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ABSTRACT 

 

MACHINE LEARNING APPROACHES FOR INTERNET OF 

THINGS BASED VEHICLE TYPE CLASSIFICATION AND 

NETWORK ANOMALY DETECTION 

Burak KOLUKISA 

Ph.D. in Electrical and Computer Engineering  

Advisor: Prof. V. Çağrı GÜNGÖR 
January 2024 

 
This thesis presents innovative approaches in the realms of Intelligent Transportation 

Systems (ITS) and Network Intrusion Detection Systems (NIDS) within the Internet of 

Things (IoT). Leveraging IoT technologies, a low-cost, battery-operated 3-D magnetic 

sensor has been developed for ITS to enable the classification of vehicle categories. The 

research presents machine learning and deep learning models that are improved by using 

oversampling, feature selection and extraction methods, hyperparameter optimization, 

and converting signals into 2-D images. New methods have been proposed for vehicle 

type classification to boost classification performance and achieve an accuracy of up to 

92.92%. Additionally, the increasing reliance on IoT devices for such applications 

introduces significant cybersecurity risks. To mitigate these vulnerabilities, a novel 

logistic regression model trained with a parallel artificial bee colony (LR-ABC) algorithm 

has been proposed for network anomaly detection. This model incorporates 

hyperparameter optimization to enhance detection capabilities, showcasing superior 

performance on popular benchmark NIDS datasets with accuracies of 88.25% and 

90.11%. Overall, this research contributes to the advancement of IoT and IoT 

cybersecurity by offering robust, scalable, and efficient solutions. These innovations not 

only enhance vehicle type classification and network security in the IoT era but also pave 

the way for future IoT infrastructure development in an increasingly connected digital 

landscape. 

Keywords: Internet of Things (IoT), Intelligent Transportation Systems (ITS), 

Network Intrusion Detection Systems (NIDS), Machine Learning, Deep Learning 
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ÖZET 

 

NESNELERİN İNTERNETİ TABANLI ARAÇ TİPİ 

SINIFLANDIRMA VE AĞ ANOMALİSİ TESPİTİ İÇİN 

MAKİNE ÖĞRENMESİ YAKLAŞIMLARI  

Burak KOLUKISA 

Elektrik ve Bilgisayar Mühendisliği Anabilim Dalı Doktora 

Tez Danışmanı: Prof. Dr. V. Çağrı GÜNGÖR 
Ocak 2024 

 
Bu tez, Nesnelerin İnterneti kapsamında Akıllı Ulaşım Sistemleri ve Ağ Saldırı Tespit 

Sistemleri alanlarında yenilikçi yaklaşımlar sunmaktadır. Nesnelerin İnterneti 

teknolojilerinden yararlanılarak, Akıllı Ulaşım Sistemleri için düşük maliyetli, pil ile 

çalışan 3 boyutlu manyetik sensör geliştirilmiştir ve bu sensör araç tiplerinin 

sınıflandırılmasını sağlamaktadır. Araştırma, makine öğrenimi ve derin öğrenme 

modellerini, aşırı örnekleme, özellik seçimi ve çıkarma yöntemleri, hiperparametre 

optimizasyonu ve sinyallerin 2 boyutlu görüntülere dönüştürülmesi de dahil olmak üzere 

bir dizi teknikle geliştirmektedir. Araç tipi sınıflandırması için yeni yöntemler önerilmiş, 

bu yöntemler sınıflandırma performansını artırarak %92.92'ye varan bir doğruluk elde 

etmiştir. Ayrıca, bu tür uygulamalar için IoT cihazlarına artan bağımlılık, önemli siber 

güvenlik risklerini de beraberinde getirmektedir. Bu güvenlik açıklarını azaltmak için, ağ 

anomalisi tespiti için paralel bir yapay arı kolonisi (LR-ABC) algoritması ile eğitilmiş 

yeni bir lojistik regresyon modeli önerilmiştir. Bu model, tespit yeteneklerini geliştirmek 

için hiperparametre optimizasyonunu içermekte ve popüler NIDS veri kümelerinde 

%88.25 ve %90.11 doğruluk oranlarıyla üstün performans sergilemektedir. Genel olarak, 

bu araştırma, sağlam, ölçeklenebilir ve verimli çözümler sunarak Nesnelerin İnterneti ve 

Nesnelerin İnterneti siber güvenliğinde ilerlemeye katkıda bulunmaktadır. Bu yenilikler, 

sadece Nesnelerin İnterneti çağında araç tiplerinin sınıflandırmasını ve ağ güvenliğini 

artırmakla kalmayıp, giderek daha bağlantılı bir dijital manzarada gelecekteki IoT 

altyapısının gelişimine de öncülük etmektedir. 

Anahtar kelimeler: Nesnelerin İnterneti, Akıllı Ulaşım Sistemleri, Ağ Saldırı Tespit 

Sistemleri, Makine Öğrenmesi, Derin Öğrenme 
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Chapter 1 

1 Introduction 

In our rapidly evolving digital landscape, the Internet has become an indispensable 

part of modern life, enabling people to access communication, information, education, 

entertainment, and e-commerce in the easiest and fastest way possible. The Internet is a 

network that connects computers, smartphones, tablets, and many other electronic 

devices. With the development of smart devices using the Internet, the need for the 

Internet of Things (IoT) has increased. Along with the IoT, many devices, from our homes 

to cars, from industrial equipment to health devices, have become connected to the 

internet without human intervention [1]. IoT encompasses a wide range of applications 

and technologies where everyday objects and devices are connected to the internet, 

enabling them to collect and exchange data for various purposes. Figure 1.1 depicts a 

comprehensive illustration of the integrated architecture utilized within the scope of IoT 

systems. The advent of IoT has paved the way for more specialized applications, such as 

Intelligent Transportation Systems (ITS). ITS represents a convergence of information 

technology and transportation infrastructure, aimed at enhancing traffic efficiency and 

road safety [2]. 

ITSs are a specific application area within IoT that focuses on improving 

transportation and mobility through the use of connected sensors, devices, and data 

analytics. In the context of ITS, vehicle type classification using IoT technologies 

involves equipping vehicles with sensors and communication devices to gather data about 

their characteristics and behaviors. This data can include information about the type of 

vehicle, its speed, location, and more. In this thesis, Machine Learning (ML), and Deep 

Learning (DL) techniques are then applied to analyze this data and classify vehicles type 

based on the signals captured by the Three-Dimensional (3-D) magnetic sensors. 

Effective vehicle type classification is essential for improving traffic management and 
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congestion control, facilitating long-term infrastructure planning, enhancing public 

transportation and urban planning, ensuring environmental monitoring, and promoting 

road safety. These contributes significantly enhance the overall quality of urban life and 

form the backbone of modern ITS solutions. 

 

 
Figure 1.1 An illustration of an integrated architecture of Internet of Things [3]. 

The IoT encompasses a vast array of internet-connected entities, from sensors and 

actuators to various smart devices, all generating immense volumes of data [4]. This wide 

spread of IoT devices, along with their growing complexity and important integration into 

infrastructures like ITS, makes them much more vulnerable to cyberattacks [5]. In this 

context, Network Intrusion Detection Systems (NIDS) emerge as indispensable to the 

security of IoT ecosystems. By providing comprehensive monitoring, robust protection 

against threats, ensuring data integrity, and compliance with regulatory mandates, NIDS 

are foundational to safeguarding IoT devices and their networks. Their role is not merely 

protective but pivotal for the successful deployment and operational integrity of IoT 

technologies. This thesis presents a machine learning approach to detect network 

anomalies and mitigate the multifaceted challenges posed by networks, such as high 

dimensionality, class imbalance, and the dynamic nature of network threats. 

 



3 
 

1.1 Research Objectives and Solutions 

The IoT integrates a network of smart devices into our daily routines, establishing 

a complex array of data and connections that present both opportunities and challenges 

in terms of security and interpretation. This thesis recognizes the reality that each smart 

device becoming a part of the vast IoT network unleashes enormous potential for 

changing our lives, a potential that can only be realized with the development of advanced 

artificial intelligence algorithms and rigorous security mechanisms. Therefore, this thesis 

embarks on a pioneering exploration into vehicle type classification and network security 

within the IoT framework, employing ML and DL algorithms. 

The classification of vehicle types is critical for the efficient functioning of urban 

traffic systems, the reduction of carbon emissions, and the improvement of transportation 

infrastructure, which is increasingly vital due to urban growth. ITS exemplifies the 

transformative impact of IoT in enhancing the efficiency and safety of movement within 

our cities and beyond. The application of sophisticated machine learning and deep 

learning techniques, when integrated with a single 3-D magnetic sensor and appropriate 

preprocessing methodologies, is posited to effectively address the issues of high 

dimensionality and class imbalance in vehicle datasets, consequently enhancing the 

precision and efficacy of vehicle type classification. Accordingly, novel approaches to 

vehicle type classification have been introduced in traffic management. However, the 

scope of this thesis extends beyond vehicle type classification; it seeks to innovate in the 

development of NIDS that serve as the sentinels of the IoT domain. As our reliance on 

IoT devices for privacy and security grows, the centrality of NIDS in protecting the 

integrity of our digital ecosystems becomes indisputable. This thesis tackles the 

challenges associated with ML-based NIDS, including the complexity of processing high-

dimensional data, the persistent issue of class imbalance, and the elusive nature of 

network threats. It posits that integrating the machine learning model with the swarm 

intelligence algorithm will significantly enhance the efficacy of anomaly-based NIDS, 

surpassing the capabilities of traditional systems. Additionally, the efficiency of the 

proposed model is expected to benefit from parallel computing techniques, leading to 

quicker processing and response times. In general, it aims to develop a robust defense 

mechanism capable of not just detecting anomalies but also predicting and adapting to 

emerging threat patterns, thereby establishing a secure framework for the IoT. 
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Overall, the thesis begins with an in-depth evaluation of vehicle type classification, 

introducing two novel approaches. It then presents a novel approach for enhancing 

network anomaly detection on NIDS. The research primarily delves into three specific 

studies: 

1. A deep neural network approach with hyper-parameter optimization for vehicle 

type classification using 3-D magnetic sensor [6]. 

2. Deep learning approaches for vehicle type classification with 3-D magnetic sensor 

[7]. 

3. An efficient network intrusion detection approach based on logistic regression 

model and parallel artificial bee colony algorithm [8]. 

 

1.1.1 A deep neural network approach with hyper-parameter 

optimization for vehicle type classification using 3-D magnetic sensor 

This chapter endeavors to enhance vehicle type classification techniques within 

ITS by leveraging innovative sensor technology and advanced ML algorithms. The aim 

is to develop a system adept at distinguishing between different vehicle types using a 

novel methodology. The proposed systems include a 3-D magnetic sensor placed on a 

single-lane road to detect magnetic disturbances from vehicles. This system includes a 

sensor mote to capture sensor readings, a gateway for data transmission to the data center, 

and a web server for data processing and presentation. 

Two datasets are generated: the signal data, derived from the magnetic sensor's 

raw signal and processed through zero-padding, and the extracted data, comprising 44 

features extracted from the signal data. Both datasets undergo normalization for 

consistency. The raw signal data, while comprehensive, may contain excessive noise or 

irrelevant information that could mislead ML models, leading to high dimensionality, 

overfitting, and increased computational costs. Feature extraction and selection refine the 

data, reducing dimensionality and computational demands while enhancing model 

accuracy and interpretability. The extracted dataset, optimized with the best-selected 

features for each classifier, addresses these challenges. 

The thesis employs several classification algorithms, including C4.5, Random 

Forest (RF), Logistic Regression (LR), Extreme Gradient Boosting (XGBoost), Support 
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Vector Machine (SVM), and Deep Neural Network (DNN), implemented using Python, 

Scikit-Learn, and Keras. The DNN, specifically, is designed with a unique architecture to 

enhance performance. It incorporates techniques like batch normalization and dropout 

rates to prevent overfitting and employs the Focal Loss (FL) function, which is pivotal in 

addressing class imbalance issues by focusing more on challenging cases. The 

methodology also includes rigorous testing and validation protocols. The datasets are 

split, with 70% used for training and 30% for testing. The training process involves 5-

fold Cross-Validation (CV) to ensure the robustness and generalizability of the models. 

Hyperparameter optimization is carried out using a grid search optimization algorithm 

with CV, fine-tuning each model for best performance. 

Overall, the findings indicate that feature extraction and selection enhance the 

performance of ML algorithms, while the FL function improves DNN results. Notably, 

the DNN, optimized with the selected 30 features using Grid Search Cross-Validation 

(GS-CV), achieves superior performance with an accuracy of 91.15% and an f-measure 

of 91.50%. 

 

1.1.2 Deep learning approaches for vehicle type classification with 3-D 

magnetic sensor 

In this chapter, a novel approach to vehicle type classification is explored by 

applying advanced DL techniques, including Long Short-Term Memory (LSTM) and 

Gated Recurrent Unit (GRU), and transfer learning algorithms such as VGG16, VGG19, 

Xception, MobilNet, MobilNetV2, DenseNet121, DenseNet169, and DenseNet201. 

Additionally, a custom soft voting ensemble model is employed to enhance performance 

results. A key innovation is the conversion of vehicle signal data into Two-Dimensional 

(2-D) image formats, enabling the use of sophisticated image-based DL models to 

improve classification effectiveness. 

The dataset is carefully segmented, allocating 30% as the test set using stratified 

random sampling. The training set is enriched with the Synthetic Minority Oversampling 

Technique (SMOTE) to increase sample diversity. The core classification strategy 

involves LSTM and GRU models, which are well-suited for time-series data. This 

requires reshaping the dataset and applying masking due to different sample lengths. The 

transfer learning approach is also employed, where the vehicle signals are converted into 
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2-D images. This approach leverages pre-trained models, freezing their convolutional 

base layers and retraining the top layers. In addition to these advanced classification 

methods, the study also incorporates SVM for its simplicity and effectiveness in handling 

classification tasks. Hyperparameter optimization using grid search ensures that SVM 

classifiers are trained with the most suitable parameters. 

Overall, the findings indicate that converting signal data into 2-D images enhances 

the performance of the vehicle type classification. The custom soft voting ensemble 

method, which combines time-series and image data for LSTM, GRU, and VGG16 

models, demonstrates remarkable performance, achieving an accuracy of 92.92% and an 

f-measure of 93.42%. This marks an improvement over previous studies, especially in 

terms of accuracy and f-measure performance. The insights from this study can lead to 

the development of more reliable and precise classification systems, potentially 

integrating with an ensemble method to further improve classification performance. 

 

1.1.3 An efficient network intrusion detection approach based on 

logistic regression model and parallel artificial bee colony algorithm 

This chapter develops a sophisticated approach to detecting anomalies in networks, 

addressing the escalating cybersecurity challenges in the context of the exponential 

growth of the Internet and IoT. Recognizing the limitations of current NIDS, particularly 

in terms of accuracy, f1-measure, false positive rate, and false negative rate, the research 

introduces a novel anomaly-based detection methodology.  

The core of this innovative approach is a new anomaly-based NIDS approach using 

LR, known for its straightforwardness, rapid classification in real-time, and efficiency. 

To circumvent LR’s tendency to convergence to poor local minima, the system is 

developed with the Artificial Bee Colony (ABC) algorithm. This algorithm, inspired by 

the natural world, mimics the food-gathering patterns of honey bees and provides several 

advantages: (i) it requires minimal prior knowledge about the data and human 

intervention, allowing for classification without specific data preprocessing techniques; 

(ii) hybridizing the ABC approach with ML techniques improves model results; (iii) the 

ABC method is less dependent on known labels within the dataset compared to many ML 

approaches; (iv) it is inherently distributed and performs well in parallel and distributed 

computing environments. 
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The proposed model undergoes rigorous evaluation against ML and DL models on 

two publicly available NIDS datasets, UNSW-NB15 and NSL-KDD, each providing 

training and test sets. Essential data preprocessing steps, such as one-hot encoding and 

data normalization, are applied to ensure accurate and efficient processing of the 

categorical and numerical data within the NIDS datasets. 

In summary, this chapter presents a comprehensive and efficient approach to NIDS 

using an LR trained by the ABC algorithm (LR-ABC). The proposed LR-ABC model 

stands out for its efficiency, particularly in reducing computational time through Central 

Processing Unit (CPU) and Graphics Processing Unit (GPU) parallelization techniques. 

The findings demonstrate the model's effectiveness, achieving a significant accuracy of 

88.25% on the UNSW-NB15 dataset and 90.11% on the NSL-KDD dataset. 

 

1.2 Research Outlines 

The thesis is meticulously organized to ensure thoroughness and clarity. Chapter 2 

details the specifications and functionalities of the 3-D magnetic sensor node. It then 

comprehensively explains ML and DNN classification algorithms. The chapter 

establishes a foundation by defining the evaluation metrics pivotal for measuring the 

algorithms' efficacy. A description of the employed dataset sets. The process of feature 

extraction is then systematically detailed, followed by a discourse on the ANOVA F-test 

feature selection method, which is instrumental in pinpointing key features. The chapter 

advances with a discussion on the adoption of the focal CE loss function, thoughtfully 

chosen to counteract class imbalance within the dataset. A thorough examination of grid 

search techniques follows, emphasizing their significance in hyperparameter optimization 

to enhance model performance. The chapter concludes with a presentation of the 

experimental procedures, the results obtained, and a comparative analysis of the proposed 

approach against existing classification algorithms.  

Chapter 3 further expands the methodological discourse, starting with an 

introduction to the SMOTE for rectifying data imbalances. It introduces an innovative 

method for 2-D multi-color data visualization, thereby enriching the analysis with a new 

visual perspective. The chapter then provides an in-depth examination of recurrent neural 

network (RNN) paradigms, including LSTM and GRU, alongside transfer learning 

techniques. The narrative concludes with the integration of a custom soft voting ensemble 
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model, followed by a detailed presentation of experimental approaches and outcomes, 

and a comparative analysis that benchmarks the proposed model against traditional 

classification techniques. This chapter not only builds upon the foundational 

methodologies presented in Chapter 2 but also showcases the fusion of various advanced 

algorithms to create a robust vehicle classification system.  

Chapter 4 provides a detailed description of the dataset used in NIDS and 

establishes a foundation by defining the crucial evaluation metrics for assessing algorithm 

efficacy. It explains the processes of normalization, one-hot encoding, and the 

implementation of Bayesian hyperparameter optimization to fine-tune the detection 

system. The chapter then introduces the fundamental concepts of LR and the ABC 

algorithm, laying the theoretical groundwork for the proposed model and addressing 

computation optimizations on CPUs and GPUs. Lastly, it presents a thorough analysis of 

the model's performance on publicly available NIDS datasets.  

Finally, Chapter 5 summarizes the research findings, explains the societal impact 

and contribution to global sustainability, and outlines several potential areas for future 

investigation.
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Chapter 2 

2 A deep neural network approach with 

hyper parameter optimization for vehicle 

type classification using 3-D magnetic 

sensor 
This chapter evaluates vehicle type classification using a single 3-D magnetic 

sensor and ML algorithms. It introduces an innovative ML approach, leveraging DNN 

with FL. This method incorporates hyperparameter optimization and feature extraction 

and selection techniques to effectively address the challenge of vehicle type classification. 

