 21 and 28, 

2020 (3.81 ± 1.56 vs 3.31 ± 1.08; P = 0.2074)) while the trend linked to New Year persists 

(Fig. 3.4.3, see Table 3.4.2).  

These findings underscore the efficacy of the developed BTrack methodology in 

revealing the adverse impact of these two holidays on COVID-19 virus transmission. 

Furthermore, the impact of holidays was further explored, specifically focusing 

on the Feast of Sacrifice between July 5 and August 8, 2021, over five weeks, including 

the third week with the Feast of Sacrifice holiday. Among the 46 countries analyzed, the 

weekly minimum during the week of the holiday displays statistical differences compared 

to the preceding week (3.6536 ± 2.8873 vs 3.9565 ± 1.6049; P = 0.0467), while the 

remaining weeks don’t exhibit such distinctions (Fig. 3.4.4, Table 3.4.3). 

When countries are categorized based on religious affiliation, those where 50% 

or more of the population follows the Muslim faith are classified as Muslim countries, 

while the remaining are grouped as non-Muslim countries. Among the Muslim countries 

(n = 14), the weekly minimum shifts from Thursday to Wednesday before and then back 

to Thursday after the Feast of Sacrifice celebration, which commenced on July 20, 2021. 
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These transitions were found to be statistically significant (4.2143 ± 2.2250 vs 2.3571 ± 

1.9457; P = 0.0134 and 2.3571 ± 1.9457 vs 3.4286 ± 1.5046; P = 0.0310, respectively) 

(Fig. 3.4.5, Table 3.4.3). Conversely, for the non-Muslim countries (n = 32), there are no 

statistically significant changes observed (Fig. 3.4.6, see Table 3.4.3). Notably, during 

the week of the holiday, the weekly minimum falls on Tuesday, coinciding with the 

official start of the Feast of Sacrifice celebration. 

 

 
Figure 3.4.4 The effect of the Feast of the Sacrifice holidays on the minimum of the 
weekly cycle on 𝑰𝒏t. The time dependent change of the weekly minimum in average for 
46 countries is presented where the blue colored lines are the averages for the weeks 
before and after the Feast of Sacrifice (red). Numbers 1 to 7 refer to Monday to Sunday 
respectively. The X- and Y- axes represent the dates and the day corresponding to the 
average weekly minimum, respectively. 
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Table 3.4.3 The effect of the Feast of sacrifice holiday on the minimum of the 
weekly cycle using Student’s t-test 

 The 
beginning 
day of the 
week 

05.07.2021 12.07.2021 19.07.2021 26.07.2021 02.08.2021 

All the 
countries 
(n=46) 

Mean ± SD 3.6304±1.3721 3.9565±1.6049 3.3043 ± 1.6312 3.6957 ±1.3477 3.760 ±1.3027 

P-value 0.1520 0.1358  
 0.0467 0.3781 

Muslim 
countries 
(n=14) 

Mean ± SD 3.0714±1.6392 4.2143±2.2250 2.3571±1.9457 3.4286±1.5046 3.5714±1.7852 

P-value 0.0870 0.0310  

 0.0134 0.4724 

Non- 
Muslim 
countries 
(n=32) 

Mean ± SD 3.8750 ±1.1846 3.8438 ±1.2728 3.7188 ± 1.3010 3.8125 ±1.2811 3.8438 ±1.0506 

P-value 0.4973 0.3855  

 0.3960 0.3880 

 

 

 
Figure 3.4.5 The effect of the Feast of the Sacrifice holidays on the minimum of the 
weekly cycle on 𝑰𝒏t for the Muslim countries. The same value as in Fig 3.4.4 is 
presented for the Muslim countries. 
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Figure 3.4.6 The effect of the Feast of the Sacrifice holidays on the minimum of the 
weekly cycle on 𝑰𝒏t for the non-Muslim countries. The same value as in Fig 3.4.4 is 
presented for the non-Muslim countries. 

 

These findings confirm that the transmission of COVID-19 virus increases during 

holidays, similar to the observations from Christmas, New Year, and Feast of Sacrifice 

celebrations. They also demonstrate the efficacy of the new model in tracing back the 

impact of holidays from daily case numbers and identifying the relaxed human behavior 

during holidays as a contributing factor to the virus spread among family and friends. So, 

these results start shedding the light on what controls the weekly cycle on the daily 

infection number as well as Did, therefore on the daily infection numbers as an important 

factor which aligns well with the observation using daily case numbers. 

 

3.5 The trends on the weekly minimum of 𝑰𝒏t during the increasing and 

decreasing phases of the pandemic. 
To thorough exploration on the fluctuations of the weekly minimum on 𝐼𝑛t during 

the ascending and descending phases of three peaks in the SARS-CoV-2 pandemic, data 

from 46 countries is re-examined. These countries exhibit peaks in 𝐷𝑖𝑑 on varying dates 

due to each country's unique characteristics. The dates of these peaks are chosen 

according to the rising and falling phases (refer to Table 2.3.1 for the list of countries and 

related dates). Subsequently, after transforming 𝐷𝑖𝑑 into 𝐼𝑛t and normalizing it as 

previously described, the data is divided into six blocks, each comprising four weeks. 

Three of these blocks correspond to the rising phases, while the remaining three pertain 

to the declining phases of the consecutive three peaks in virus spread, aimed at clearly 

capturing discernible trends (Fig. 3.5.1). 



  42 

 

 
Figure 3.5.1 The variation on the weekly minimum during the increasing and 
decreasing phase of the peaks. The variation on the weekly minimums is presented as 
an average for the initial (blue), middle (red) and late (green) phases where the solid lines 
and doted lines belong to decreasing and increasing phases of three different peaks of 
COVID-19 pandemics, respectively. Numbers 1 to 7 refer to Monday to Sunday 
respectively. The X- and Y- axes represent the week numbers and the day corresponding 
to the average weekly minimum, respectively. 
 

The outcomes indicate that the minimum values per week fluctuate between 

Wednesday and Thursday during growth and between Thursday and Friday during 

decline phases (Fig. 3.5.1). The difference between these phases is notably significant 

(3.2899 ± 0.2687 versus 4.3895 ± 0.1787, with P < 0.0001, respectively). There's a 

significant pattern during the growth phases (Spearman’s ρ = -0.09570, P = 0.0123), 

showing a shift of the weekly minimum towards Wednesday. However, this shift isn’t 

statistically significant during the declining phases (Spearman’s ρ = 0.03141, P = 0.2307), 

indicating a weekly minimum shift towards Friday. 

Based on the earlier results from holidays and daily infection numbers, these 

results emphasize the significant impact of human interactions in work and social 

environments, with a reduced and/or strict human interaction during decreasing phases 

and more relaxed interactions during increasing phases. Consequently, the shifts in 

human behavior and activities play a crucial role in determining the progression of 

pandemics. Furthermore, these findings suggest that the difference between these two 

trends becomes more distinct as the time advances, indicating that both individuals and 
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governments learned to protect the public more effectively from COVID-19 infection as 

the time progressed. 

Notably, during the decreasing phases, the shift of the weekly minimum towards 

Friday likely stems from the successful implementation of NPIs, particularly restrictions 

in workplaces aimed at curbing virus transmission. It's intriguing to note that a mere one-

day change in the weekly minimum can signify shift from increasing to decreasing phases 

in the pandemic progression, highlighting the significance of the day with the weekly 

minimum as a reliable indicator for the progression of pandemics. 

 

3.6 The effect of the socio-economic factors on the weekly cycle and 

therefore the COVID-19 pandemic 
Understanding the socio-economic factors influencing COVID-19 transmission is 

crucial for managing the current pandemic and potential future pandemics. Expanding on 

the efficacy of this new model in capturing holiday effects on virus spread, suspected 

socio-economic factors such as GDP, GDP per capita, GINI index for income inequality, 

and HDI are analyzed concerning COVID-19 spread at early (2nd to 29th March 2020), 

middle (1st to 28th March 2021), and later (21st February to 20th March 2022) times. 

Datasets for GDP, GDP per capita, GINI index, and HDI were obtained from the 

World Bank, World Population Review and United Nations Development Programme 

websites. Assigning numerical values to the days of the week, the weekly minimums for 

each country in four-week blocks across different pandemic periods were determined and 

added to capture the general trends. Subsequently, correlations between these aggregate 

weekly minimum scores and socio-economic factors were investigated. 