The proposed method is comprehensively investigated alongside other classification 

techniques. The proposed method undergoes comprehensive investigation and 

comparison with other classification techniques, providing a detailed analysis of its 

effectiveness. 

 

2.1 Motivation and Related Work 

According to the latest published data from the International Organization of Motor 

Vehicle Manufacturers, the total number of vehicles produced worldwide in 2019 was 92 

million, and the current global vehicle population is approximately 1.32 billion [9]. The 

significant increase in the number of vehicles has led to various problems. In recent years, 

specific attention has been given to ITS to enhance the quality of life, improve traffic 

administration, and plan road maintenance effectively [10]. In ITS, traffic monitoring 

systems gather data, including the number, types, and speed of vehicles, to manage 

roadway systems, predict transportation needs, and enhance safety. 
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In many countries, significant investments are being made to develop, implement, 

and maintain traffic monitoring systems. For effective traffic planning, it is crucial to 

classify vehicle types correctly. Recently, researchers have studied different vehicle 

classification systems to accurately classify vehicle types. Due to significant technical 

challenges, various systems have been proposed using different technologies, including 

accelerometers [11, 12], acoustic sensors [13, 14], loop detectors [15, 16], LIDAR [17], 

piezoelectric sensors [18], vibration sensors [19], [20], magnetic sensors [21-30], cameras 

[31], and hybrid methods [32]. In Table 2.1, existing studies are compared and 

summarized based on different technologies. 

 

Table 2.1 A summary of research using different technologies for vehicle type 

classification. 

Study Technology Sample Size ACC (%) Cost Energy Efficiency 

[3] Accelerometer 226 99.0 NA NA 

[4] Accelerometer 142 89.0 NA NA 

[5] Acoustic 160 73.42 NA NA 

[6] Acoustic 106 71.69 NA NA 

[24] Hybrid 50 90.0 NA NA 

[7] Loop Detectors 1.330 94.21 NA NA 

[8] Loop Detectors 21.600 91.0 NA NA 

[10] LIDAR 872 86.90 NA NA 

[11] Vibration 354 80.22 NA NA 

[12] Vibration 415 89.41 NA NA 

[13] Magnetic 5.837 88.0 NA NA 

[14] Magnetic 188 83.0 $50 NA 

[15] Magnetic 253 93.66 NA NA 

[16] Magnetic 20.353 96.40 NA NA 

[17] Magnetic 12.085 97.65 $80 NA 

[18] Magnetic 1.442 80.55 NA NA 

[19] Magnetic 300 95.46 NA NA 

[20] Magnetic 732 95.40 NA NA 

[21] Magnetic 412 94.41 NA NA 

[22] Magnetic 6.042 97.83 NA NA 

Developing vehicle type classification systems poses extremely challenging tasks. 

Sensor types, hardware and parameter settings, configuration processes, operating 

environments, resistance to weather and noise, durability (battery life), and even 
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maintenance and installation costs are important features and requirements for these 

technologies. Compared to other technologies, magnetic sensors are particularly preferred 

due to their extreme climate resistance, compact size, easy set-up, and reasonable price. 

Additionally, given the effectiveness of the ML algorithms in various fields [33-37], 

researchers are exploring the classification of vehicle types using 3-D magnetic sensors 

based on ML. Several ML methods are applied, including Back Propagation Neural 

Networks [26, 27], SVM [25-28], RF [26-28], XGBoost [26], C4.5 [25-28], K-Nearest 

Neighbor (KNN) [25], [27], [28], Naive Bayes [25], and Convolutional Neural Networks 

(CNN) [30], for vehicle type classification using 3-D magnetic sensors. 

Overall, it is evident that there is a need to improve the classification of vehicle 

types using ML algorithms. While a significant amount of research has been conducted 

using ML algorithms, a comprehensive analysis of these algorithms is essential. 

Therefore, this chapter efficiently addresses feature extraction, feature selection, and 

hyper-parameterization. Additionally, a new method is proposed, demonstrating 

improved results in vehicle type classification. 

This chapter is organized as follows: Section 2.2 details the specifications and 

functionalities of the 3-D magnetic sensor node. Section 2.3 outlines the proposed 

approach and introduces the classification methods employed in this chapter. Section 2.4 

is dedicated to the performance evaluation of the proposed approach, comparing it with 

various classification algorithms. The final section provides a comprehensive discussion 

of the results obtained in this chapter. 

 

2.2 Magnetic Sensor 

The proposed system consists of a 3-D magnetic sensor for measuring the intensity 

of magnetic fields, a mote responsible for reading the sensor outputs, a gateway 

responsible for transmitting the data provided by the sensor mote to the data center, and 

a web server responsible for analyzing and displaying the collected data. The capsule 

structure that protects the system from environmental factors is shown in Figure 2.1. The 

proposed system diagram is displayed in Figure 2.2. 
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Figure 2.1 Illustration of the node's size and shape in the three-dimensional 

magnetic sensor system. 

 
Figure 2.2 The illustration diagram of the proposed system using the three-

dimensional magnetic sensor for vehicle type classification. 
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2.2.1 Sensor 

In order to extract new features for the classification algorithms, a single 3-D 

magnetic sensor is used as a sensing unit. The sensor node's features are as follows: The 

supply voltage ranges from 0.9 to 3.6 volts (V), the maximum data rate is 5 kilobits per 

second (kbps), the transmit (TX) power is +30 decibels relative to one milliwatt (dBm), 

the radio frequency (RF) ranges from 863 to 876 megahertz (MHz), the RF 

communication distance ranges from 100 to 700 meters (m), the operating temperature 

ranges from -25 degrees Celsius (°C) to 80°C, and the mechanical robustness is up to 

10,000 kilograms (kg). It has a waterproof ingress protection rating of IP67, signifying 

its robust defense capabilities. The digit '6' refers to complete protection against solid 

matter like dust, and the digit '7' refers to its ability to resist liquid intrusion (immersion 

up to 1 meter). The battery’s lifetime is 2 years. The system architecture of a 3-D magnetic 

sensor node is shown in Figure 2.3. 

 

 
Figure 2.3 The system architecture of a three-dimensional magnetic sensor node. 

 

The cost analysis of the mote is as follows: The microcontroller unit (MCU, model 

CC1312) costs $7, the RF module (model SE2435L) costs $3, the magnetic sensor array 

costs $5, the flash memory costs $1, the antenna costs $2, and the printed circuit board 

(PCB) costs $7. The features of sensor nodes are shown in Table 2.2, and the cost of each 

component is provided in Table 2.3. The proposed sensor node has a total cost of $25, 
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which is not mentioned in most of the studies. A limited number of recent studies [19], 

[22] mentioned that their sensor costs are $50 and $80, respectively, while our sensor 

node costs much less compared to these studies. 

 

Table 2.2 The sensor node's features. 

Feature Description 

Voltage 0.9-3.6 V 

Max. Date rate 5 kbps 

Tx Power +30 dBm 

RF Frequency 863–876 MHz 

RF Communication distance 100 m–700 m 

Operation temperature −25 +80 ◦C 

Mechanical robustness 10 000 kg 

Waterproof IP rating IP 67 

Batter lifetime 2 years 

 

Table 2.3 Detailed cost analysis of the mote in the three-dimensional magnetic sensor 

system. 

Component part Price 

MCU (CC1312) $7 

RF Module (SE2435L) $3 

Magnetic sensor array $5 

Flash memory $1 

Antenna $2 

PCB $7 

Total $25 

 

2.2.2 Mote 

The developed mote includes a CC1312 wireless MCU, which features a 48-MHz 

Cortex-M4F microcontroller, a special radio controller based on Cortex-M0, an ultralow-

power 8-bit sensor controller integrated circuit (IC), 80 kilobytes (kB) of static random 

access memory (SRAM), a universal asynchronous receiver/transmitter (UART), an 

inter-integrated circuit (I2C), and a serial peripheral interface (SPI) [38]. Communication 

with the gateway is ensured by the CC1312 wireless MCU operating at the 868 MHz 
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band, adopting the low-rate wireless personal area network (LR-WPAN), which is an 

Institute of Electrical and Electronics Engineers (IEEE) 802.15.4 communication 

protocol. An RF front-end module is adopted to increase the RF power output [39]. The 

developed embedded software on the mote is used for sensor calibration, real-time sensor 

measurement reading, temporary data processing and storage, and finally forwarding the 

stored data to the gateway. A picture of the sensor and the mote is provided with labeled 

components in Figure 2.4. 

 
Figure 2.4 The sensor unit and the mote within the three-dimensional magnetic 

sensor system. 

 

2.2.3 Gateway 

The gateway is equipped with the same mote hardware connected to a Raspberry 

Pi [40]. The data acquired from sensor motes is transmitted to the data center via the 

Linux operating system, which is run on the Raspberry Pi. The same type of transceiver 

is used for the mote connection. The gateway features are as follows: The voltage supply 

is 5 V; the TX power is +30 dBm; the RF frequency is between 863 and 876 MHz; the 
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RF communication distance ranges from 100 to 700 m; the operation temperature range 

is between −25 °C and 80 °C; and the maximum number of connected nodes can be up to 

100. The gateway properties are provided in Table 2.4. 

 

Table 2.4 Technical Specifications of the Gateway. 

Feature Description 

Voltage 5 V 

Tx Power +30 dBm 

RF Frequency 863–876 MHz 

RF Communication distance 100 m–700 m 

Operation temperature −25 +80 ◦C 

Max. Number of connected nodes 100 

 

2.2.4 Backend 

The sensor values are stored along with a reference camera system to facilitate data 

tagging and store the data for later offline processing. A backend cloud system has been 

developed. By synchronizing the camera with the magnetic sensor node, the user selects 

the time frame for cropping and tagging the videos with the magnetic sensor node’s data. 

The video dataset is saved in the NoSQL database for future usage and long-term 

retention. 

 

2.2.5 Battery lifetime 

Two different measurement methods are used to obtain the magnetic signature of 

the vehicle. The first of these methods is the time-dependent measurement method, which 

is continuously based on receiving data from sensors at certain time intervals. The 

primary advantage of this method is energy consumption. However, there is a possibility 

that the sensor cannot detect significant magnetic field changes, leading to an increase in 

the error rate in the magnetic signature. 

The second method, called vector magnitude-dependent measurement, is the 

method that takes samples according to certain magnetic field changes (e.g., every 10 

microteslas). The primary benefit of this method is that it captures all magnetic field 

changes, allowing for a larger sample amount that can be processed and a more accurate 
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signature. However, adding timestamp information increases the size of the data to be 

transmitted in a narrow band, leading to a significant increase in battery consumption. 

In light of this information, during the project’s implementation, the second method 

was used to detect magnetic changes during the vehicle’s entry and exit from the sensor. 

The first method was used to sample the vehicle’s movement on the sensor based on time. 

Power consumption is optimized in this way. 

As the vehicle passes over a 3-D magnetic sensor node, the node wakes up, records 

the vehicle’s measurements, transmits them to the gateway, and then sleeps again. The 

sampling frequency of the sensor is set to 400 Hz, which is the maximum frequency, in 

order to obtain better signal data and detect the vehicle’s passing with minimal time loss. 

Reducing the sampling frequency would decrease the current consumption of the sensor, 

thereby increasing the battery life of the sensor node. However, it would also result in a 

decrease in data quality, adversely affecting the performance results of vehicle 

classification. 

The sensor node was mounted on a single-lane road. Magnetic distortions were 

measured for a total of 50 different vehicles, and the threshold (T) and references for X, 

Y, and Z were determined; the equation is shown in (2.1). For new vehicles, magnetic 

distortions are denoted as 𝑋𝑜, 𝑌𝑜, and 𝑍𝑜, while the reference magnetic distortions for 

the vehicles are 𝑋𝑟, 𝑌𝑟, and 𝑍𝑟. If the result of the equation is greater than the T value, 

the vehicle's magnetic distortions are recorded. The magnetic distortions of the 50 

different vehicles were used to determine that T is equal to 110. 

 

'(𝑋! − 𝑋")# + (𝑌! − 𝑌")# + (𝑍! − 𝑍")#
!  >T (2.1) 

 

The sensor consumes 20 microamperes (uA) during the sleep period. The average 

power consumption for a vehicle includes the sensor measurement period and packet 

transmission, with durations of 8 milliseconds (ms) and 12 ms, respectively. Packet 

transmission consists of pre-processing (10 milliamperes (mA) per ms, 2 ms), RX (1 

amperes (A) per ms, 5 ms), TX (20 mA per ms, 3 ms), and post-processing (10 mA per 

ms, 2 ms). The sensor measurement period uses 40 mA per ms, and packet transmission 
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uses 425 mA per ms. In total, the average power consumption for a vehicle is 5420 mA 

with a duration of 20 ms. A vehicle's average power consumption is shown in Table 2.5. 

 

Table 2.5 Power consumption profile for vehicle sensing and sensor node operations. 
Name Average current (per ms) Duration 

Sensor measurement 40 mA 8 ms 

Packets transmit (Pre-processing) 10 mA 2 ms 

Packets transmit (RX) 1 A 5 ms 

Packets transmit (TX) 20 mA 3 ms 

Packets transmit (Post-processing) 10 mA 2 ms 

 

 

2.3 Classification Methods 

This chapter presents a summary of the ML and DL techniques utilized in the 

development of this thesis. The examination begins by considering Decision Trees (DTs), 

with a particular focus on the C4.5 algorithm, known for its ability to process diverse data 

types and generate clear decision rules. The C4.5 algorithm lays the groundwork for 

advanced ensemble methods, such as RF and XGBoost, which enhance prediction 

accuracy by combining the strengths of multiple models, thereby reducing individual 

biases and increasing the overall model precision. In addition, the study examines LR, 

which is well-known for its unique ability to do binary classification and its flexibility in 

handling multiclass settings. SVM is also examined for its distinctive capability to 

identify the best hyperplane, a crucial element in both binary and multiclass classification 

applications. In the exploration of DNNs, the thesis uncovers their potential to reveal 

complex patterns hidden within high-dimensional data, outperforming the more limited 

linear models. The ensuing sections offer an in-depth review of these algorithms, 

examining their theoretical foundations, practical implementations, and rigorous 

empirical testing. The aim is to elucidate their strengths, pinpoint their limitations, and 

demonstrate their capacity to turn raw data into insightful analyses. 
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2.3.1 Decision trees (C4.5) 

Decision trees, specifically the C4.5 algorithm, are a type of supervised learning 

method commonly employed in classification tasks. They are capable of handling both 

categorical and continuous input and output variables. The goal is to construct a model 

capable of predicting the value of the dependent variable by deriving straightforward 

decision rules from the independent variables. Entropy (E) and Gini (G) are used to 

determine these criteria in establishing these rules. 

Entropy measures the uncertainty or unpredictability within a system, assessing the 

level of randomness in the class distribution among the dataset's examples. In a dataset 

with multiple classes, entropy for a dataset S can be calculated using equation (2.2), where 

𝑝$ represents the proportion of samples belonging to class 𝑖 within the dataset. 

Information Gain (IG) quantifies the difference in entropy between a dataset before and 

after it is divided based on a particular feature. It is used to decide the characteristic on 

which to divide at each stage of constructing the tree. IG is determined by subtracting the 

entropy before the split from the weighted sum of the entropies of each subgroup resulting 

from the split, as shown in equation (2.3). The aim is to identify the feature that yields the 

most significant decrease in entropy (the highest IG) for the split. 𝑇 represents the set of 

all possible outcomes (subsets) after the split. 𝑆% is the subset of 𝑆 corresponding to the 

outcome 𝑡, and |𝑆%|	/𝑆 is the weight of the subset 𝑆%. By selecting splits that maximize 

IG, the model incrementally increases the predictability of the outcome, leading to a 

structured decision-making process that accurately captures the data's inherent patterns. 

The resultant prediction model takes the form of a tree, where each path from the root to 

a leaf represents a series of decisions culminating in a predicted outcome. Ideally, these 

paths clearly and accurately categorize the input samples based on their attributes. 

 

𝐸(𝑆) = 	−6 𝑝$
&

$'(
	 log#(𝑝$) (2.2) 

𝐼𝐺(𝐴, 𝑆) = 𝐸(𝑆) −	6
|𝑆%|
𝑆%	*	+
	𝐸(𝑆%) (2.3) 

𝐺(	𝑆) = 1 −6 𝑝$#
&

$'(
 (2.4) 
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The Gini index evaluates the probability of incorrect labeling of an element in the 

dataset if it were randomly labeled according to the distribution of labels in the subset. 

The Gini impurity of a dataset 𝑆 may be represented quantitatively using equation (2.4), 

where 𝑝$ is the probability of an item being categorized into a class 𝑖 in the dataset 𝑆, and 

𝑛 represents the total number of classes. The probability 𝑝$ is calculated by dividing the 

number of things classified with class 𝑖 by the total number of items in the dataset. To 

compute the impurity, one subtracts the total of the squared probabilities of all classes 

from one. The Gini index is often favored in DT algorithms because it is computationally 

simpler than entropy. Unlike entropy, Gini does not need logarithmic computations, 

which are needed to compute the logarithm of probabilities. Despite their different 

mathematical formulations, Gini impurity and entropy often lead to the creation of similar 

DTs. However, due to its computational efficiency—particularly with large datasets and 

numerous features—the Gini index may be preferred in several implementations. 

 

 

Figure 2.5 Schematic representation of random forest classification model. 
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2.3.2 Random forest (RF) 

The Random Forest (RF) algorithm is an ensemble approach that constructs 

multiple DTs during the training phase and determines the class through majority voting 

based on the classifications provided by the individual trees [41]. The inherent nature of 

RF enables it to enhance the predictive accuracy of individual DTs by aggregating their 

results. By averaging out the biases of individual trees, the overall variance of the final 

model is reduced, resulting in a more precise and robust classifier. Moreover, RF handling 

overfitting effectively mitigates overfitting through the use of several trees in the 

ensemble. The process begins with bootstrapping the dataset, which involves generating 

numerous subsets from the original dataset using random sampling with replacement. 

Each subset is then used to train an individual DT. In constructing a DT, unlike standard 

DTs, each node is split using the best among a randomly chosen subset of predictors at 

that node. This introduces randomness into the model, ensuring a diverse collection of 

trees in the forest. Upon training completion for all the trees, predictions for new and 

unseen data are made by aggregating the votes from each tree to determine the most 

probable class. The final prediction of the RF is made by selecting the class with the 

highest number of votes from all the trees. Figure 2.5 depicts the schematic representation 

of RF classification. 

 

2.3.3 Extreme gradient boosting (XGBoost) 

Extreme Gradient Boosting (XGBoost) is an ensemble learning method [42], which 

means that it aggregates the predictions from multiple models to produce a final outcome. 

Unlike bagging, as utilized in RF, XGBoost constructs trees sequentially. Each successive 

tree is built to correct the errors of its predecessors. The term 'gradient boosting' refers to 

the method's ability to minimize a loss function by successively adding weak learners, 

typically DTs with limited depth, in a manner akin to gradient descent optimization. Weak 

learners in XGBoost are characterized as shallow trees with few levels. Despite their 

simplicity, when combined, these weak learners produce a powerful model. XGBoost 

builds upon the basic gradient boosting framework by introducing a more regularized 

model formulation, which helps to prevent overfitting and consequently leads to enhanced 

performance. During each iteration, XGBoost adds a new tree designed to predict the 

residuals or gradients of the cumulative model concerning the loss function. Furthermore, 

XGBoost implements L1 (Lasso Regression) and L2 (Ridge Regression) regularization 
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methods. These methods serve to constrain the magnitude of the feature weights, thus 

reducing the risk of overfitting and improving the model's ability to generalize to unseen 

data. 

The objective function of XGBoost is a combination of a loss function and a 

regularization term. The aim is to minimize objective function as shown in equation (2.5), 

where 𝜃  represents the parameters of the model and 𝑛 is the number of training instances. 

The loss function  𝑙	(𝑦$ , 𝑦C$) quantifies the discrepancy between the predicted value 𝑦$ and 

the actual label 𝑦$. K is the number of trees and Ω(𝑓,) signifies the regularization term 

for the k-th tree. The regularization term Ω(𝑓,), which penalizes the model’s complexity, 

is defined in equation (2.4), where γ controls the complexity through the number of leaves 

in the tree. 𝑇, is the count of leaves in the k-th tree, 𝜆 is the L2 regularization term 

affecting the weights, and 𝑤, is the vector of leaf weights for the k-th tree. 

𝑂𝑏𝑗(𝜃) = 	∑ 𝑙	(𝑦$ , 𝑦C$)&
$'( +	∑ Ω(𝑓,)-

,'(    (2.5) 

Ω(𝑓,) = 𝛾𝑇, +	
1
2 𝜆
‖𝑤,‖# (2.6) 

 

At each iteration 𝑡, a new tree 𝑓% is added to the model to correct the errors made 

by the existing ensemble of trees. This new tree is trained to predict the residual errors of 

the model up to that point. The residual for the 𝑖-th instance following the (𝑡 − 1)-th 

iteration is depicted in equation (2.7). Unlike the actual labels, 𝑓%  is trained on these 

residuals. This approach allows the new tree to refine the predictions made by the prior 

ensemble. Once a tree is learned, the model undergoes an update, as specified in equation 

(2.8), with 𝜂 being the learning rate that modulates the rate at which the model adapts. 

This iterative process is repeated a set number of times or until the model converges. The 

final prediction for any instance is the aggregate of the predictions from all trees, as 

presented in equation (2.9). 
 

𝑟$(%) =	𝑦$ −	𝑦C$
(%0() (2.7) 

𝑦C$
(%) =	𝑦C$

(%0() + 	𝜂	𝑓%(𝑥$) (2.8) 

𝑦C$ =	6 𝑓%(𝑥$)
+

%'(
 (2.9) 

 

 



23 
 

2.3.4 Logistic regression (LR) 

Logistic regression (LR) is a fundamental statistical technique widely used for 

binary and multi-class classification tasks [43] . It is very efficient in situations when the 

goal is to classify data points into one of two distinct classes based on a set of input 

features. This approach is based on the concepts of probability and works by evaluating 

the chance that a given instance belongs to a certain class. The logistic function, 

commonly referred to as the sigmoid function, plays a crucial role in LR, as seen in 

equation (2.10).  In this equation, z represents a linear combination of the input features, 

where 𝐵 is bias and 𝑤(, 𝑤#, … , 𝑤& are coefficients for the inputs 𝑥(, 𝑥#, … , 𝑥& as illustrated 

in equation (2.11). The model parameters, 𝑤(, 𝑤#, … , 𝑤& are estimated using a training 

dataset. This is achieved by maximizing the probability of the observed data, often by 

minimizing a cost function such as the CE loss. The LR cost function is defined by 

equation (2.12), which 𝑚 is the number of training samples, 𝑦($) represents the observed 

class label for the 𝑖 − 𝑡ℎ samples and 𝜎U𝑧($)W is the predicted probability that 𝑦($) = 1. 

Gradient descent techniques are used to determine the parameters 𝑤 that minimize the 

cost function 𝐽(𝛽). During the process of gradient descent, the parameters 𝑤 are updated 

in an iterative manner, moving in the direction that results in the fastest drop of the cost 

function. After the model has been trained, it is possible to make predictions on fresh data 

by using the logistic function. Figure 2.6 displays the schematic diagram for LR 

classification. 

𝜎(𝑧) = 	
1

1 +	𝑒01 (2.10) 

𝑧 = 	𝐵 +	𝑤(𝑥( +	𝑤#𝑥# +⋯+	𝑤&𝑥&	 (2.11) 

𝐽(𝛽) = 	−
1
𝑚	6 \𝑦($) 	 log 𝜎U𝑧($)W + U1 −	𝑦($)W	log(1 − 𝜎U𝑧($)W)]

2

$'(
 (2.12) 
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Figure 2.6 Schematic diagram for logistic regression classification model. 

 
2.3.5 Support vector machine (SVM) 

A Support Vector Machine (SVM) is a robust and flexible supervised ML algorithm 

utilized for the purposes of classification and regression. In binary classification, the core 

objective of SVM is to identify the optimal hyperplane that effectively separates the data 

points of one class from another. The hyperplane is selected to maximize the margin, 

defined as the distance between the hyperplane and the nearest data point of any class. 

For multiclass classification, the One-vs-One (OvO) approach is employed, wherein each 

class is compared against every other class in a series of binary classification tasks. A 

binary classifier is thus developed to predict the probability of a data item belonging to 

one class as opposed to another. For each pair of classes, a dedicated binary classifier is 

trained, and the class that predominates across all pairings is deemed the final 

classification. In the OvO context, the decision function for a SVM is derived from the 

principle of maximizing the margin between classes. This is usually expressed in equation 

(2.13), where the weight vector 𝑤 is orthogonal to the hyperplane and 𝑥 represents the 

input feature vector. The bias term, denoted as 𝑏, is responsible for offsetting the decision 

border from the origin. Each binary classifier aims to determine the most discriminative 

hyperplane that separates the two classes, as exemplified in Figure 2.7. 

This is accomplished by solving the optimization problem presented in equation 

(2.14), while adhering to the constraints outlined in equation (2.15). Notably, the function 

𝜙(𝑥$) has the potential to map the input data to a space with a higher number of 

dimensions. The label 𝑦$ represents the label assigned to the instance 𝑥$, where 𝑦$ belongs 

to the set {-1,1}. The slack variables, 𝜉$, allow for degree of misclassification within the 

soft margin framework. The penalty parameter C optimizes the balance between the 

margin width and the classification error. In OvO SVM approach, the kernel function is 

used to convert the data into a space with greater dimensions, facilitating its separation 



25 
 

with a linear decision boundary. Subsequently, the decision function is used to effectively 

segregate the data inside this newly created domain.  

 

 
Figure 2.7 Hyperplane illustration of support vector machine classification model 

[44]. 

 

The kernel trick permits the SVM to learn a nonlinear decision boundary by 

implicitly transforms the input features into a high-dimensional space and calculating the 

inner products between the transformed data representation. Thus, relationships between 

pairs are computed without the need for explicit coordinates in the expanded space. The 

kernel function is defined as shown in the equation (2.16). After the SVM has undergone 

training, a voting technique is used for the purpose of multiclass classification. Each 

binary classifier provides a prediction for a novel input vector 𝑥. The class that receives 

the highest number of votes from the K (K - 1) / 2 classifiers is selected as the final 

prediction. 

𝑓(𝑥) = 	𝑠𝑖𝑔𝑛(𝑤+𝑥 + 𝑏) (2.13) 

𝑚𝑖𝑛3,5,6
1
2	
‖𝑤‖# + 𝐶	6 𝜉$

&

$'(
 (2.14) 
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c
𝑦$ 	(𝑤+𝜙(𝑥$) + 𝑏) ≥ 1 − 𝜉$ ,

𝜉$ 	≥ 0
𝑖 = 1,… , 𝑛

 (2.15) 

𝐾U𝑥$ , 𝑥7W = 	𝜙(𝑥$)+ 	𝜙(𝑥7) (2.16) 

 

2.3.6 Deep neural network (DNN) 

Deep Neural Network (DNN) is a type of classification model that effectively 

discriminates between classes due to its non-linear capabilities. In a DNN, each neuron 

holds a single value known as the neuron's activation. Each layer contains multiple 

neurons, with the neurons in one layer connected to those in the subsequent layer through 

a network. Figure 2.8 illustrates an example of a DNN-based classification model. This 

model's architecture includes a single input layer, two hidden layers, and one output layer. 

 

 

Figure 2.8 Illustration of a deep neural network classification model. 

 

The computation for the first neuron in the first hidden layer is detailed and 

illustrated in equation (2.17). The Rectified Linear Unit (ReLU) functions as the 

activation mechanism within the hidden layers, and its mathematical formulation is 

provided in equation (2.18). Subsequently, the computation for the first neuron in the 
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output layer is described in equation (2.19), where the sigmoid function is applied as the 

activation function, as indicated in equation (2.20). The neurons 𝑦(and 𝑦# represent the 

model's outputs. The closeness of these outputs to the actual values is evaluated using the 

binary CE loss function, which is presented in equation (2.21). The optimizer leverages 

this metric to incrementally adjust the model's weights, thereby enhancing the training 

process via iterative optimization. 

 
ℎ1( = 	𝑅𝑒𝐿𝑈(𝑥( ∗ 𝑤8(,( 	+ 𝑥# ∗ 𝑤8#,(	+	. . . +	𝑥& ∗ 𝑤&(,( 	+ 	𝐵1(	) (2.17) 

𝑅𝑒𝐿𝑈(𝑥) 	= 	𝑚𝑎𝑥(0, 𝑥	) (2.18) 

𝑦( = 	𝑆𝑖𝑔𝑚𝑜𝑖𝑑(ℎ2( ∗ 𝑤ℎ2(,( 	+ ℎ2# ∗ 𝑤ℎ2#,(	+	. . . +	ℎ2, ∗ 𝑤ℎ2,,( 	+

	𝐵𝑦(	) 
(2.19) 

𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑥) 	= 	
1

1	 +	𝑒(09)
	 (2.20) 

𝐻:(𝑞) 	= 	−
1
𝑁6𝑦$ ∗ 𝑙𝑜𝑔(𝑝(𝑦$)) 	+	(1	 − 𝑦$) 	∗ 𝑙𝑜𝑔(1 − 𝑝(𝑦$))

;

$'(

	 (2.21) 

 

The number of neurons in the input layer 𝑛 is variable and depends on the size of 

the dataset in use. While this example demonstrates a network with two hidden layers, 

the number of hidden layers can vary according to the complexity of the problem. In this 

instance, the network's output layer features two neurons, designed to distinguish between 

two class patterns. Should the research require a more nuanced classification (identifying 

different types of classes), parameters including the number of neurons in the output layer, 

the loss function, and the activation function of the output layer may be adjusted 

accordingly. 
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2.4 Vehicle Type Classification 

2.4.1 Evaluation metrics 

Accuracy is an essential criterion for evaluating a model’s overall performance. The 

major goal of the current research is to increase accuracy, but the accuracy criterion may 

not be adequate in unbalanced datasets. Therefore, in addition to the accuracy metric, F1-

measure, Precision (PRE), and Recall (REC) are also used to evaluate the classification 

performance. Precision reflects the proportion of correctly identified positive cases 

among all cases classified as positive. Recall (or sensitivity) measures the proportion of 

actual positive cases that are correctly identified. The F1-measure, the harmonic mean of 

recall and precision, reflects the model’s sensitivity and robustness. These are important 

details to be examined in this study. These performance metrics are given in equations 

(2.22), (2.23), (2.24), and (2.25), respectively. These metrics help to assess the 

performance of the model in several aspects. The traditional confusion matrix is shown 

in Table 2.6. 

 

Table 2.6 Traditional confusion matrix. 

 Predicted Anormal Predicted Normal 

Actual Abnormal TP FN 

Actual Normal FP TN 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝐴𝐶𝐶) = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁 (2.22) 

Precision	(PRE) = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 (2.23) 

𝑅𝑒𝑐𝑎𝑙𝑙	(REC) = 	
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 (2.24) 

𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒	(𝐹1) = 	
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (2.25) 
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2.4.2 Dataset  

A 3-D magnetic sensor is built and mounted on a single-lane road. As vehicles pass 

over the sensor, it records magnetic disturbances caused by the metal in the vehicles, 

leading to varying signal changes. These distortions are primarily influenced by the 

vehicle's speed, physical characteristics, and environmental factors. Vehicles are 

classified into three groups according to their structure: light (L, including motorcycles 

as class 1), medium (M, encompassing passenger cars as class 2), and heavy (H, covering 

buses as class 3). In this classification, there are 376 labeled vehicle examples, with 46 

light vehicles, 298 medium vehicles, and 32 heavy vehicles. Representative samples are 

shown in Figure 2.9. 'T' and 'Gauss' refer to milliseconds (ms) and Gauss (Gs) units, 

respectively. In each figure, the millisecond value varies according to the vehicle’s impact 

on the sensor node. The 𝑋-axis values are negative, reflecting the sensor node's placement 

on the mote. The sensor records raw data from the X, Y, and Z axes as vehicles pass, with 

signal durations ranging from 13 to 207 ms. To standardize sample lengths, signals are 

zero-padded to a maximum duration of 207 ms. Considering the three axes in the first 

dataset (signal data), there are 621 features per sample. From the raw signal data, 44 

features are extracted for the second dataset (extracted data). 

 
Figure 2.9 Signal patterns for Light, Medium, and Heavy vehicles as captured by 

the three-dimensional magnetic sensor. 
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2.4.3 Feature extraction 

Excess data may complicate the classification process and lead to incorrect results. 

To reduce feature size and obtain better performance results, feature extraction techniques 

are employed. This process focuses on capturing the subtle changes in magnetic field 

strength as vehicles traverse a 3-D magnetic sensor. These variations are encapsulated in 

a set of features, each contributing uniquely to the vehicle classification profile. As shown 

in Table 2.7, a total of 44 features are extracted. A total of 44 distinct features are extracted 

to encapsulate these variations, as outlined in Table 2.7. Each feature is considered within 

the three axes—X, Y, and Z. For instance, maximum values are extracted for each axis, 

culminating in three separate features. The signal length remains constant across all axes, 

resulting in a single feature. 

 

Table 2.7 List of extracted features from three-dimensional vehicle signal. 

No Features # 

1 Maximum values (x, y, z) 3 

2 Index of maximum (x, y, z) 3 

3 Minimum values (x, y, z) 3 

4 Index of minimum (x, y, z) 3 

5 Length of signal (l) 1 

6 Mean of the signals (x, y, z) 3 

7 Median of the signals (x, y, z) 3 

8 # of local maximum (x, y, z) 3 

9 # of local minimum (x, y, z) 3 

10 Mean of local maximum (x, y, z) 3 

11 Mean of local minimum (x, y, z) 3 

12 Variance 9 

13 Energy (x, y, z, all) 4 

 Total 44 

 

The extraction of maximum and minimum values across the X, Y, and Z dimensions 

signifies the peak magnetic interactions, correlating closely with the vehicle's size and 

type. The indices of these peaks provide insight into the timing of the vehicle's presence, 

which is crucial for understanding its speed and transit time. The length of the signal 

disruption offers an estimate of the vehicle's speed and dimensions, while the mean and 
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median values across all dimensions provide a thorough assessment of the vehicle's mass 

and overall magnetic profile. The counts of local maxima and minima, along with their 

mean values, reflect the vehicle's structural complexity, aiding in the differentiation of 

various vehicle types based on their magnetic signatures. 

Variance features, denoted by 'V', differentiate between light, medium, and heavy 

vehicles. 'A' denotes the magnetic distortion along the X, Y, and Z axes, while 'S' indicates 

the sample size for each vehicle category. An average signal value is calculated for each 

vehicle type across the three axes, from which nine features per sample are extracted, as 

detailed in equations (2.26), (2.27), and (2.28), which describe the calculation of energy 

features (𝐸𝑥, 𝐸𝑦, 𝐸𝑧, 𝐸𝑎𝑙𝑙) for the individual axes and in aggregate. 'L' represents the 

length of the vehicle’s signal, and '𝑋𝑘' denotes the signal values at time 'L'. Four energy 

features per sample are calculated by summing the squares of the signal values, 

normalized by the length. 

 

⎩
⎨

⎧ 𝐴𝑣𝑒𝑟𝑎𝑔𝑒<" =	
∑ 𝑀𝑒𝑎𝑛(𝐴)=
(

𝑆

𝑉𝑎𝑟𝑖𝑎𝑛𝑐𝑒<" =	 �𝑀𝑒𝑎𝑛(𝐴) − 𝐴𝑣𝑒𝑟𝑎𝑔𝑒<"
!

 (2.26) 

⎩
⎪⎪
⎨

⎪⎪
⎧𝐸8 =	

∑ 𝑋(𝑘)#>
(

𝐿

𝐸? =	
∑ 𝑌(𝑘)#>
(

𝐿

𝐸1 =	
∑ 𝑍(𝑘)#>
(

𝐿

 (2.27) 

𝐸@AA =	
∑ (𝑋(𝑘)# + 	𝑌(𝑘)# + 𝑍(𝑘)#)>
(

𝐿  (2.28) 

 

These features collectively create a multidimensional feature space crucial for ML 

algorithms to accurately classify vehicle types. They are carefully crafted to encompass 

the full magnetic signature of vehicles, thus improving the precision and dependability of 

the classification system within ITS. Such an approach markedly advances the vehicle 

identification process, which is essential for optimizing traffic flow and bolstering 

transportation security. 
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2.4.4 ANOVA F-test feature selection method 

The model's performance depends on the quality of the inputs; higher-quality inputs 

are expected to yield better results. Feature selection methods play a crucial role in this 

context by eliminating or assigning lower scores to redundant features that lack relevance 

or predictive power for the target variable. The primary goals of these methods are to 

reduce model complexity, minimize noise, prevent overfitting, accelerate ML algorithms, 

and enhance performance outcomes. The Analysis of Variance (ANOVA) F-test method 

is utilized for this purpose [45], [46]. This statistical method compares the means of each 

feature across different classes of the target variable to determine if the differences are 

significant. The computed F-value for a feature, indicated in equation (2.29), is derived 

from the Mean Square Between (MSB), which is the quotient of the Sum of Squares 

Between Groups (SSB) and the degrees of freedom between groups, as specified in 

equation (2.30). The SSB itself is the aggregate of squared deviations of group means 

from the global mean, weighted by group size. The Mean Square Within (MSW) is 

obtained by dividing the Sum of Squares Within (SSW) by the degrees of freedom within 

groups, as specified in equation (2.31). The degrees of freedom, represented as 𝑑𝑓, are 

statistical values that quantify the amount of independent information pertinent to 

estimating another parameter. Specifically, 𝑑𝑓5B%3BB& between is 𝑘 − 1, where 𝑘 is the 

number of class groups, indicating the number of independent ways class means can vary. 