Among these factors, GDP per capita and HDI displayed negative correlations 

with the aggregated values during early (rs = -0.2814, p = 0.0291 and rs = -0.2787, p = 

0.0304, respectively) and later times (rs = -0.5041, p = 0.0002 and rs = -0.4969, p = 

0.0002, respectively) (see Table 3.6.1). This suggests that as GDP per capita and HDI 

increase, the weekly minimums move toward the latter half of the weekdays, indicating 

a decrease in COVID-19 spread. In essence, these findings underscore the adverse impact 

of known disparities linked to individual income and education on virus transmission. 
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Table 3.6.1 Socio-economic factors Correlation of the possible factors with weekly 
minimums for 46 countries 

 
 
Total scores 
for the weeks 

GDP 
 

Spearman r 
95% confidence 

interval 
P value 

GDP per capita 
 

Spearman r 
95% confidence 

interval 
P value 

GNI index  
 

Spearman r 
95% confidence 

interval 
P value 

HDI 
 

Spearman r 
95% confidence 

interval 
P value 

2-23 March -0.242 -0.281 -0.117 -0.279 

2020 -0.504 to 0.0611 -0.535 to 0.0186 -0.405 to 0.191 -0.533 to 0.0215 

 0.0528 0.0291 0.221 0.0304 
1-22 March -0.0624 0.107 -0.407 0.0551 

2021 -0.354 to 0.241 -0.198 to 0.393 -0.778 to 0.175 -0.247 to 0.348 

 0.340 0.240 0.0743 0.358 
21 February 0.0391 -0.504 -0.0423 -0.497 

– 14 March -0.262 to 0.334 -0.698 to -0.242 -0.340 to 0.263 -0.693 to -0.233 

2022 0.398 0.0002 0.3913 0.0002 
 

Further exploring these correlations, countries were stratified based on GDP 

levels: higher GDP (n = 20) and lower GDP (n = 26) categories and evaluated using 

spearman rho correlation. There are clear variations in the correlations noticed among 

these two sets of countries. 

The countries (n = 20) with the higher GDP in 2020 are Argentina, Austria, Brazil, 

Canada, France, Germany, India, Indonesia, Israel, Italy, Japan, Mexico, Nigeria, Poland, 

Russia, Saudi Arabia, Spain, Turkey, United Kingdom and United States. The countries 

(n = 26) with the lower GDP in 2020 are Armenia, Azerbaijan, Bangladesh, Belarus, 

Bulgaria, Chile, Colombia, Croatia, Czechia, Dominican Republic, Egypt, Greece, 

Guatemala, Hungary, Iran, Iraq, Kazakhstan, Lebanon, Morocco, Norway, Pakistan, 

Portugal, Romania, Serbia, South Africa and United Arab Emirates. 

There's a notable disparity in correlations between these country groups. For the 

top 20 countries with higher GDP, correlations between GDPs per capita, HDI, and the 

aggregate weekly minimum values are solely evident in the final time block (rs = -0.6335, 

p = 0.0014 and rs = -0.6358, p = 0.0013, respectively) (refer to Table 3.6.2). In contrast, 

for the 26 countries with lower GDP, these correlations are present in both early (rs = -
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0.3803, p = 0.0277 and rs = -0.3334, p = 0.0480, respectively) and final time periods (rs 

= -0.4386, p = 0.0125 and rs = -0.4296, p = 0.0143, respectively). 

 

Table 3.6.2 Socio-economic factors Correlation of the possible factors with weekly 
minimums for top 20 countries with highest GDP at 2020 

 
 
Total 
scores for 
the weeks 

GDP 
 

Spearman r 
95% confidence 

interval 
P value 

GDP per capita 
 

Spearman r 
95% confidence 

interval 
P value 

GNI index 
Spearman r 

95% confidence 
interval 
P value 

HDI 
 

Spearman r 
95% confidence 

interval 
P value 

2-23 March 0.0137 -0.0761 -0.0822 -0.140 

2020 -0.442 to 0.465 -0.512 to 0.391 -0.528 to 0.399 -0.559 to 0.335 

 0.477 0.375 0.369 0.278 
1-22 March -0.0722 0.0327 -0.107 -0.0600 

2021 -0.509 to 0.395 -0.428 to 0.479 -0.546 to 0.377 -0.500 to 0.405 

 0.381 0.446 0.331 0.401 
21 

 
February – 
14 March 

2022 

0.00923 
 

-0.447 to 0.461 
 

0.4846 

-0.634 
 

-0.845 to -0.252 
 

0.00140 

0.140 
 

-0.349 to 0.568 
 

0.284 

-0.636 
 

-0.846 to -0.256 
 

0.00130 
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Table 3.6.3 Correlation of the possible factors with weekly minimums for 26 countries 
with lower GDP at 2020 
Total scores 
for the weeks 