Similarly, 𝑑𝑓3$%C$& is 𝑁 − 𝑘, where 𝑁 is the total sample size, reflecting the number of 

independent pieces of information that can be utilized to estimate variability within these 

groups. 𝑛$ represents the count of observations within 𝑖, 𝑋𝑚𝑒𝑎𝑛$ is the average of 

observations in group 𝑖, 𝑋𝑚𝑒𝑎𝑛 is the overall mean of the data, and 𝑥$7 is the 𝑗-th 

observation in group 𝑖. 

 

𝐹 = 	
𝑀𝑆𝐵
𝑀𝑆𝑊 (2.29) 

𝑀𝑆𝐵 =	
𝑆𝑆𝐵

𝑑𝑓5B%3BB&
=
∑ 𝑛$(𝑋𝑚𝑒𝑎𝑛$ − 𝑋𝑚𝑒𝑎𝑛)#,
$'(

𝑘 − 1  (2.30) 

𝑀𝑆𝑊 =	
𝑆𝑆𝑊
𝑑𝑓3$%C$&

	
∑ ∑ (𝑋$7 − 𝑋𝑚𝑒𝑎𝑛$)#

&#
7'( 	,

$'(

𝑁 − 𝑘  (2.31) 
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The F-value tests the null hypothesis, asserting that all group means are equivalent 

within the population. Higher F-values imply a greater degree of variability between 

groups relative to within them, signifying that the feature has strong discriminatory 

capabilities between classes. Among the 44 features extracted, they are ranked based on 

their importance using the ANOVA F-test method. In our experiments, the top N features 

(ranging from 1 to 44; N increases incrementally from 1 to 44) are selected. Each 

classification algorithm is then tested with these varying sets of selected features, as 

shown in Figure 2.10. 

 

2.4.5 Focal cross-entropy loss function 

The Focal loss (FL), as proposed by Lin et al. [47], [48], addresses the class 

imbalance problem by modifying the CE loss function. It introduces a modulating term 

that focuses training on challenging samples and less easy ones, regardless of their 

frequency. This strategy aims to shift the model's focus from abundant, simpler examples 

to scarcer, more complex ones. The main differences between CE and FL are the 

weighting factor (alpha, α) and the focusing parameter (gamma, γ). The gamma parameter 

intensifies the focus on difficult examples, while alpha adjusts for class imbalance by 

assigning a different weight to each class. The regular CE loss function is given by 

equation (2.32), where 𝑝% is the model's estimated probability for the class with the true 

label 𝑡, and α% is a class-specific weighting factor. The FL introduces a modulating term 

to the CE loss, as shown in equation (2.33). The gamma parameter is tunable, decreasing 

the contribution from easy examples (where 𝑝% is high) and increasing it from difficult 

ones (where 𝑝% is low). 

 

𝐶𝐸(𝑝%) = 	−𝑎%log	(𝑝%) (2.32) 

𝐹𝐿(𝑝%) = 	−𝑎%(1 − 𝑝%)Dlog	(𝑝%) (2.33) 

 

In FL, ‘alpha’ is pivotal for adjusting the weight given to each class, a critical aspect 

when dealing with imbalanced classes, unlike CE, which treats all classes uniformly. 

Meanwhile, gamma (γ) diminishes the loss contribution from easy examples—those for 
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which the model has high confidence—and emphasizes correction of the misclassified, 

difficult examples. In situations where an imbalanced dataset has one class significantly 

outnumbering the others, a model trained with CE might be biased towards the majority 

class. FL counteracts this by steering the training focus towards the minority class, which, 

though typically more challenging for the model to learn, is often crucial for accurate 

predictions. As illustrated in Figure 2.10 from the study [47], [48], when gamma (γ) is 

zero, FL is equivalent to CE, represented by the blue (top) curve. As gamma increases, 

the loss curve changes to further discount "easy" examples with lower loss values, thus, 

FL demonstrates substantial improvements over CE as gamma increases. 

 

 

Figure 2.10 Comparison of focal loss with cross-entropy loss across different values 
of focusing parameter 𝝀 for imbalanced multi-class classification [47], [48]. 

 

2.4.6 Grid search hyperparameter optimization 

Hyperparameter optimization is a critical process that ensures the most appropriate 

parameters are selected for a classification model. Before the training phase begins, these 

parameters must be established; the model is then trained accordingly to these 

specifications. Models are trained using a training set and subsequently evaluated on a 

validation set for each hyperparameter configuration. The parameters yielding the best 

performance on the validation set are then used to retrain the model with the entire 

training set. Finally, this refined model is tested on the test set. For all classifiers, 

hyperparameter values are determined using the GS-CV, a method commonly adopted 



35 
 

for such tasks [49], [50]. Figure 2.11 illustrates the hyperparameter optimization process 

across two different hyperparameters for classifiers using grid search. 

For the C4.5 classifier, fine-tuning entailed adjusting the 'min_samples_split', the 

minimum number of samples required to split an internal node; 'max_depth', the 

maximum depth that the tree can grow; and 'min_samples_leaf', the minimum number of 

samples that must be present at a leaf node. These adjustments aim to balance the model's 

sensitivity and mitigate the risk of overfitting. For the RF classifier, two parameters are 

varied: 'max_depth', the maximum depth that each tree in the forest can reach, and 

'n_estimators', the total number of trees in the forest. This variation aims to assess their 

effects on model performance, focusing on enhancing accuracy without imposing 

excessive computational demands. Additionally, for XGBoost models, the learning 

rate—defined as the step size shrinkage used in updates—is adjusted from 0.1 to 1, along 

with 'max_depth', to regulate the training pace and reduce the risk of overfitting. 

 

 
Figure 2.11 Schematic representation of grid search for hyperparameter 

optimization across two different hyperparameters for classifiers [51]. 

For the SVM model, two key parameters are varied: 'C', the regularization 

parameter that balances the trade-off between a smooth decision boundary and classifying 

training points correctly, and 'gamma', which defines the influence of a single training 

sample. These adjustments are made to assess their impact on model performance. 

Additionally, the selection of the most suitable 'kernel' function is crucial. The 'kernel' 
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function is responsible for transforming the input data into a higher-dimensional space, 

enabling a linear separation of the classes. This comprehensive hyperparameter tuning 

plays a vital role in enhancing the performance and accuracy of the SVM model. For the 

LR classifier, grid search was employed to optimize several parameters: ‘penalty’, 

specifying the norm used in penalization; ‘C’, representing the inverse of regularization 

strength; ‘multi_class’, defining the approach when dealing with more than two classes; 

and ‘solver’, indicating the algorithm used for optimization. These adjustments are crucial 

for ensuring efficient training convergence and effective handling of multiclass scenarios. 

The specific hyperparameters adopted for the classification algorithms in this study are 

detailed in Table 2.8, which outlines the optimization settings for each ML classifier 

involved in vehicle type classification. 

 

Table 2.8 Hyperparameter optimization settings for machine learning classifiers in 
vehicle type classification. 

Classifier Parameters 

C4.5 

min samples split : [2–10] 

max depth : [1–10] 

min samples leaf : [1–5] 

RF 
max depth: 10, 20, 50, 80, 100  

n estimator: 100, 200, 500, 1000 

LR 

penalty: l1, l2, none  

C: logspace(−4, 4, 20)  

multi class: auto, ovr, multinomial  

solver: newton-cg, lbfgs, liblinear, sag, saga 

SVM 

C : 0.1, 1, 10, 100, 1000  

gamma : 1, 0.1, 0.01, 0.001, 0.0001  

kernel : linear, rbf, poly, sigmoid 

DNN 

neurons : 32, 64, 128  

neurons2 : 32, 64, 128  

dropout rate: 0.1, 0.3, 0.5  

dropout rate2: 0.1, 0.3, 0.5  

learning rate: 10e−2, 10e−3, 10e−4  

batch size: 2, 4, 6, 8 

XGBoost 
learning rate = [0.1–1]  

max depth : [1–20] 
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2.4.7 Experiments 

In this experiment, a camera and a 3-D magnetic sensor node are utilized to generate 

the dataset. The camera records videos, while the 3-D magnetic sensor node records 

magnetic disturbances caused by vehicles, and these processes occur concurrently. The 

labeling of magnetic disturbances is based on the recorded video. The first dataset, herein 

referred to as 'signal data', was obtained after applying zero-padding to the raw signal 

collected by the magnetic sensor node. From the raw signal, new features were extracted, 

resulting in a second dataset comprising a total of 44 features, which is herein referred to 

as 'extracted data'. Both datasets were normalized to a range between 0 and 1. 

The classification process is applied to two datasets across three different 

variations: (i) using the signal data, (ii) using the extracted data, and (iii) using the 

extracted data augmented with the best-selected N features for each classifier. For the 

third variation, the extracted data is used, and the ANOVA F-test method is applied to 

rank the features according to their importance. The optimal Best-N features for each 

classifier are determined through an exhaustive search. Six classification algorithms, 

including C4.5, RF, LR, XGBoost, SVM, and DNN, are implemented in Python [52], 

utilizing the Scikit-Learn [53] and Keras [54] libraries. The datasets are divided into two 

parts: 70% for the training set and the remaining 30% for the test set. During model 

building, a 5-fold CV is applied to the training set. The hyperparameters for the models 

are determined using a portion of the training set, often referred to as the validation set. 

After identifying the best parameters, the model is retrained using these parameters on 

the entire training set. Subsequently, this finalized model is tested on the test set. Figure 

2.12 presents a flowchart of the classification process, and Figure 2.13 illustrates the 

methodology for identifying the best N features for each classifier. 

The default DNN architecture consists of three layers with 32, 32, and 3 neurons, 

respectively. The first two layers utilize the ReLU activation function, while the final 

layer uses a SoftMax activation function. Kernel initializers are set to Glorot Uniform 

with a specific seed to ensure reproducible outcomes. To prevent overfitting, batch 

normalization and dropout rates are implemented after each layer. The Adam optimizer 

is employed in conjunction with the FL function to mitigate class imbalance. The batch 

size is set at 8, and the number of epochs is limited to 30, with an early-stopping 

mechanism in place to halt training if no validation accuracy improvement is observed 
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after five epochs and to restore the best model weights. The details of the DNN's layer 

configuration are provided in Table 2.9. 

 
Figure 2.12 Flowchart of the vehicle type classification process. 

 

 
Figure 2.13 Flowchart of the selection of the best N features for each classifier. 

 
Table 2.9 Configuration of Deep Neural Network layers for vehicle type 

classification. 

Layer names DNN models 

L1 Dense (32) 

L2 Batch normalization 

L3 Dropout (0.1) 

L4 Dense 1 (32) 

L5 Batch normalization 1 

L6 Dropout 2 (0.1) 

L7 Dense 2 (3) 
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2.5 Results and Discussion 

2.5.1 Classification methods 

This chapter presents a comprehensive performance evaluation of various 

classification methods, including ML and DL techniques, applied to a dataset comprising 

376 samples. The focus of this analysis is on key performance metrics: accuracy, 

precision, recall, and F1-measure. This evaluation is particularly crucial due to the 

imbalanced class distribution within the vehicle dataset. Tables 2.10, 2.11, and 2.12 

display a comparison of classifiers under both default parameter settings and 

hyperparameter optimization across three distinct scenarios. 

 

Table 2.10 Performance results of the machine learning classifier under default and 

grid search cross-validation hyperparameter settings on signal dataset. 

Hyperparameter # of features Classifier ACC (%) PRE (%) REC (%) F1 (%) 

Default 621 

C4.5 78.76 81.58 71.15 79.76 

RF 82.30 83.34 67.68 82.75 

LR 78.76 79.42 66.08 78.90 

SVM 83.18 83.13 62.03 82.17 

XGBoost 84.95 84.84 70.81 84.88 

DNN 78.76 79.42 66.08 78.90 

GS-CV 621 

C4.5 78.76 81.58 71.15 79.76 

RF 82.30 83.34 67.68 82.75 

LR 83.18 82.82 64.99 82.39 

SVM 83.18 82.82 64.99 82.39 

XGBoost 84.84 85.05 72.71 84.84 

DNN 79.64 79.94 64.55 79.78 

 

The study commences with an examination of classifiers using a signal dataset 

under both default parameter settings and GS-CV hyperparameter optimization. The 

performance results of the classifier are shown in Table 2.10. Notably, under the default 

parameter, the XGBoost classifier consistently demonstrates superior performance, 

achieving remarkable accuracy of 84.95% and F1-measure scores of 84.88%. This 

performance indicates XGBoost’s robustness in handling the dataset without any specific 

parameter tuning. While under GS-CV optimization, there is a slight decrease in accuracy 
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and F1-measure, this is counterbalanced by an increase in precision and recall metrics. 

The reduction in accuracy and F1-measure suggests that the model, with optimized 

hyperparameters, becomes slightly more conservative in its predictions. This could be a 

result of the model being tuned to avoid overfitting, leading to a more generalized 

approach to handling the dataset. Such a scenario is often witnessed when the model is 

adjusted to be less sensitive to the noise within the training data, thereby potentially 

missing out on some true positives, which affects both accuracy and the F1-measure. 

 

Table 2.11 Performance results of the machine learning classifier under default and 

grid search cross-validation hyperparameter settings on extracted dataset. 

Hyperparameter # of features Classifier ACC (%) PRE (%) REC (%) F1 (%) 

Default 44 

C4.5 82.30 82.30 67.78 82.19 

RF 82.30 82.70 65.67 82.49 

LR 76.99 66.32 41.46 71.15 

SVM 78.76 68.18 45.16 72.95 

XGBoost 84.95 85.47 65.84 84.68 

DNN 77.87 66.71 35.91 70.34 

GS-CV 44 

C4.5 84.95 84.45 69.86 84.53 

RF 82.30 82.70 65.67 82.49 

LR 89.38 89.38 77.75 89.38 

SVM 89.38 89.82 80.71 89.56 

XGBoost 87.61 87.76 72.99 87.61 

DNN 82.30 82.30 66.73 82.30 

 

Table 2.11 compares the performance of classifiers under both default and GS-CV 

settings on an extracted dataset. Under default parameters, the XGBoost classifier notably 

stands out, achieving an accuracy of 84.95% and an F1-measure of 84.68%, which 

suggests its effectiveness in utilizing the extracted features. When subjected to GS-CV 

optimization, both the SVM and LR classifiers exhibit remarkable improvements. 

Specifically, the SVM reaches a high accuracy of 89.38% and an F1-measure of 89.56%, 

while the LR demonstrates significant increases in accuracy and precision. This marked 

improvement under GS-CV optimization indicates that the SVM and LR classifiers 

benefit substantially from hyperparameter tuning, particularly with the extracted dataset. 

This outcome suggests that optimal hyperparameter tuning can unlock the full potential 
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of these models, especially when aligned with the comprehensive feature set extracted 

from the dataset. 

In general, as observed in Table 2.11, this strategic feature extraction significantly 

enhances the performance of nearly all the techniques. The extracted features, carefully 

derived from the 3-D vehicle signal, offer a rich and nuanced perspective of the dataset, 

capturing essential characteristics of the vehicles. When these detailed features are 

coupled with GS-CV, an optimization method that meticulously tunes hyperparameters, 

the classifiers demonstrate an augmented ability to interpret and analyze the data 

effectively. 

 

Table 2.12 Performance results of the machine learning classifier under default and 

grid search cross-validation hyperparameter settings on extracted dataset with 

different number of features. 

Hyperparameter # of features Classifier ACC (%) PRE (%) REC (%) F1 (%) 

Default 

25 C4.5 84.07 85.41 74.45 84.52 

11 RF 84.95 87.25 78.73 85.75 

5 LR 78.76 68.18 45.16 72.95 

18 SVM 84.95 85.73 64.79 84.20 

15 XGBoost 86.72 87.19 69.55 86.42 

17 DNN 86.72 86.09 67.65 86.15 

GS-CV 

25 C4.5 84.95 84.45 69.86 84.53 

10 RF 85.84 88.63 83.12 86.60 

27 LR 89.38 89.38 77.75 89.38 

20 SVM 90.26 91.08 84.04 90.59 

30 XGBoost 88.49 88.72 74.31 88.43 

30 DNN 91.15 91.95 84.41 91.50 

 

In a third scenario, the ANOVA F-test feature selection method is applied to 

determine the most significant features for vehicle classification tasks on the extracted 

dataset. The resulting feature rankings are used to enhance the performance of ML and 

DNN algorithms. From Table 2.12, it is evident that the performance of classifiers such 

as C4.5, LR, SVM, XGBoost, and DNN has been enhanced when operating optimized 

hyperparameter settings obtained through GS-CV. The DNN and SVM classifiers, in 

particular, have shown exceptional improvement post-optimization, indicating that these 
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algorithms benefit significantly from feature selection and hyperparameter tuning. For 

instance, under default settings with 15 selected features, XGBoost achieves an accuracy 

of 86.72% and an F1-measure of 86.42%. However, when optimized through GS-CV 

with 30 features, the DNN classifier achieves a superior accuracy of 91.15% and an F1-

measure of 91.50%. The most effective 30 features are detailed in Table 2.13. In 

conclusion, this study has demonstrated that feature selection through an ANOVA F-test 

and careful hyperparameter tuning through GS-CV can significantly elevate the efficacy 

of ML and DNN classifiers in a vehicle classification task. 

Observations indicate that certain extracted features, including the mean of the 

signal, variance, and energy, significantly impact performance, particularly on specific 

axes. For variance features, only the Z-axis values are utilized. Additionally, attributes 

such as the maximum and minimum values and their indices, the length of the signal, and 

the count of local maxima and minima are pivotal across all axes. The performance results 

suggest that classifiers produce improved outcomes when combined with feature 

extraction, the best N feature selection, and hyperparameter optimization. The specific 

hyperparameters optimized for each classifier are delineated in Table 2.14. 

 
Table 2.13 The best 30 features selected for the Deep Neural Network classifier. 

No Features # 

1 Maximum values (x, y, z) 3 

2 Index of maximum (x, y, z) 3 

3 Minimum values (x, y, z) 3 

4 Index of minimum (x, y, z) 3 

5 Length of signal (l) 1 

6 Mean of the signals (x) 1 

7 Median of the signals (x, z) 2 

8 # of local maximum (x, y, z) 3 

9 # of local minimum (x, y, z) 3 

10 Mean of local maximum (x, z) 2 

11 Mean of local minimum (x, y, z) 3 

12 Variance 1 

13 Energy (x, all) 2 

 Total 30 

 

This comprehensive evaluation of ML and DL classifiers in vehicle type 

classification reveals that hyperparameter optimization, coupled with strategic feature 
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extraction and selection, significantly enhances model performance. The XGBoost 

classifier emerges as a standout performer, demonstrating consistent strength across 

various scenarios. The notable improvements seen in SVM and LR under GS-CV 

optimization highlight the impact of fine-tuning model parameters. Furthermore, the 

DNN's marked performance improvement with the top 30 features underscores the 

importance of targeted feature selection in dealing with complex, high-dimensional 

datasets. Overall, this study contributes valuable insights into the effective application of 

ML algorithms in vehicle type classification, emphasizing the critical role of methodical 

feature selection and hyperparameter tuning in optimizing classifier performance. The 

findings have important implications for future research in ML, particularly in scenarios 

involving imbalanced datasets and the need for precise, nuanced classification. 

 

Table 2.14 Optimum hyperparameters configurations for each machine learning 

classifier using grid search cross-validation technique. 

Classifier Parameters 

C4.5 min samples split : 4, max depth : 4, min samples leaf : 1 

RF max depth: 20, n estimator: 100 

LR penalty: l1, C: 4.281, multi class: auto, solver: saga 

SVM C: 100, Gamma: 0.1, kernel : rbf 

DNN Neurons: 128, neurons2 : 32,  dropout rate: 0.1, dropout rate2: 0.3  

learning rate: 10e−2, batch size: 8 

XGBoost learning rate = 0.3, max depth: 7 

 

2.5.2 Battery lifetime 

In this research, magnetic changes over the 3-D magnetic sensor nodes are detected 

using a vector magnitude-dependent measurement method as vehicles pass. To sample 

vehicle movement, a time-dependent measurement method is employed. The sensor's 

current consumption in both sleep and active states (activated when a vehicle passes) is 

measured using a power analyzer named EnergyTrace. It is observed that current 

consumption during the sleep state is significantly low. However, communication 

between the sensor and the gateway notably increases battery consumption. To address 

this, a data aggregation technique is utilized in the communication process. This 

technique optimizes power consumption by transmitting maximum information in 

minimally sized packets. Additionally, Figure 2.14 illustrates the relationship between 
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the sensor node's lifetime and the number of samples collected from one hundred vehicles 

per day. With an average of 53 samples obtained per vehicle in the dataset, the current 

consumption characteristics of the magnetic sensor node suggest that the proposed node 

can operate for up to two years without the need for new batteries. 

 

Figure 2.14 Battery lifetime based on the number of samples taken from the vehicle. 
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Chapter 3 

3 Deep learning approaches for vehicle type 

classification with 3-D magnetic sensor 
 

3.1 Motivation 

In recent years, rapid population growth and vehicle demand have significantly 

increased the number of vehicles in traffic, particularly in metropolitan cities. This 

situation is increasing the need for ITS. Vehicle detection and classification have become 

an indispensable part of ITS to increase human comfort, improve traffic management, 

and enable future development of transport infrastructure. Significant investments are 

being made and used in the development, implementation, and maintenance of traffic 

monitoring systems in many countries [10]. Recently, in spite of the technical challenges, 

several vehicle type classification systems have been developed based on accelerometers 

[11], acoustic sensors [14], cameras [31], hybrid methods [32], loop detectors [15], 

LIDAR [17], piezoelectric sensors [18], vibration sensors [19], and magnetic sensors [21-

30]. These technologies have important specific characteristics and requirements, such as 

sensor types, hardware settings, setup processes, parameter settings, operating 

environments, weather and noise resistance, battery lifetime, and even maintenance and 

installation costs. 

In the literature, it is shown that magnetic sensors are preferred for vehicle 

classification due to their advantages, such as strong climate adaptation, small size, easy 

installation, and low cost. Specifically, the study [26] focused on the classification of 

similar vehicle sizes using multiple sensor nodes and utilized an XGBoost method. The 

study [27] proposed the KNN method for the classification of vehicle types. In [28], the 

magnetic waveforms obtained from two sensor nodes were fussed over, and a SVM was 

used for classification. The study [30] focused on classifying vehicles with the CNN 



46 
 

method. In contrast to the existing studies and the previous work, to the best of our 

knowledge, this chapter is the first study focusing on DL methods and soft voting 

ensemble techniques to classify vehicle types with a single 3-D magnetic sensor node. 

The performance comparison reveals that the suggested soft voting ensemble technique, 

which ensembles DL classifiers, enhances both accuracy and f-measure scores, achieving 

improvements of 92.92% and 93.42%, respectively. 

The rest of the chapter is organized as follows: Section 3.2 elaborately describes the 

DL methodologies and the proposed approach. Then, Section 3.3 shows the performance 

results of the models comparatively and discusses the outcomes. 

 

3.2 Methods 

3.2.1 Synthetic minority oversampling technique (SMOTE) 

The main reason for applying the oversampling method is that the number of 

samples is insufficient to train DL models, and the unbalanced class problem causes poor 

performance. In this study, the Synthetic Minority Oversampling Technique (SMOTE) is 

applied [55] to increase the number of samples in the training set. The SMOTE algorithm 

randomly generates new minority samples using the following rules: First, 𝑋$ 	sample is 

randomly selected from the minority classes; then the five samples are determined based 

on the KNN of the selected 𝑋$ data; and finally, randomly 𝑋, sample is selected. The new 

synthetic data 𝑋&B3 	is between the 𝑋$ 	and 𝑋, samples according to the 𝜆 values, which is 

randomly selected between (0,1). The formula is shown in equation (3.1) below: 

𝑋&B3 =	𝑋$ + 	𝜆(𝑋, −	𝑋$) (3.1) 

 

The sample sizes of the original vehicle dataset and the new sample sizes of the 

vehicle types are shown in Tables 3.1 and 3.2. In the training dataset, minority classes 

(light and heavy) are processed by the SMOTE algorithm and generate new synthetic 

samples, as shown in Figures 3.1 and 3.2 for light and heavy vehicles, respectively. 

During the analysis of the new synthetic samples, no absurdity was observed in the 

waveforms. 
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Figure 3.1 The X-axis representations of original and synthetic signals (processed by 

the SMOTE Algorithm) for light vehicles. 

 

 
Figure 3.2 The X-axis representations of original and synthetic signals (processed by 

the SMOTE Algorithm) for heavy vehicles. 

 

Table 3.1 Distribution of vehicle types in training and test sets prior to oversampling 

technique. 

Vehicle Type Light Medium Heavy 

Train 33 207 23 

Test 14 89 10 

Total 47 296 33 
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Table 3.2 Distribution of vehicle types in training and test sets after oversampling 
technique. 

Vehicle Type Light Medium Heavy 

Train 207 207 207 

Test 14 89 10 

Total 221 296 217 

 

3.2.2 Two-dimensional multi-color visualization 

Transfer learning is a powerful network that tends to learn edges, textures, patterns, 

and object parts in images [56] and yields satisfactory results. Therefore, in this study, 

vehicle signals are converted into 2-D images in order to perform vehicle classification 

by utilizing transfer learning models. Firstly, the lengths of samples are scaled to the 

maximum signal length of 207. The next step is to color the area under the X, Y, and Z 

curves. Each color represents a different condition. For example, the pink color represents 

the area under the X curve and the upper area of the Y and Z curves. Table 3.3 shows the 

combination of conditions during the coloring process. The converted images become 

216 × 216 colored images, and the conversion of the signals to the images for the light, 

medium, and heavy vehicles are shown in Figures 3.3, 3.4, and 3.5. Moreover, the study 

explored the conversion of signals into visual representations employing lines and bars; 

however, this approach was selected over others due to its superior performance. 

 

 

Table 3.3 Legend of Colors for Representation of Conditions Along X, Y, and Z 
Axes. 

No Condition (Under Axis-Curve) Color 

1 - Blue 

2 X Purple 

3 Y Red 

4 Z Green 

5 X, Y Black 

6 X, Z Olive 

7 Y, Z Turquoise 

8 X, Y, Z White 
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Figure 3.3 Examples of multi-color visualization of axis-curve data for light 

vehicles. 

 

  

Figure 3.4 Examples of multi-color visualization of axis-curve data for medium 

vehicles. 

 

  

Figure 3.5 Examples of multi-color visualization of axis-curve data for heavy 

vehicles. 
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Importantly, the shape of the dataset, i.e., ‘‘samples, features’’, is not suitable for 

the LSTM and GRU methods. The shape of the dataset is reshaped into ‘‘samples, time-

steps, and features’’ which means one sequence is one sample, one sequence has multiple 

time steps according to the length of the vehicle signal, and one feature corresponds to 

one variety of signal. The reshaped dataset is ‘‘sample size, 207, 3’’, in which 207 means 

the vehicle signal length and 3 means the X, Y, and 𝑍-axis. 

 

3.2.3 Support vector machine (SVM) 

It is a simple and effective ML method often used by the community for 

classification, regression, and outlier detection. It has a simple method for separating 

classes, which draws parallel lines between classes. Also, hyper parameter optimization 

is applied, which ensures the classifiers are trained with the most suitable parameters. In 

the implementation of the SVM classifier, hyperparameter optimization is applied using 

the grid search method. The parameters are determined before the classification method, 

and the best parameters are obtained using the training and validation sets, and the optimal 

parameters are used on the test set. The hyperparameters are optimized for the SVM 

classifiers as follows: C = {0.1, 1, 10, 100, 1000}, gamma = {1, 0.1, 0.001, 0.0001}, and 

kernel = {linear, rbf, poly, sigmoid}. 

 
3.2.4 Recurrent neural networks (RNN) 

In traditional neural networks, each observation is considered independent, as the 

networks do not retain past or historical information; they lack memory of previous 

events. A Recurrent Neural Network (RNN) introduces an internal loop, enabling it to 

process sequential data effectively. This capability is crucial for tasks such as language 

modeling, text generation, speech recognition, and time-series analysis, where current 

observations are influenced by previous ones, making them interdependent. As shown in 

Figure 3.6, an RNN processes a sequence of inputs, such as a vehicle signal, across 

different timesteps, considering both current and past data points for comprehensive 

understanding. Unlike feedforward networks, an RNN's hidden layer output at any given 

timestep is informed by the data from preceding timesteps. The output layer then 

generates the final output, which can vary from a single value at the sequence's end for 

classification tasks to a series of values for tasks like sequence labeling. 
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Figure 3.6 Basic illustration of the recurrent neural networks [57]. 

 

Figure 3.4 illustrates basic RNN architecture. At each timestep 𝑡, the standard RNN 

cell takes two inputs: the current input 𝑋%, and the hidden state from the previous timestep 

ℎ%0(. The updated hidden state ℎ% is computed using the equation (3.2), incorporating the 

previous timestep's hidden state weight matrix 𝑊CC, the current input weight matrix 𝑊8C, 

a bias term 𝑏C, and the hyperbolic tangent function 𝑡𝑎𝑛ℎ, which adds non-linearity and 

outputs values between -1 and 1. This choice of activation function is not exclusive, and 

other non-linear functions can be employed as required by the model design. The output 

𝑜% at timestep 𝑡 is typically calculated using the hidden state ℎ% as shown in equation 

(3.3), with 𝑊CE being the hidden-to-output weight matrix and 𝑏E the output bias. 

 

ℎ% = tanh	(𝑊CC ∙ ℎ%0( +	𝑊8C ∙ 𝑥% +	𝑏C) (3.2) 

𝑜% = 𝑊CE ∙ ℎ% + 𝑏E (3.3) 

 

RNNs face the challenge of the vanishing gradient problem, where gradients can 

shrink to the point that learning becomes extremely slow or halts. This issue hinders the 

network's ability to capture long-range dependencies within the data. To overcome this, 

advanced RNN variants like LSTM networks and GRUs have been developed. Figure 3.7 

shows an illustration of the architectural differences between RNN, LSTM, and GRU. 
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Figure 3.7 Illustration of the architectural differences between recurrent neural 

networks, a long short-term memory, and a gated recurrent unit [58].  

 

3.2.5 Long short-term memory (LSTM) 

Long Short-Term Memory networks [59], [60], commonly known as LSTMs, are 

an advance type of RNN algorithm designed to address the vanishing gradient descent 

problem and are adept at capturing long-range dependencies in data sequences. The 

unique architecture of LSTMs incorporates a set of gates that modulate the memory flow 

across time steps. The forget gate 𝑓% determines which information to discard from the 

cell state as shown in equation (3.4), the input gate 𝑖% selects new data to update the cell 

state as shown in equation (3.5), and the output gate 𝑜%	 controls the output based on the 

cell state for the current time step as captured in equation (3.6). These gates are updated 

at every time step 𝑡 by integrating the current input 𝑥%, the preceding hidden state ℎ%0(, 

the former cell state 𝐶%0(, and employing weight matrices (𝑊 and 𝑈), and bias vectors 𝑏. 

The sigmoid function (𝜎) plays a crucial role in this process by constraining the output 

values between 0 and 1. The candidate cell state 𝐶�% combines the present input with the 

prior hidden state, as indicated in equation (3.7). The new cell state 𝐶%  evolves by 

selectively forgetting and acquiring new information, formalized in equation (3.8). The 

updated hidden state ℎ% is then computed as shown in equation (3.9), utilizing the tanh 

function to scale the outputs. 

 

𝑓% = σ	(𝑊F ∙ [ℎ%0(, 𝑥%] + 𝑏F) (3.4) 

𝑖% = σ	(𝑊$ ∙ [ℎ%0(, 𝑥%] + 𝑏$) (3.5) 
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𝑜% = σ	(𝑊$ ∙ [ℎ%0(, 𝑥%] + 𝑏E) (3.6) 

𝐶�% = 𝑡𝑎𝑛ℎ	(𝑊G ∙ [ℎ%0(, 𝑥%] + 𝑏G) (3.7) 

𝐶% = 𝑓% ∗ 𝐶%0( + 𝑖% ∗ 	𝐶� (3.8) 

ℎ% = 𝑜% ∗	 tanh(𝐶%) (3.9) 

 

The LSTM's ability to maintain a cell state through time and its use of gates to 

control the flow of information make it ideal for tasks where understanding context and 

remembering things from the past are essential, such as in language modeling and time 

series prediction. 

 

3.2.6 Gated recurrent unit (GRU) 

Gated Recurrent Units (GRUs) [61] are a streamlined variant of RNN that are 

structured to efficiently capture dependencies across varying time intervals in sequence 

data. Similar to LSTM units but with fewer parameters, GRUs manage the flow of 

information without the need for separate memory cells through a duo of gating units. 

Update Gates controls the extent to which information from the previous state is carried 

over to the current state, as shown in equation (3.4). It acts as a regulator for updating the 

unit's activations and is analogous to the combined functionality of the forget and input 

gates in an LSTM. The reset gate determines the amount of prior information to be 

disregarded. It essentially modulates the influence of the previously computed state on 

the current state's candidate activation, as shown in equation (3.5). The update gate 𝑧% 

works to control the degree to which a GRU unit updates its content, dictating how much 

of the past information should persist. The reset gate 𝑟% allows the GRU to forget the 

previously computed state, influencing how much of the past state is relevant for the 

current state calculation. The candidate hidden state is calculated by ℎ�%, which is a 

combination of the current input and the previously computed state, modulated by the 

reset gate as shown in equation (3.7). The final updated state is ℎ%, blending the old state 

with the new candidate state, based on the update gate's output. In these equations, 𝑥% 

represents input at time 𝑡, ℎ%0( is the hidden state from the previous time step, W, 𝑊1, 𝑊", 
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U,	 𝑈1,	 𝑈" 	 are weight matrices, 𝑏1 ,	 𝑏" ,	 𝑏C	 are bias terms, ∗ denotes element-wise 

multiplication.  

𝑧% = σ	(𝑊1 ∙ 𝑥% + 𝑈1 ∙ ℎ%0( + 𝑏1) (3.4) 

𝑟% = σ	(𝑊" ∙ 𝑥% + 𝑈" ∙ ℎ%0( + 𝑏") (3.5) 

ℎ�% = 𝑡𝑎𝑛ℎ	(𝑊 ∙ 𝑥% + 𝑈 ∙ (𝑟% ∗ 	ℎ%0() + 𝑏C) (3.7) 

ℎ% = (1 − 𝑧%) ∗ ℎ%0(+𝑧% ∗ ℎ�% (3.8) 

 

This gating mechanism helps GRUs to capture long-range dependencies and avoid 

the vanishing gradient problem common in standard RNNs. GRUs have been shown to 

perform on par with LSTMs on certain tasks, with a simpler model that can be easier to 

modify and run faster due to fewer parameters. 

 

3.2.7 Transfer learning 

Transfer learning is a technique that leverages knowledge acquired from prior tasks 

to inform a new task [62]. This technique is notably effective in transferring learned 

features from one domain to another, especially valuable in scenarios with limited data 

availability [56]. Transfer learning enhances learning efficacy and task performance by 

employing features, weights, and biases developed through training on extensive datasets. 

The process involves applying the insights obtained from solving a primary problem (task 

1) to a secondary, related problem (task 2). Initially, a model is trained on task 1, forming 

the foundational knowledge for task 2. Subsequently, for task 2, a new model is 

constructed, adopting both the architecture and the learned parameters from the successful 

segments of the original model. This new model is then fine-tuned using the specific 

dataset for task 2. This methodical application of transfer learning is elucidated in Figure 

3.8. The choice of transfer learning model depends on the specific requirements of the 

task. While these models may be pre-trained on the same dataset, like ImageNet, they 

offer a range of architectural choices and trade-offs. 

In the realm of transfer learning for DNNs, three primary strategies could be 

employed: First, the convolutional base, pretrained on extensive datasets like ImageNet, 
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is frozen, and only the upper layers, typically fully connected layers, are retrained to adapt 

to the new task. Secondly, a more nuanced approach involves partially unfreezing the 

convolutional base, particularly the last layers, and jointly retraining them with the top 

layers, thereby fine-tuning the model to align more closely with the specific 

characteristics of the new data. Lastly, the model can be entirely retrained from the ground 

up, which, while more computationally intensive, allows for complete customization to 

the new task, leveraging no prior learned patterns or features [63]. Each method presents 

a unique balance between computational efficiency and the model's ability to adapt to the 

specific characteristics of the new task. The choice of method is often dictated by the size 

and nature of the new dataset, computational constraints, and the desired level of task 

specificity. 

 

Figure 3.8 Schematic diagram of a transfer learning model: The first phase involves 

training with Task 1, followed by training a new model for Task 2 that leverages the 

knowledge acquired from the model developed for Task 1 [63]. 

 

3.3 Experiments 

In this chapter, the test set is obtained by selecting 30% of the total dataset using 

stratified random sampling, and the remaining samples are used as a training set. The 

SMOTE method is applied to increase the number of samples in the training set while 

keeping the size of the test set same. In addition, for the hyperparameter optimization, 

30% of the new training set is randomly selected for the validation set, and the rest is 

stored as a training set for the SVM classifier. Others DL methods have been applied 

directly. For the LSTM and GRU models, we reshaped the dataset, and for the transfer 
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learning model, we converted the vehicle signals to 2-D images. For this purpose, 

VGG16, VGG19, Xception, MobilNet, MobilNetV2, DenseNet121, DenseNet169, and 

DenseNet201 are implemented as DL models. The block diagram in Figure 3.9 outlines 

how the classification process in this study is conducted. Models are trained on the 

training set and validated on the validation set for DL models. Lastly, the model is 

evaluated for the test set. Individual results are obtained for each classifier. All ML 

approaches are implemented in the Python programming language. LSTM, GRU, and 

transfer learning approaches are implemented using Keras libraries [54], and the SVM 

method is implemented using scikit-learn libraries [53]. 