GDP 
 

Spearman r 
95% confidence 

interval 
P value 

GDP per capita 
 

Spearman r 
95% confidence 

interval 
P value 

GNI index 
Spearman r 

95% confidence 
interval 
P value 

HDI 
 

Spearman r 
95% confidence 

interval 
P value 

2-23 March -0.0826 -0.380 -0.00482 -0.333 

2020 -0.465 to 0.326 -0.676 to 0.0205 -0.402 to 0.394 -0.646 to 0.0741 

 0.344 0.0277 0.491 0.0480 
1-22 March -0.148 0.316 0.00657 0.227 

2021 -0.515 to 0.265 -0.0935 to 0.634 -0.392 to 0.403 -0.188 to 0.573 

 0.235 0.0580 0.487 0.133 
21 February 0.311 -0.439 -0.0751 -0.430 

– 14 March -0.0993 to 0.630 -0.712 to -0.0495 -0.459 to 0.333 -0.707 to -0.0385 

2022 0.0613 0.0125 0.358 0.0143 
 

These findings highlight that GDP per capita hold more significant in determining virus 

spread than overall GDP. This is further supported by the presence and absence of correlation 

between GDP per capitas and weekly minimum of 𝐼𝑛t for lower GDP and higher GDP country 

groups, respectively. As a conclusion, individual economic activity on the weekly basis seems 

to negatively impact the pandemic. It's essential to reiterate that virus spread appears to be 

independent of GDP but linked to GDP per capita, according to the presented results. 

 

3.7 Simulation with the variable R0i values replicate the weekly cycles on the 

real-world data. 
The data presented here strongly indicates that the WC significantly influences the 

spread of the COVID-19 virus due to the fluctuations in daily socio-economic human activities 

throughout the week. This prompts the hypothesis that variations in the R0i value is the 

underlying cause of the WC observed in 𝐼𝑛t and consequently, 𝐷𝑖𝑑. While viral mutations might 

contribute to daily variations in WC, they follow a regular pattern that is unlikely to be solely 

explained by virus mutations within such a short timeframe. 
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Drawing from these findings, a Variable R0i (VarR0i) Model is devised to capture the 

impact of human activities on COVID-19 transmission. This model aims to evaluate how this 

cycle influences the virus spread by employing a reverse application of the BTrack model, 

utilizing forward tracing methodologies (Fig. 3.7.1 – 3.7.2). 

 

 
Figure 3.7.1 Simulation for the daily infection of the COVID-19 virus using VarR0i model. 
The forward tracking of 𝐼𝑛𝑡 using the VarR0 model with constant R0i (black) and variable R0i 
which is presented with the progressive decrease with 0 (red), 5 (green), 7.5 (yellow), 25 (blue), 
40 (pink) and 60% (cyan) on Thursday through Sunday. The X- and Y axes represent the 
number of the day and number of the daily infection, respectively. 
 

 
Figure 3.7.2 Simulation for the daily transmission of the SARS-CoV-2 using VarR0 
model. The relation between % decrease and 𝐼𝑛t is presented. The X- and Y- axes represent the 
percentage decrease and the daily number of infections, respectively. 
 

Following the initial two weeks, the simulation maintains constant R0i values or 

gradually decreases them from 0 to 60% on Thu, Fri, Sat, and Sun for an additional 8 weeks. 

However, R0i values remain constant on Mon, Tue, and Wed. This decision is informed by data 
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from the pandemic's increasing and decreasing phases, aligning with patterns observed up to 

Thu (Fig. 3.5.1). 

Results indicate that simulations incorporating variable R0i values successfully replicate 

the observed WC of 𝐷𝑖𝑑, mirroring real-life data. Conversely, simulations using a constant R0 

value fail to replicate this weekly cycle (Fig. 3.7.3). 

The simulations initially begin with 1000 infected individuals and a considerably large 

population without prior exposure to the virus. Comparing simulations using a constant R0i 

value of 0.24 with those employing variable R0i values (0.24 and alternating values of 0.12, 

0.06, 0.18, 0.30, 0.36, and 0.42 from Mon to Sun) for the following seven weeks, notable 

differences emerge. The variable R0i simulation predicts 9.52 million 𝐼𝑛t, 29.6 million It, and 

2.65 million 𝐷𝑖𝑑, while the constant R0i simulation forecasts 13.4 million 𝐼𝑛t, 58.6 million It, and 

10.7 million 𝐷𝑖𝑑, despite both simulations averaging an R0i value of 0.24. 