 

 

Figure 3.9 Block diagram of the classification process. 

 

In traditional neural networks, each observation is treated independently, lacking 

the capability to retain or utilize historical data. This aspect becomes especially critical 

when dealing with data from 3-D magnetic sensors in vehicle signal analysis. In such 

scenarios, not only does each vehicle's signal vary in duration, but each momentary signal 

value is also intrinsically linked to its preceding value, creating a sequential dependency. 

This necessitates the use of models like RNNs, which can process such sequential data 

effectively. Figure 3.10 highlights the adaptability of RNNs and related sequence models 

for managing diverse data types and tasks. This includes the one-to-one model, typical of 
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standard neural networks; the one-to-many model, which produces a sequence of outputs 

from a single input; and the many-to-one model, where a series of inputs culminate in a 

single output. For vehicle type classification in this study, a many-to-one model approach 

is employed. The detailed architecture of the LSTM and GRU models used in this 

research is outlined in Table 3.4. Considering the multi-class nature of the classification 

problem, the SoftMax function is employed as the activation function for the final layer. 

Optimization is performed using the Adam optimizer with a learning rate of 0.0001 and 

the categorical CE loss function. The mini-batch size is set at 16, with an epoch limit of 

200. ModelCheckpoint is utilized for saving model weights during training, with the 

optimal epoch for the test set determined by validation loss. Batch normalization and 

dropout are incorporated to regulate the models' parameters. 

 

 
Figure 3.10 Illustration of various types of data and tasks [64]. 

 

On the other hand, transfer learning techniques are employed, involving the 

freezing of the convolutional base layers while retraining the upper layers, like the fully 

connected Multi-Layer Perceptron (MLP) layers. The frozen layers' weights are taken 

from models previously trained on the ImageNet dataset. After the flattening layer in the 

convolutional base, an MLP network with a single hidden layer containing 64 neurons is 

applied. The SoftMax activation function is chosen for the last layer due to the multi-class 

classification challenge. The Adam optimizer, with a learning rate of 0.01 and a 

categorical CE loss function, is used. A mini-batch size of 16 is selected, the training is 

capped at 50 epochs, and Model Checkpoint is deployed for saving model weights at each 

stage. The most effective epoch for the test set is identified through validation loss. The 

parameters of the models have been regularized using L2-norm regularization, dropout, 

and batch normalization. Furthermore, data augmentation techniques [65] like rotation, 
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flipping, and cropping have been applied to enhance the diversity and quantity of training 

images due to the limited number of samples available in the training set. 

 

Table 3.4 Configuration of LSTM and GRU layers for vehicle type classification. 

Layer names LSTM/GRU classifier 

L1 Masking () 

L2 LSTM/GRU (32) 

L3 Batch normalization 

L4 Dropout (0.01) 

L5 LSTM/GRU (16) 

L6 Batch normalization 

L7 Dropout (0.01) 

L8 LSTM/GRU (8) 

L9 Batch normalization 

L10 Dropout (0.01) 

L11 Dense (3) 

 

3.4 Results and Discussion 

In this chapter, using a camera and a 3-D magnetic sensor node, data is collected 

on intermediate road traffic by taking 376 vehicle samples and identifying the types of 

vehicles. LSTM, GRU, SVM, and transfer learning algorithms are applied to the dataset 

for vehicle type classification. Transfer learning approaches include VGG16, VGG19, 

Xception, MobilNet, MobilNetV2, DenseNet121, DenseNet169, and DenseNet201. 

Models are trained on a training set and validated on a validation set, and then the model 

is also tested on the test set. The accuracies of LSTM and GRU models are obtained as 

74.33% and 81.41%, respectively, with the following hyperparameters: a dropout rate of 

0.2, a learning rate of 0.001, L2 norm regularization at 0.0001, and the Adam optimizer. 

Subsequently, transfer learning methods are applied, wherein the convolutional base 

layers of the models are frozen and the top layers are retrained. The same hyperparameters 

are used for this process: a dropout rate of 0.2, a learning rate of 0.001, L2 norm 

regularization set at 0.0001, and the optimizer chosen is Adam. The VGG16 model 

obtained the best results, with an accuracy of 92.03%. Moreover, the SVM model 

accuracy is obtained at 83.18% with the following optimum hyperparameters: C = 100, 
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gamma = 0.001, kernel = sigmoid. Table 3.5 shows all the performance results we 

obtained in this chapter for vehicle type classification. 

 

Table 3.5 Performance results of the machine learning and deep learning 

classifiers on three-dimensional vehicle type classification. 

Classifier Accuracy (%) Precision (%) Recall (%) F1-measure (%) 

LSTM 74.33 85.83 84.17 76.63 

DenseNet201 78.76 75.40 47.27 76.10 

DenseNet169 79.64 81.76 69.62 80.15 

GRU 81.41 84.35 76.28 82.29 

DenseNet121 82.30 84.33 82.93 71.79 

MobileNetV2 83.18 81.55 61.18 82.19 

SVM 83.18 82.82 64.99 82.39 

Xception 84.07 76.84 49.62 79.33 

VGG19 88.49 82.14 63.53 85.18 

MobileNet 90.26 83.01 66.29 86.48 

VGG16 92.03 92.67 70.00 88.94 

Ensemble 92.92 94.35 91.08 93.42 

 

In the analysis of 3-D vehicle type classification using DL techniques, the results 

indicate that the choice of model has a significant impact on the classification outcomes, 

particularly when discriminating between different vehicle types. It has been observed 

that transfer learning models like VGG16, when fine-tuned, excel at distinguishing light 

and medium vehicles with notable precision, yet they underperform in classifying heavy 

vehicles, as illustrated in Figure 3.11(a). On the other hand, LSTM and GRU models, 

despite not securing the top spot for overall accuracy, exhibit superior capability in 

identifying medium and heavy vehicles, as depicted in Figures 3.11(b) and 3.11(c). This 

suggests their enhanced ability to capture complex patterns and temporal dependencies 

that are characteristic of these vehicle categories, a feature that is particularly beneficial 

in situations where accurate detection of larger vehicles is paramount for safety and 

compliance reasons. 

Taking a comprehensive view of the performance metrics, the ensemble method 

employing custom soft voting emerges as a standout strategy. This method synergizes the 

strengths of the individual models, combining VGG16's proficiency with light and 
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medium vehicles and LSTM/GRU's effectiveness with medium and heavy ones to deliver 

superior classification performance. In this study, the ensemble method employs custom-

weighted soft voting, with higher weights assigned to VGG16 for light and medium 

vehicle classes and elevated weights for LSTM and GRU for medium and heavy vehicle 

classes. The result is an impressive overall accuracy rate of 92.92% and an F1-measure 

of 93.42%, as shown in Figure 3.11(d). This nuanced application of weights within the 

soft voting framework allows for precise differentiation across all vehicle categories, as 

shown in Figure 3.11(d), which shows only 8 misclassified samples, underscoring the 

potency of ensemble methods in addressing complex classification tasks. 

 

 

Figure 3.11 Performance matrix of VGG16, LSTM, GRU, and custom ensemble 

classification methods, respectively. 

 

The loss history of the LSTM, GRU, and VGG16 models throughout training and 

validation, shown in Figures 3.12, 3.13, and 3.14, highlights the intricate dynamics 

involved in model training. The figure illustrates that the optimal loss rates for the 

validation sets are 1.1445, 0.3642, and 0.1970, achieved after 33, 162, and 200 iterations 

on the VGG16, LSTM, and GRU models, respectively. The VGG16 model exhibits fast 

convergence towards a reduced loss value, suggesting that it is effectively learning 

information from the training data. A sharp decrease in the loss value, particularly during 

the early stages of training, indicates that the model's parameters are being modified 

considerably to minimize the prediction error. If the validation loss exhibits a similar 

pattern, it would suggest that the model is not just overfitting to the training data but also 

effectively generalizing to new, unseen data. The LSTM model appears to have a more 
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gradual reduction in loss over a larger number of training steps. This could indicate that 

the LSTM, with its ability to capture long-term dependencies, is slowly assimilating the 

patterns in the sequential data. The GRU model, known for its simpler structure compared 

to LSTM, seems to be showing an interesting pattern where the validation loss is lower 

than the training loss. This phenomenon may occur when dropout or other regularization 

methods are used during the training phase. The decrease in validation loss suggests that 

the GRU model has a higher capacity to generalize to unfamiliar data, possibly attributed 

to its capability to prevent overfitting by using regularization approaches. Overall, the 

loss history figure is essential for comprehending the learning dynamics of different 

models. It helps in evaluating the convergence of the model, identifying problems of 

overfitting or underfitting, and providing guidance for additional enhancements to the 

model. 

 

Figure 3.12 The loss history of VGG16 model on training and validation steps. 

 

 

Figure 3.13 The loss history of LSTM model on training and validation steps. 
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Figure 3.14 The loss history of GRU model on training and validation steps. 

To summarize, the findings of this study confirm that vehicle type classification is 

a complex task requiring various methodological approaches. Transforming vehicle 

signals into 2-D images and employing transfer learning methods have proven to enhance 

performance scores. At the same time, LSTM and GRU methods have demonstrated the 

ability to accurately classify even the most challenging samples, albeit with a generally 

lower performance rate. The study indicates that while individual models each have their 

strengths, integrating their predictions through a soft voting ensemble method can create 

a more reliable and precise classification system. The insights gained from this study 

could lead to the development of more advanced ensemble strategies, potentially 

including a wider array of models and techniques, to further improve classification 

performance. 
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Chapter 4 

4 An efficient network intrusion detection 

approach based on logistic regression 

model and parallel artificial bee colony 

algorithm 

 
4.1 Introduction 

In recent years, the number of people and applications using the internet has 

expanded dramatically, largely due to the development of smart technology. According 

to Data Reportal, which collects data about internet usage worldwide, approximately one 

million new internet users are added each day, with the total number of internet users 

increasing by 13% in 2020 compared to the previous year [66]. The increased usage of 

the internet has also brought numerous security challenges. Cybercrime and threat 

activities have become a critical concern, underscoring the growing importance of 

cybersecurity. SonicWall reported that around 4.8 trillion intrusion attempts occurred in 

2020, representing a 20% increase from the previous year [67]. These intrusion attempts 

aim to penetrate information systems to steal or compromise sensitive data. To mitigate 

security vulnerabilities, technologies like firewalls, data encryption, and user 

authentication methods are employed. While these security measures are effective against 

a wide range of cyber threats, they fall short in conducting in-depth packet analysis and, 

consequently, may not detect all attacks or types of attacks. Therefore, as a result of these 

concerns, NIDS have been created to compensate for the deficiencies of the security 

methods, which monitor the network continually for malicious attacks and warn users 

when intrusions or attacks occur. NIDS are typically divided into two categories: 
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Signature-based and anomaly-based. Signature-based systems rely on a database of 

known malware signatures and can be less effective due to the ever-increasing variety of 

attacks; attackers can easily circumvent these systems with slight modifications to their 

methods. Moreover, as signature databases grow, these systems can become slower due 

to the continuous need to update and maintain the database. In contrast, anomaly-based 

detection systems establish patterns of normal behavior without relying on signatures and 

identify threats using the learned model. Thanks to their underlying ML algorithms, these 

models can conduct more in-depth data analysis. 

Anomaly-based detection systems employ a range of ML methods, such as rule 

mining, classification, clustering, and DL algorithms, to protect network security by 

detecting intrusions and attacks with high accuracy and f1-measure. However, ML 

methods on their own are not without challenges; they often require additional data 

preprocessing steps guided by human expertise to address issues, which requires expert 

input, and they can struggle with issues such as anomaly detection, the significant impact 

of errors, discrepancies between results and their interpretation, variability in network 

traffic, the diversity of attack types, and difficulties in data evaluation [68]. Recently, it 

was shown that a variety of critical issues can be handled, such as massive network traffic, 

diverse data distribution, and continuously changing environmental circumstances, by 

integrating the ABC approach with ML methods [69]. To this end, the ABC algorithms 

offer several advantages: (i) they require less prior knowledge and expert intervention, 

enabling classification without specific data preprocessing [70]; (ii) hybridization with 

ML techniques enhances model performance [68]; (iii) ABC is less dependent on 

predefined labels in the dataset [71]; and (iv) it is inherently distributed, performing 

efficiently in parallel and distributed computing settings [72]. This study proposes a novel 

network anomaly detection approach using LR, renowned for its uncomplicated design, 

swift processing in real-time scenarios [73], and high operational efficiency. To address 

LR’s inclination towards suboptimal local solutions, training is conducted using the ABC 

[74] algorithm. This algorithm, inspired by natural phenomena, emulates the foraging 

behavior of honeybees, leveraging the principles of swarm intelligence. 

To the best of our knowledge, this study builds the first network anomaly detection 

approach that utilizes the LR model and ABC algorithm together. The ABC algorithm is 

effective in dealing with multimodal and complex, high-dimensional problems [75], [76]. 

It possesses a harmonious blend of exploration and exploitation capabilities, making it a 
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suitable choice for anomaly-based NIDS. Additionally, the computational time of the 

suggested solution is decreased via the use of parallel computing techniques, and the 

Bayesian hyperparameter optimization technique is used to optimize ML algorithms’ 

hyperparameters. The proposed approach is evaluated using two publicly available 

network datasets: UNSW-NB15 and NSL-KDD. The performance of the proposed model 

is evaluated with state-of-the-art ML and DL models, such as DT, Linear Discriminant 

Analysis (LDA), LR, MLP, RF, SVM, XGBoost, DNN, LSTM, and GRU. Comparative 

experiments on the UNSW-NB15 and NSL-KDD datasets show that the proposed model 

outperforms other methods in accuracy, False Positive Rate (FPR), and F1-measure for 

UNSW-NB15, as well as in accuracy, False Negative Rate (FNR), and F1-measure for 

NSL-KDD, while reducing the training time. The proposed model achieves an accuracy 

of 88.25% on the UNSW-NB15 dataset and 90.11% on the NSL-KDD dataset, and F1-

measures of 88.26% and 90.15%, respectively. Additionally, thanks to GPU 

parallelization, the proposed model’s training time was approximately 4.45 times faster 

than the CPU version of the LR-ABC approach, indicating a significant improvement in 

execution speed. Overall, the major contributions of this chapter can be summarized as 

follows: 

• This chapter proposes an efficient approach based on an LR-ABC algorithm for 

NIDS. 

• To overcome the high computational time of the standard LR-ABC models, an 

efficient model has been developed based on CPU and GPU parallelization 

techniques to significantly reduce training time. 

• The performance of the proposed approach outperforms the state-of-the-art ML 

and DL models in terms of accuracy, FPR, FNR, and F1-measure. 

• Comparative performance evaluations are based on the publicly available UNSW-

NB15 and NSL-KDD datasets, which are among the most comprehensive 

available datasets. The high performance of the proposed approach shows that the 

proposed model is reliable and robust to detect various attack types, and it 

provides a scalable solution for adapting to the dynamic and evolving landscape 

of cybersecurity threats. 
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• The Bayesian hyperparameter optimization method has been utilized to 

automatically optimize the hyperparameters of the proposed LR-ABC approach 

and state-of-the art machine learning and deep learning methods. 

This chapter is organized as follows: Section 4.2 provides an overview of the 

current ML-based NIDS. Section 4.3 describes evaluation metrics, available datasets, 

preprocessing steps, and the hyperparameter optimization method. In Section 4.4, the 

proposed LR-ABC approach and the parallel computing method are explained. Section 

4.5 outlines the experimental steps. Section 4.6 presents the performance results of the 

proposed LR-ABC and other classification methods. 

 

4.2 Related Work 

In recent years, attackers have been upgrading themselves and the software that 

they use and inventing new malicious activities. Until now, different ML-based NIDS 

have been developed. Anomaly-based NIDS are favored for their ability to identify novel 

attack types, unlike signature-based systems. Due to the automated nature of ML 

techniques, they are able to develop a variety of models without the strong involvement 

of human skills [77], which is sometimes a constraint and costly. For this purpose, many 

studies aim to increase the performance of anomaly-based NIDS for different types of 

cybersecurity attacks. 

Hajisalem et al. [78] suggest a hybrid method for anomaly-based NIDS that 

combines the ABC and Artificial Fish Swarm algorithms. This hybrid method generates 

rules through the use of fuzzy C-means clustering and correlation-based feature selection 

techniques. They generate if-then rules using the CART technique to distinguish normal 

and anomalous records. Qureshi et al. [79] suggest a NIDS that utilizes a random neural 

network trained with the ABC algorithm to discover the ideal weights for the neurons, 

followed by a comparison to the classic gradient descent based RNN model. Mazini et al. 

[80] suggest a hybrid method that combines an ABC algorithm for feature selection to 

select the best subset of related features and an AdaBoost meta-algorithm for 

classification. Gu et al. [81] create a NIDS that uses SVM with the tabu-ABC for feature 

selection and parameter optimization at the same time. They adopted the tabu search 

algorithm to enhance the neighborhood search of ABC. It is utilized for reducing the 

feature size dimensions, and meanwhile, SVM parameters are optimized. Finally, the 
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dataset is utilized to train the SVM classifier model using the appropriate feature subset 

and hyperparameters. Rani et al. [82] use the ABC algorithm for the feature selection 

process and an RF classifier for classification tasks. Additionally, they demonstrate in 

other research why feature selection procedures result in overfitting and are unable to 

improve classification accuracy on NIDS [83]. In our previous studies [84], the ABC 

algorithm was applied to LR on e-mail spam filtering tasks and then evaluated on three 

public datasets. The proposed approach is compared with other ML algorithms. The 

suggested methodology outperforms other approaches in terms of classification accuracy 

and FPR. The proposed model demonstrates a high degree of effectiveness on unbalanced 

and nonlinear spam datasets. However, the suggested method has a shortcoming as it 

requires more training time compared to the other methods. 

On the other hand, several studies on NIDS have focused on different preprocessing 

steps and used individual classifiers such as DT [85], LDA [86], LR [87], MLP [88], and 

SVM [89] on the NIDS dataset. While these studies provide valuable insights into NIDS, 

none have explored the LR-ABC classification for anomaly-detection in NIDS. In this 

study, the proposed LR-ABC approach is compared to the state-of-the-art ML and DL 

algorithms, which include DT, LDA, LR, MLP, RF, SVM, XGBoost, DNN, LSTM, and 

GRU classifiers, using the UNSWNB15 and NSL-KDD datasets. Additionally, this study 

emphasizes that no cleaning process was applied to the datasets, and feature selection 

methods were not used. While some preprocessing methods could potentially increase 

accuracy, such enhancements are outside the scope of this study.  

Overall, ML and metaheuristic methods have been widely used for NIDS. However, 

existing studies on NIDS usually suffer from low performance results such as accuracy, 

F1-measure, FPR, and FNR. Moreover, current studies generally do not use automatic 

parameter tuning techniques. To address these challenges, this chapter proposes a novel 

approach based on a LR model trained using a parallel ABC algorithm with a 

hyperparameter optimization technique. To overcome the high computational time of the 

LR-ABC models, an efficient LR-ABC model has been developed based on CPU and 

GPU parallelization techniques to significantly reduce training time. To the best of our 

knowledge, this chapter proposes the first anomaly-based NIDS approach that employs 

the parallel ABC as an LR learning algorithm. 
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4.3 Materials and Methods 
 

Table 4.1 Traditional confusion matrix. 

 Predicted Anormal Predicted Normal 
Actual Abnormal TP FN 
Actual Normal FP TN 

 

4.3.1 Evaluation metrics 

Accuracy is an essential criterion for evaluating a model’s overall performance. The 

major goal of the current research is to increase the accuracy of NIDS, but the accuracy 

criterion may not be adequate in NIDS, especially in anomaly detection. Therefore, in 

addition to the accuracy metric, F1-measure, FPR, and FNR metrics, training time is also 

used to evaluate the classification performance. The FPR measures the rate of normal 

traffic falsely detected as anomalies, while the FNR indicates the rate of actual anomalies 

mistakenly classified as normal. The F1-measure, the harmonic mean of recall and 

precision, reflects the model’s sensitivity and robustness. These are important details to 

be examined in the NIDS. These performance metrics are given in equations (4.1), (4.2), 

(4.3), and (4.4), respectively. These metrics help to assess the performance of the model 

in several aspects. The traditional confusion matrix is shown in Table 4.1. 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦	(𝐴𝐶𝐶) = 	
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝐹𝑁 (4.1) 

𝐹𝑎𝑙𝑠𝑒	𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝐹𝑃𝑅) = 	
𝐹𝑃

𝑇𝑁 + 𝐹𝑃 (4.2) 

𝐹𝑎𝑙𝑠𝑒	𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒	𝑅𝑎𝑡𝑒	(𝐹𝑃𝑅) = 	
𝐹𝑁

𝑇𝑃 + 𝐹𝑁 (4.3) 

𝐹1 −𝑚𝑒𝑎𝑠𝑢𝑟𝑒	(𝐹1) = 	
2 ∗ 𝑇𝑃

2 ∗ 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 (4.4) 
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4.3.2 Datasets 

The UNSW-NB15 [90] and NSL-KDD [91] are benchmark network traffic datasets 

well-known in NIDS research. The goal of dataset generation is to provide a robust and 

realistic dataset. The UNSWNB15 dataset provides training and testing datasets 

separately. This dataset provides both multiclass and binary class labels. The training set 

contains a total of 175,341 samples, of which 56,000 are labeled ‘‘normal’’ and 119,341 

are labeled ‘‘abnormal’’. Similarly, the testing set consists of 82,332 samples, of which 

37,000 are labeled ‘‘normal’’ and 45,332 are labeled ‘‘abnormal’’ traffic samples. The 

dataset contains 45 features and abnormal classes containing nine attack types, including 

backdoors, analysis, DoS, exploits, fuzzers, generic, reconnaissance, shell code, and 

worms.  

 

Table 4.2 Class distribution of UNSW-NB15 and NSL-KDD datasets. 

Datasets Class Training Set Test Set 

UNSW-NB15 

Normal 56.000 37.000 

Fuzzers 18.184 6.602 

Analysis 2.000 677 

Backdoors 1.746 583 

Dos 12.264 4.089 

Exploits 33.393 11.132 

Generic 40.000 18.871 

Reconnaissance 10.491 3.496 

Shellcode 1.131 378 

Worms 130 44 

Total 175.341 82.332 

NSL-KDD 

Normal 67.343 9.711 

Dos 45.927 7.458 

Probe 11.656 2.421 

U2R 52 200 

R2L 995 2.754 

Total 125.973 22.544 

 

The NSL-KDD is divided into two parts: KDDTrain+ and KDDTest+. The training 

set has 125,973 samples, with 67,343 labeled ‘‘normal’’ and 58,630 labeled ‘‘abnormal’’, 

including 22 attack types, which are categorized into four attack classes. The test set has 
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22,544 samples, of which 9711 are labeled ‘‘normal’’, and 12,833 are labeled 

‘‘abnormal’’, including 37 attack types, also grouped into four attack classes. The 

distribution of four classes is: denial of service (DoS) attacks, root-to-local attacks (R2L), 

user-to-root attacks (U2R), and probing attacks (Probe). The NSL-KDD dataset contains 

41 features.  

 

4.3.3 One hot encoding 

ML algorithms consider the magnitude of numerical values as the importance or 

significance of features. In other words, based on the categorical values, it will consider 

the higher number more important or superior to a lower number. Therefore, on the 

UNSW-NB15 dataset, which has categorical features, one hot encoding technique is 

applied to transform categorical features into numeric values. For instance, the ‘state’ 

feature has nine categorical values: ‘FIN’, ‘INT’, ‘CON’, ‘ECO’, ‘REQ’, ‘RST’, ‘PAR’, 

‘URN’, and ‘no’. These were turned into binary vectors using the one-hot encoding 

method as follows: [1, 0, 0, 0, 0, 0, 0, 0, 0, 0], [0, 1, 0, 0, 0, 0, 0, 0, 0, 0], . .. , [0, 0, 0, 0, 

0, 0, 0, 0, 0, 1]. The ‘service’, ‘state’, and ‘proto’ are the three categorical features in the 

UNSW-NB15, dataset and after encoding, the total number of features increases to 199. 

Similarly, the NSL-KDD dataset contains categorical features such as ‘protocol type’, 

‘service’, and ‘flag’, which, after binary encoding, expand the total feature count to 122. 

 

4.3.4 Data normalization 

Normalization eliminates the influence of various scales across features, thereby 

reducing the time required to train the model. There are several normalization approaches. 

To choose the most suitable one, the dataset is analyzed for sparsity, a measure indicating 

how prevalent zeros are. This metric indicates that max-abs normalization strategies 

should be used before classification. This max-abs normalization technique scales and 

transforms each feature independently, ensuring that each feature in the training set has a 

maximum absolute value of 1.0 and does not center or shift the values, hence preserving 

any sparsity. So, the max-abs normalization methods are applied to scale the feature 

values into the numeric range between 0 and 1. 
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Table 4.3 Hyperparameter ranges for classification methods for UNSW-NB15 and 

NSL-KDD datasets. 

Classifier Parameter Lowest Highest 

DT Min Samples Split 2 100 
Min Samples Leaf 1 100 

DL 

Batch Size 8 64 
Learning Rate 10^-6 10^-2 
Neuron1 1 128 
Neuron2 1 128 
Neuron3 1 128 

LDA Shrinkage 0 1 
LR C 10^-4 10^4 

LR-ABC 

LB -64 0 
UB 0 64 
Evaluation Number 10.000 160.000 
Limit 10 500 
P 10 100 
MR 0.02 0.5 
L2 0 0.1 

MLP 

Learning Rate 10^-8 10^-1 
Number of Hidden Units 2 40 
Batch Size 1 1024 
Number of Epochs 1 50 

RF Number of Trees 1 200 
SVM C 0.001 1 

XGBoost 
Eta 0.1 1 
Depth 1 40 

 

4.3.5 Bayesian hyperparameter optimization 

In ML, there are numerous parameter optimization strategies that guarantee the 

model will achieve the best performance in the given space. For this reason, 

hyperparameter selection is a critical procedure during training the model. The main 

advantage of hyperparameter selection is that it is applicable to handling parameter tuning 

for many different models. The parameter tuning process has a strong impact on the 

performance or efficacy of a model, but this usually requires a large number of runs. This 

makes the tuning process time-consuming, which is the main disadvantage of 

hyperparameter optimization [92]. The second disadvantage is that determining the 

parameter value is still challenging. Bayesian hyperparameter optimization enables the 

search of a larger hyperparameter space. For each parameter, the method accepts an 

interval (i.e., min and max values) and can consider any value within that interval. 

Another advantage is that Bayesian hyperparameter optimization can be completed in a 
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matter of days for the same search space and computational resources, whereas standard 

techniques can take up to a year [93]. Table 4.3 shows the hyperparameter ranges for 

classification methods in this study. 

 

4.4 Proposed LR-ABC Method 

4.4.1 Artificial bee colony (ABC) algorithm 

The ABC algorithm, developed by Karaboga [74], is an optimization technique that 

emulates the food-gathering habits of honeybees. The ABC algorithm consists of 

employed bees that are actively engaged in the process, onlooker bees that observe and 

make decisions based on their observations, and scout bees that seek out new 

opportunities. In this context, the location of a food supply represents a potential 

resolution, whereas the quantity of nectar available at the food supply indicates the caliber 

of that resolution. The algorithm's main objective is to determine the food supply that has 

the greatest amount of nectar. The stages of the algorithms are detailed in Algorithm 1 on 

Table 4.4. 

Employed bees have the task of remembering the more advantageous areas 

surrounding food sources. They communicate the details about food quantities and 

location to the onlooker bees in the dance area. The onlooker bees then decide which 

source to visit by observing the dance of the employed bees. The ABC algorithm mimics 

this dance and the effective selection of food sources using a stochastic selection 

technique. This technique incorporates a positive reaction, meaning that if a food source 

is rich in nectar, it attracts more onlooker bees to that particular source. 

If a new solution discovered by an employed bee contains more nectar than the 

present one, the employed bee saves this new solution in its memory, replacing the old 

one. This occurs within the greedy selection phases of stages 4 and 8. Conversely, if the 

new solution isn't an improvement, the bee maintains the existing solution and adds one 

to its associated tally. These tallies keep track of how frequently a food source has been 

tapped and aid in determining when a source is exhausted during the scout bee stage. A 

food supply is deemed depleted when its counter exceeds a certain preset threshold. 

During each iteration of the fundamental algorithm, a maximum of one employed bee is 

allowed to transform into a scout bee. If multiple employed bees find their food sources 
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depleted, the algorithm selects the one with the highest tally value for this transformation. 

The bees abandon depleted sources, and scout bees then embark on a search for new, 

unexplored sources to take their place. 

 

4.4.2 LR-ABC classification method 

The LR model faces certain challenges with its gradient descent algorithm, such as 

the prerequisite of a continuous cost function. To overcome these limitations, the LR 

model is trained using the ABC method, which is a successful heuristic approach. In 

addition to making no assumptions about the function or parameter search space, the ABC 

algorithm can successfully search for both local and global solutions in the search space. 

The weights of the LR model trained with the ABC algorithm are similar to the locations 

of the food sources in the ABC algorithm. As a result, the method initially generates a 

population of starting weights and bias values. The bee stages aim to find the optimal 

weight set 𝑤��⃑ $ and bias value that minimize the mean squared error at the model’s output. 

The algorithm’s steps are provided in Algorithm 2 on Table 4.5. 

After a training set is given {(�⃑�(, 𝑦(), … , (𝑥2, 𝑦2)}	𝑦$ 	 ∈ 	 {0, 1}	and 𝑥( ∈ 𝑅&, 1 ⩽ 𝑖 

⩽ 𝑚, LR-ABC classification model determines the class of the vector �⃑�$ by using 

equation (4.5), where 𝑝$ is computed as seen in equation (4.6) and the function 𝜎 

corresponds to sigmoid function, which is given in equation (4.7). The LR-ABC method’s 

objective is to find the weights (𝑤��⃑ ) that minimize the cost function, which is provided by 

equation (4.8). As can be seen from equation (4.8), the cost function includes the mean 

square error function with ridge regression (L2 regularization) used to avoid overfitting. 

 

𝑝$ =	 �
	0, 𝑝$ < 0.5		
1, 𝑝$ ≥ 0.5  

(4.5) 

𝑝$ = 	𝜎	(𝑤(𝑥$( +	𝑤#𝑥$# +⋯+	𝑤&𝑥&( + 𝑏) (4.6) 

𝜎	(𝜃) = 	
1

1 +	𝑒0H
 (4.7) 
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𝐶(𝑤) = 	
1
	𝑚	6(𝑦$ − 𝑝$)# +	

𝜆
	𝑛

2

$'(

	6(𝑤7)#
&

7'(

 (4.8) 

𝑓A =	
1

1 +	𝐶A 	
 

(4.9) 

The LR-ABC algorithm first randomly generates a total of P food source positions, 

as described in step 2 of Algorithm 2. Each food source’s position corresponds to a weight 

vector. For each set of weight vectors, the LR-ABC model computes an output based on 

these weights and bias values. The fitness value of a solution is inversely proportional to 

the value returned by the cost function for that solution, as given in equation (4.9). 

Therefore, a solution with a higher cost value will have a lower fitness value. The fitness 

function directs the approach to the better locations in the search space, and Algorithm 3 

on Table 4.6 demonstrates the calculation of the fitness value. 

After evaluating the first group of bees, the approach continues to iterate through 

the phases of bees until the specified termination requirements are met. In the stage of the 

employed bee, a local search is undertaken around each current solution, leading to the 

generation of a new solution as outlined in the third step of Algorithm 1. In Algorithm 2, 

τ�⃑  is a vector that keeps track of the number of times each solution has failed to be 

improved, and in the scout bee phase, if there is a solution in this vector that is higher 

than the limit value, this solution is replaced with a new one. 
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Table 4.4 Algorithm of the ABC. 

1: Determine the number of food source (𝑷), maximum evaluation number ⟮𝑴𝑬𝑵⟯, limit and the number of 
parameters to be optimized (𝒏)  

2: Randomly create the food source locations  

				for	i ← to P∶  

								for	j ← to n∶  

												𝑤!"#$ ← 𝑙𝑜𝑤𝑒𝑟𝑏𝑜𝑢𝑛𝑑  

												𝑤!"%& ← upper𝑏𝑜𝑢𝑛𝑑  

												ϕ#! 	← 𝑟𝑎𝑛𝑑𝑜𝑚	(0, 1⟯  

												𝑤#! =	𝑤!"#$+ϕ#! 	𝑥	(𝑤!"%& −𝑤!"#$)  

3: Perform local searches around food source locations using employed bees  

				for	i ← to P∶  

								ϕ←	𝑟𝑎𝑛𝑑𝑜𝑚	[-1,	1]	

								k	←	𝑟𝑎𝑛𝑑𝑜𝑚Int	[1,	P]	provided	that	𝑖 ≠ 𝑘 

								j	←	𝑟𝑎𝑛𝑑𝑜𝑚Int	[1,	n] 

								𝑣#! =	𝑥#! + 	ϕ	x	(𝑥#! −	𝑥'!)  

4: Perform greedy selection  

5: Calculate the fitness value for each food source; that is, evaluate the quality of each solution  

				for	i ← to P∶  

								𝑓𝑖 ← 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛(𝑤YY⃑ )  

6: Calculate the probability value of each solution proportional to its quality  

				for	i ← to P∶  

								𝜌𝑖 ← 0.9 × (!
)*+	(()

 + 1 

7: Onlooker bees select food sources by considering probability values  

				𝑖	← 0, 𝑗 ← 0 	

								𝑤ℎ𝑖𝑙𝑒 𝑡 < 𝑃 ∶  

												𝑖𝑓 𝑟𝑎𝑛𝑑𝑜𝑚⟮0, 1⟯ < 𝑝𝑖 ∶  

																𝜙 ← 𝑟𝑎𝑛𝑑𝑜𝑚 [−1, 1]  

																𝑘 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 [1, 𝑃] 𝑝𝑟𝑜𝑣𝑖𝑑𝑒𝑑 𝑡ℎ𝑎𝑡 𝑖 ≠ 𝑘	

																𝑗 ← 𝑟𝑎𝑛𝑑𝑜𝑚𝐼𝑛𝑡 [1, 𝑛]  

																𝑣/! =	𝑥#! + 	ϕ	x	(𝑥#! −	𝑥'!) 

												𝑡 ← 𝑡 + 1  

												𝑖 ← 𝑖 + 1  

												𝑖𝑓 𝑖 ⩾ 𝑃 ∶  

																𝑖 ← 0  

8: Perform greedy selection  

9: Scout bee phase: If there is an exhausted food source i then:  

				𝑓𝑜𝑟 𝑗 ← 0 𝑡𝑜 𝑁 ∶  

								ϕ#! 	← 𝑟𝑎𝑛𝑑𝑜𝑚⟮0, 1⟯  

								𝑤#! 	 = 𝑤!"#$+ϕ#! 	𝑥	(𝑤!"%& −𝑤!"#$)  
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Table 4.5 Algorithm of the proposed LR-ABC classification method. 