This discrepancy suggests that simulations utilizing a constant R0i value tend to 

overestimate 𝐼𝑛t, It, and 𝐷𝑖𝑑 or underestimate the actual R0i value. This disparity could stem from 

differing definitions; while R0i is occasionally defined as the total secondary infections caused 

by one infected individual, in many studies, 𝐷𝑖𝑑 is commonly used rather than the total infected 

but undiagnosed individuals capable of virus transmission. Hence, this data underscores the 

importance of employing a variable R0i value approach instead of a constant R0i value for a 

more accurate evaluation of the pandemic and for improved estimations. 

Further analysis involves systematically reducing the variable R0i values by 5, 7.5, 25, 

40, and 60% on Thu, Fri, Sat, and Sun over an additional 8 weeks, while maintaining a constant 

baseline variable R0i value from Mon to Sun, respectively (Fig. 3.7.1 and materials Fig. 3.7.3-

3.7.4). At the seven-week mark following the initial two weeks, applying a first-order 

exponential decay equation suggests that 𝐼nt, It, and 𝐷𝑖𝑑 halve when reductions of 11.6%, 13.9%, 

and 13.9% are imposed on the latter half of the week starting on Thursday. 

Consequently, the VarR0i model accurately mirrors the progression of the SARS-CoV-

2 virus pandemic concerning WC and provides improved predictions for pandemic progression. 

Thus, the VarR0i model stands as a more reliable tool for real-life preparation efforts. 
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Figure 3.7.3 Simulation using VarR0i model for the daily total infected and diagnosed 
people. The forward tracking of 𝐷𝑖 𝑑 using the VarR0i model with constant R0i (black) and 
variable R0i which is presented with the progressive decrease with 0 (red), 5 (green), 7.5 
(yellow), 25 (blue), 40 (pink) and 60% (cyan) on Thursday through Sunday. The X- and Y axes 
represent the number of the day and number of the daily infection, respectively. 
 

 
Figure 3.7.4 Simulation using VarR0i model for the daily total infected and diagnosed 
people. The relation between % decrease and f 𝐷𝑖𝑑 is presented. 
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Figure 3.7.5 Simulation using VarR0i model for the daily total infected and diagnosed 
people. The same values as in Fig 3.7.3 for total infected but not diagnosed population (It).  
 

 
Figure 3.7.6 Simulation using VarR0i model for the daily total infected and diagnosed 
people. The same values as in Fig 3.7.4 for total infected but not diagnosed population (It). 
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Chapter 4  

 
CONCLUSIONS AND FUTURE PROSPECTS 
 

4.1 Conclusions 
Almost all prior models have primarily focused on 𝐷𝑖𝑑, contributing significantly to our 

comprehension and simulation of pandemic progression to inform the policy makers and public. 

However, they often overlook the critical factor of transmission timing, which profoundly 

influences virus propagation and the formulation of effective control strategies. This study 

introduces a novel method called BTrack, which successfully determines infection timing from 

𝐷𝑖𝑑 data. So it is expected that this new model will provide more relevant data to inform policy 

makers and better control for the future pandemics. 

Through BTrack, the time-dependent characteristics of 𝐼𝑛t and R0i are identified, 

displaying a weekly cyclic pattern mirroring that of 𝐷𝑖𝑑. Notably, the weekly minimum of R0i 

remains relatively constant on Wednesdays, aligning perfectly with the three-day incubation 

period, signifying that individuals become effective infectors after three days. 

In contrast, the weekly minimum of Ints fluctuates between Tuesday and Friday, 

exhibiting discernible trends during the increasing and decreasing phases of the pandemic. 

These findings underline that the weekly cyclic nature of 𝐼nt is a natural phenomenon controlled 

by socio-economic activities, as evidenced by the effect of national holidays' effects and 

correlations observed between GDP per capitas and HDI with weekly minimums. Notably, as 

GDP per capita decreases, the weekly minimum tends to shift towards the beginning, indicating 

the negative impact of GDP per capita on COVID-19 virus propagation. 

The observations above provide crucial insights into the time- and environment-

dependent propagation of the COVID-19 virus. The environment can broadly be categorized 

into two main phases: the workplace and close social circles comprising family and friends 

(Fig. 4.1). Within this framework, three distinct dynamics emerge in the virus's progression 

over the course of a week (Fig. 4.1). 

Early in the week, the depletion of vulnerable individuals within close social circles 

causes a decline in 𝐼𝑛t towards the midweek (Fig. 4.1.a). Simultaneously, infected individuals 

from these social circles begin transmitting the virus within workplace settings (Fig. 4.1.a). 
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Consequently, these newly infected individuals contribute to the spread of the virus within new 

close social circles of family and friends (Fig. 4.1.b). The interplay between declining and rising 

trends of 𝐼𝑛t in depleted and newly affected social circles, respectively, determines the day of 

the weekly minimum. 

During the midweek, following the weekly minimum, 𝐼𝑛t begins to rise due to the 

efficient virus transmission within the new close social circles initiated by individuals infected 

at work (Fig. 4.1.b). This phase creates a highly effective transmission loop between workplaces 

and close social circles, depicted by the rising level of virus propagation in Fig. 4.1.b. This 

period represents the most efficient viral propagation phase. 

As the week draws to a close, viral spread in workplaces diminishes during the weekend, 

temporarily halting the loop until the following week's minimum. However, virus transmission 

within close social circles persists until vulnerable individuals within those circles are depleted 

(Fig. 4.1.c). 

 

 
Figure 4.1 Time and environments dependence of SARS-CoV-2 virus transmission model 
during a week. The daily variation of SARS-CoV-2 virus transmission is represented as circles 
at the earlier (a), middle (b) and later (c) days of the week. Blue and red circles represent the 
transmission in a work and socializing environments, respectively while the thickness of the 
circles and arrows illustrate the relative transmission rate at different environments, and the 
origin of the transmitter and the direction of the transmission, respectively. In addition, the 
intensity of the red and blue glows at the center exhibits the relative intensity of the transmission 
and the synergistic effect between them. 
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4.2 Societal Impact and Contribution to Global 
It is thought that this master thesis will make a significant contribution to social impact 

on a global scale. First, better understanding the dynamics of the Covid-19 pandemic by 

determining the timing of infection provides a solid foundation for healthcare systems around 

the world. Additionally, the study reveals the relationship between socio-economic factors and 

virus spread, providing a critical understanding of how epidemics can be managed. In this way, 

this study will provide a guidance on developing sustainable strategies for similar situations in 

the future.  

Distance measures to be taken in areas where people have intense close contact with 

each other, such as homes and workplaces, will be the most effective element in global 

pandemic control. This is of vital importance in terms of protecting social health and welfare, 

which coincides with the principle of sustainability. 

As a result, this thesis provides a new perspective in the fight against possible global 

health crises that may be encountered in the future, making vital contributions to the 

management of pandemics and the creation of sustainable health systems. In terms of social 

impact, it sheds light on the development of data-driven, balanced policies to protect people's 

health and social lives. This can help be better prepared for similar challenges in the future. 

 

4.3 Future Prospective 
The data presented here strongly proves that the transmission of the SARS-CoV-2 virus 

primarily occurs through close and intimate human interactions which is similar to the 

observations by the filiation teams. Despite documented instances of viral RNA presence in 

various room areas and even in air samples within isolated rooms of COVID-19 positive 

patients, infection mostly results from direct transmission between individuals [63]. This 

transmission is significantly more efficient at close proximity, especially within the confines of 

homes and workplaces occurring within a distance of less than one meter [64-66]. 

Enhanced distancing measures, particularly within close social circles like homes and 

workplaces, can substantially mitigate the spread of the COVID-19 virus and curb the 

progression of the pandemic. Simulation models using the VarR0i approach demonstrate that 

even a modest 11% reduction in virus transmission during specific periods can result in a 

significant 50% decrease over seven weeks. This underscores the importance of re-evaluating 

and reinforcing the concept of social distancing among the general population. It's crucial to 

communicate the unequivocal benefits of appropriate distancing while acknowledging and 
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minimizing the potential adverse effects of overly stringent social distancing measures on 

individual psychology. Achieving this balance can effectively limit virus spread while 

alleviating the burdens of exaggerated social distancing on individuals' mental well-being. 

The ability of this newly developed model to calculate daily infections using the Weibull 

distribution and COVID-19 characteristics sounds like a groundbreaking approach. The 

identification of a real weekly cycle in daily case numbers and its correlation with socio-

economic factors, affecting transmission in working and social environments, is significant. 

The observation of a variable reproduction number, differing on the pandemic's phases, is also 

a noteworthy finding. 

This pioneering study holds crucial implications, not just for the current COVID-19 

pandemic but also for future pandemics. Understanding infection timing and the impact of 

socio-economic factors on pandemic dynamics is essential for devising effective control 

strategies, providing invaluable insights for tackling similar outbreaks in the future. In addition, 

application of this new method is expected to contribute the sustainability of health care systems 

and labor forces. 
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