Input: Input matrix 𝑿𝑴𝒙𝑵, target 𝒚YY⃑ 𝑴, number of food sources 𝑷, position of the food sources 𝑾𝑷𝒙𝑫, maximum 
evaluation number (𝑴𝑬𝑵),	lower bound 𝑙𝑏, upper bound 𝑢𝑏 

Output: 

1  : 𝐷 ← 𝑁 + 1  

2  : 𝑊5&6 ← 𝑙𝑏 + 𝑟𝑎𝑛𝑑(𝑃, 𝐷) × (𝑢𝑏 − 𝑙𝑏)  

3  : 𝑊7 ← 𝑊  

4  : 𝑓𝚤𝑡YYYYY⃑ ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑊)  

5  : τY⃑ 	← 𝑧𝑒𝑟𝑜𝑠(𝑃)  

6  : 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 ← 0  

7  : while 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 < 𝑀𝐸𝑁 do  

8  :				Perform employed bee phase  

9  :				𝑠𝑓𝚤𝑡YYYYYYY⃑   ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑊7)  

10:				𝚤𝑛𝑑YYYYYY⃑  ← 𝑠𝑓𝚤𝑡YYYYYYY⃑  > 𝑓𝚤𝑡YYYYY⃑  

11:				𝑟𝚤𝑛𝑑YYYYYYYYY⃑ ← 𝑠𝑓𝚤𝑡YYYYYYY⃑  > 𝑓𝚤𝑡YYYYY⃑  

12:				𝜏[𝚤𝑛𝑑YYYYYY⃑ ] ← 0  

13:				𝑊[𝚤𝑛𝑑YYYYYY⃑ ] ← 𝑊′[𝚤𝑛𝑑YYYYYY⃑ ]   

14:				𝑓𝚤𝑡YYYYY⃑  [𝚤𝑛𝑑YYYYYY⃑ ] ← 𝑠𝑓𝚤𝑡YYYYYYY⃑  [𝚤𝑛𝑑YYYYYY⃑ ]   

15:				𝜏YY⃑ [𝑟𝚤𝑛𝑑YYYYYYYYY⃑ ] ← 	𝜏YY⃑ [𝑟𝚤𝑛𝑑YYYYYYYYY⃑ ] + 1  

16:				Calculate probability values of all solutions  

17:				Perform onlooker bee phase  

18:				𝑠𝑓𝚤𝑡YYYYYYY⃑  ← 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑊7)  

19:				for 𝑖 ← 1 ∶ 𝑃 do  

20:								𝑡 ← 𝑡𝑚𝑝𝐼𝐷YYYYYYYYYYYYY⃑ [𝑖]  

21:								if 𝑠𝑓𝚤𝑡YYYYYYY⃑  [𝑖] > 𝑓𝚤𝑡YYYYY⃑  [𝑡] then  

22:													𝜏YY⃑  [𝑡] ← 0  

23:												𝑊[𝑡, ∶] ← 𝑊′[𝑖, ∶]  

24:												𝑓𝚤𝑡YYYYY⃑  [𝑡] ← 𝑠𝑓𝚤𝑡YYYYYYY⃑  [𝑖]  

25:								else  

26:												 	𝜏YY⃑  [𝑡] ←	𝜏YY⃑  [𝑡] + 1  

27:								end if  

28:				end for  

29:				Perform scout bee phase  

30:				Memorize best source  

31: end while  

32: Return global best solution 
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Table 4.6 Algorithm of the calculation of the fitness function. 

procedure 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝜙)  

1: 𝑤 ← 𝜙 [∶, 1 ∶]  

2: 𝑏 ← 𝜙 [∶, 0]  

3: 𝑝 ← 𝜎 (𝑋.𝑑𝑜𝑡(𝑤8) + 𝑏)  

4: 𝑓 ← 𝑚𝑒𝑎𝑛 ((𝑦9YYYYY⃑ 	− 	𝑝): , 𝑎𝑥𝑖𝑠 = 0)  

5: 𝑓 ← ;
((<;)

  

6: 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 ← 𝑒𝑣𝑎𝑙𝑢𝑎𝑡𝑖𝑜𝑛_𝑛𝑢𝑚𝑏𝑒𝑟 + 𝑙𝑒𝑛(𝑓)  

7: 𝑟𝑒𝑡𝑢𝑟𝑛 𝑓  

 
4.4.3 Computation on GPU 

The CPU version of the LR-ABC and state-of-the-art ML methods are implemented 

using the NumPy [94] library, which does not support GPU computations. NumPy is 

widely used in ML methods, and the Python community has built packages like scikit-

learn on top of NumPy. With the rapid development of GPU technologies over the last 

few years, researchers have increasingly focused on parallel computing to accelerate 

algorithms. However, the CPU version of the LR-ABC method still has limitations due 

to its high computational time. Due to the large size of the training datasets (175,341 × 

199 and 125,973 × 122 matrices for UNSW-NB15 and NSL-KDD, respectively), 

accelerating our model became imperative. Specifically, by harnessing GPU 

parallelization for vectorized loops, we significantly enhanced overall speed and 

efficiency. Additionally, we parallelized common array operations such as searching, 

comparing, addition, subtraction, and matrix multiplications on a GPU. We achieved this 

using CuPy [95], an open-source library that accelerates matrix operations using NVIDIA 

GPUs. CuPy is compatible with NumPy and enables full use of modern GPU capabilities 

through a NumPy-compatible interface. The improved parallel LR-ABC method was 

developed with the CuPy library. As a result, as shown in the performance results in 

Section 4.6, the training time has been dramatically reduced by approximately 4.5 times 

compared to the CPU version of LR-ABC. A detailed implementation of the GPU version 

can be accessed in the references [96], [97]. 
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4.5 Experiments 

In our experiment, eleven classification algorithms – DT, LDA, LR, MLP, RF, 

SVM, XGBoost, DNN, LSTM, GRU, and the proposed LR-ABC method – are evaluated 

using the publicly available UNSW-NB15 and NSL-KDD datasets. In the preprocessing 

steps for both datasets, the one hot encoding technique is applied to transform categorical 

features into numeric values. Max-abs normalization methods are used to map the 

numeric feature values into the range 0 to 1. The classification methods are implemented 

with a default parameter and using the Bayesian optimization technique, where for each 

classifier, the run count limit is set to 100. Table 4.3 shows the hyperparameter ranges for 

classification methods for the UNSW-NB15 and NSL-KDD datasets. Individual results 

in terms of accuracy, FPR, FNR, and F1-measure are obtained for each classifier. Since 

both the UNSW-NB15 and NSL-KDD datasets contain separate training and test sets, 

each model is trained on the training set and evaluated on the test set.  

The architectures of the DNN, LSTM, and GRU models consist of an input layer, 

three hidden layers, and an output layer. The hidden layers are configured with 64, 64, 

and 16 neurons, respectively, each employing a ReLU activation function. The last layer 

utilizes a sigmoid activation function. To prevent the risk of overfitting, batch 

normalization is implemented after each layer. The training process utilizes the Adam 

optimizer with the binary CE loss function. Additionally, an early stopping mechanism 

stops model training if the validation loss does not improve after five epochs, at which 

point the best model weights are reinstated. The learning rate is set to its default value, 

and the models are trained with a mini-batch size of 32 for a maximum of 100 epochs. 

All ML models are implemented using the Scikit-Learn library [53], while all DL 

models are implemented using Keras [54]. The proposed approach was developed in the 

Python programming language [52]. 
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4.6 Results and Discussion 

In this chapter, the proposed LR-ABC method, along with seven different ML 

methods (DT, LDA, LR, MLP, RF, SVM, and XGBoost) and three different DL methods 

(DNN, LSTM, and GRU), is experimented with two publicly available NIDS datasets for 

anomaly detection in network traffic. Each classifier is trained with a default parameter 

and with hyperparameter optimization using the Bayesian technique. 

 

Table 4.7 Performance results of the proposed and other classification methods 

with default parameters on NSL-KDD datasets. 

Classifier Accuracy (%) FPR FNR F1-measure (%) 

DT 79.73 0.0489 0.3189 79.66 

LDA 76.16 0.0678 0.3673 75.98 

LR 75.39 0.0743 0.3759 75.20 

LR-ABC 74.48 0.0728 0.3932 74.21 

MLP 81.83 0.0783 0.2597 81.89 

RF 81.23 0.0702 0.2765 81.25 

SVM 76.29 0.0732 0.3610 76.14 

XGBoost 78.69 0.0282 0.3529 78.49 

DNN 78.54 0.0723 0.3220 78.50 

LSTM 77.24 0.0333 0.3745 76.96 

GRU 75.67 0.0390 0.3977 75.31 

 

Performance results of the proposed and other classification methods with default 

parameters on NSL-KDD are shown in Table 4.7. The MLP classifier shows the highest 

accuracy, FNR, and F1-measures, with 81.83%, 0.2597, and 81.89%, respectively, 

suggesting it is well-suited to this dataset. In contrast, the proposed LR-ABC method has 

lower accuracy and F1-measure, indicating that the default parameters are not optimal for 

this model; it requires more careful tuning to match the dataset's characteristics, 

highlighting the necessity for hyperparameter optimization. Also, the LR model has one 

of the lowest accuracies and F1-measures, with 75.39% and 75.20%, respectively. This 

might be due to the linear nature of LR, which could struggle with the complex, non-

linear relationships in the NSL-KDD data. The XGBoost classifier has a relatively low 

FPR, which is desirable in many security applications to avoid over-alerting. However, 
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its FNR is high, which could be more critical as it implies missing actual threats. 

Conversely, the MLP has a lower FNR compared to other models but compensates with 

a higher FPR, which might be more acceptable depending on the cost of false alarms 

versus missed detections in the application context. The better performance of tree-based 

methods (DT, RF, and XGBoost) suggests that the dataset has feature interactions and 

non-linear decision boundaries that these models can capture effectively. The observed 

performances suggest that while some models like MLP and XGBoost are quite adaptable 

to the NSL-KDD dataset with default parameters, others, including the proposed LR-

ABC method, require careful tuning and consideration of the unique characteristics of the 

dataset.  

 

Table 4.8 Performance results of the proposed and other classification methods with 

optimum hyperparameters found by Bayesian optimization on NSL-KDD datasets. 

Classifier Accuracy (%) FPR FNR F1-measure (%) 

DT 82.42 0.0310 0.2851 82.40 

LDA 78.70 0.0303 0.3511 78.51 

LR 75.67 0.0747 0.3707 75.49 

LR-ABC 90.11 0.0756 0.1163 90.15 

MLP 85.86 0.0778 0.1894 85.93 

RF 84.02 0.0314 0.2569 84.03 

SVM 76.53 0.0733 0.3567 76.40 

XGBoost 81.46 0.0282 0.3042 81.39 

DNN 81.75 0.0475 0.2845 81.74 

LSTM 81.75 0.0374 0.2922 81.71 

GRU 84.12 0.1398 0.1729 84.19 

 

Table 4.8 shows the performance results of the proposed and other classification 

methods using Bayesian hyperparameter optimization on the NSL-KDD dataset. The LR-

ABC classifiers show the highest accuracy, FNR, and F1-measures, with 90.11%, 0.1163, 

and 90.15%, respectively, with the following optimum hyperparameters: LB = −2, UB = 

46, Evaluation Number = 48296, Limit = 196, P = 10, MR = 0.40421, L2 = 0.06280, and 

a threshold of 0.8. The improvement in LR-ABC's performance after optimization is 

particularly striking, suggesting that its default parameter setting is suboptimal and that it 

benefits significantly from the Bayesian optimization process. Generally, the 



81 
 

optimization process has led to a performance enhancement in most classifiers, as seen 

by comparing these results to those obtained with default parameters. This underscores 

the importance of tuning hyperparameters specific to the dataset and the model. The 

varying degrees of improvement across classifiers suggest that the NSL-KDD dataset 

may contain complex feature interactions that are better captured by models with 

sufficient flexibility and capacity, like LR-ABC and MLP. 

 

Table 4.9 Performance results of the proposed and other classification methods with 

default parameters on UNSW-NB15 datasets. 

Classifier Accuracy (%) FPR FNR F1-measure (%) 

DT 86.17 0.2493 0.0475 85.94 

LDA 80.89 0.4217 0.0026 79.76 

LR 80.54 0.3995 0.0271 79.63 

LR-ABC 80.97 0.4227 0.0005 79.82 

MLP 84.94 0.3199 0.0123 84.42 

RF 86.64 0.2713 0.0211 86.31 

SVM 81.59 0.4050 0.0035 80.58 

XGBoost 87.37 0.2609 0.0162 87.07 

DNN 86.14 0.2844 0.0195 85.76 

LSTM 87.52 0.2564 0.0173 87.23 

GRU 83.60 0.3573 0.0060 82.89 

 

Table 4.9 shows the results of the proposed and other classification methods with 

default parameters on the UNSW-NB15 dataset. The LSTM model achieves the highest 

accuracy and F1-measure with 87.52% and 87.23%, respectively, suggesting that its 

ability to process sequences in the data is highly beneficial for the UNSW-NB15 dataset. 

Conversely, the DT model, despite having the lowest FPR with a 0.2493, shows 

compromised accuracy and F1-measure, pointing towards a potential underfitting issue. 

The default parameters have yielded mixed outcomes, and classifiers such as LSTM and 

XGBoost have performed well, suggesting their default configurations are robust for the 

UNSW-NB15 dataset. The high FPR for LDA and LR might suggest that their default 

decision boundaries are too lenient, causing many negative instances to be classified as 

positive. The MLP and RF classifiers show a good balance between FPR and FNR, which 

is reflected in their strong F1 measures. This balance suggests that they are good 
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candidates for scenarios where both types of classification errors are equally undesirable. 

The varying FPR and FNR rates among the classifiers could also point to the diverse 

nature of the attacks represented in the dataset. Some attacks may be easier to detect, 

leading to low FNR for certain classifiers, while others may closely mimic normal 

behavior, leading to high FPR for other classifiers. 

 

Table 4.10 Performance results of the proposed and other classification methods 

with optimum hyperparameters found by Bayesian optimization on UNSW-NB15 

datasets. 

Classifier Accuracy (%) FPR FNR F1-measure (%) 

DT 86.81 0.2642 0.0237 86.5 

LDA 80.91 0.4218 0.0023 79.77 

LR 80.89 0.3892 0.0292 80.04 

LR-ABC 88.25 0.1212 0.1143 88.26 

MLP 83.37 0.3500 0.0162 82.72 

RF 86.79 0.2679 0.0211 86.47 

SVM 81.59 0.4050 0.0035 80.58 

XGBoost 86.93 0.2650 0.0210 86.62 

DNN 87.81 0.2492 0.0174 87.54 

LSTM 85.86 0.0161 0.2946 85.45 

GRU 84.64 0.3233 0.0150 84.10 

 

Table 4.10 shows the performance results of the proposed and other classification 

methods with hyperparameter optimization found by the Bayesian technique on the 

UNSW-NB15 dataset. Hyperparameter ranges for classification methods and optimum 

parameters found by the Bayesian technique are shown in Table 4.11. For the UNSW-

NB15 dataset, the proposed LR-ABC method achieved the highest accuracy (88.25%), 

F1-measure (87.86%), and lowest FPR (0.1212) with the following optimum 

hyperparameters: lower bound (LB) = −20, upper bound (UB) = 10, Evaluation Number 

= 77885, Limit = 141, population size (P) = 15, mutation rate (MR) = 0.0100, L2 

Regularization (L2) = 2.8368, and a threshold of 0.8. The optimization of 

hyperparameters using the Bayesian technique has likely contributed to the classifier. For 

instance, the DT, LDA, LR, XGBoost, DNN, and GRU classifiers showed slight 

improvements in accuracy. MLP and LSTM's accuracy and F1-measure decreased after 
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Bayesian optimization. The proposed LR-ABC method showed the most dramatic 

improvement with optimization, suggesting that its performance is highly dependent on 

the right set of hyperparameters. In general, some classifiers like MLP and DT performed 

well with default parameters, suggesting a natural compatibility with the dataset. In 

contrast, the LR-ABC method required optimization to achieve its best performance, 

highlighting the importance of tailored model configuration for anomaly detection tasks. 

 

Table 4.11 Optimum parameters found by Bayesian optimization on UNSW-NB15 

and NSL-KDD Datasets. 

Classifier Parameter UNSW-NB15 NSL-KDD 

DT Min Samples Split 99 19 
Min Samples Leaf 42 3 

DL 

Batch Size 55 60 
Learning Rate 10.0052 0.0040 
Neuron1 37 9 
Neuron2 29 84 
Neuron3 127 50 

LSTM 

Batch Size 31 20 
Learning Rate 0.0028 0.0013 
Neuron1 115 73 
Neuron2 74 38 
Neuron3 118 94 

GRU 

Batch Size 44 61 
Learning Rate 0.0062 0.0036 
Neuron1 28 95 
Neuron2 122 94 
Neuron3 46 73 

LDA Shrinkage 5.26e-05 0.8579 
LR C 50.000 48.214,53 

LR-ABC 

LB -20 -2 
UB 10 46 
Evaluation Number 77.885 48.296 
Limit 141 196 
P 15 10 
MR 0.0100 0.40421 
L2 2.836e-05 0.0628 

MLP 

Learning Rate 0.0714 0.7574 
Number of Hidden Units 22 13 
Batch Size 527 603 
Number of Epochs 10 47 

RF Number of Trees 173 4 
SVM C 0.9965 0.7331 

XGBoost Eta 0.2305 0.2148 
Depth 37 4 
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Bayesian optimization has notably improved the performance of the LR-ABC 

method, as evidenced by the significant increase in accuracy and F1-measure relative to 

its baseline performance with default parameters on the NSL-KDD and UNSW-NB15 

datasets. The observed trade-offs between FPR and FNR across various classifiers 

underscore the critical importance of model selection in accordance with the specific error 

costs pertinent to the application domain. The NSL-KDD dataset, characterized by its 

unique challenges, appears to be well addressed by sophisticated models, particularly 

when they are fine-tuned. Conversely, while fine-tuning did not uniformly benefit all 

classifiers on the UNSW-NB15 dataset, it notably promoted the performance of the LR-

ABC models, thereby underscoring their potential as formidable contenders for network 

anomaly detection tasks. The study underscores the need for a carefully calibrated balance 

between false alarms and missed detections, tailored to the unique requirements and 

constraints of network security. 

In the UNSW-NB15 dataset, as depicted in Figure 4.5, the LR-ABC method 

demonstrates variable accuracy across different attack types. It performs exceptionally 

well on backdoor, DoS, reconnaissance, and analysis types, achieving accuracies of 91% 

or higher. However, it notably falls short in correctly identifying 'generic' attacks, with 

an accuracy of only 60%. As presented in Figure 4.6, concerning the NSL-KDD dataset, 

the model shows strong performance on DoS and Probe attacks with accuracies of 94% 

and 92%, respectively. Yet, there is a significant drop in accuracy for R2L and U2R attack 

types, down to 73% and 69%, highlighting areas that require improvement. The LR-ABC 

model's varied performance across both datasets suggests that it is adept at detecting 

certain attack types, such as backdoors and DoS, which likely have more distinct and 

recognizable patterns. The diminished ability to identify 'Fuzzers' attacks in UNSW-

NB15 and 'U2R' and 'R2L' attacks in NSL-KDD, which are less represented in the 

datasets, indicates that these attack types may be more complex or less defined, posing 

challenges for the model's classification capabilities. The sparse representation of 'U2R' 

attacks, in particular, may contribute to the classifiers' difficulties in accurate 

identification. 
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Figure 4.1 The proposed LR-ABC method’s accuracy for each different attack 

type on the UNSW-NB15 dataset. 

 

 

Figure 4.2 The proposed LR-ABC method’s accuracy for each different attack 

type on the NSL-KDD dataset. 

In practical applications, particularly within the domain of network security, 

training time is a critical measure of an algorithm's efficiency, along with performance 

metrics. The LR-ABC method demonstrates this, utilizing the NumPy and CuPy libraries 

to optimize training time on both CPU and GPU platforms. Its GPU implementation 

significantly cuts the average training time down to 121.56 seconds, outperforming the 

CPU version and rivaling classifiers such as XGBoost. Table 4.12 displays the average 

training times for each classifier across ten iterations. The LR-ABC model's swift training 

capability bolsters its suitability for dynamic environments that require timely model 

updates. While the precision of threat detection remains paramount, the ability to quickly 

train and retrain models is equally crucial in cybersecurity, allowing for rapid adaptation 

to new and emerging threats. 
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Table 4.12 The training time of each classifier in seconds on UNSW-NB15 dataset. 

Classifier Best Worst Mean Std. 

DT 3.04 3.11 3.09 0.88 

LDA 7.57 7.65 7.60 0.02 

LR 6.69 6.75 6.73 0.02 

LR-ABC (CPU) 541.61 542.51 541.91 0.25 

LR-ABC (GPU) 121.38 122.41 121.56 0.28 

MLP 436.60 790.39 534.09 109.93 

RF 165.30 168.69 166.83 1.12 

SVM 1437.91 1559.12 1505.68 53.15 

XGBoost 120.21 120.96 120.47 0.25 

DNN 129.91 391.74 246.37 82.38 

LSTM 827.90 2322.50 1637.03 517.88 

GRU 384.75 1130.84 716.75 309.28 
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Chapter 5 

5 Conclusions and Future Prospects 

5.1 Conclusions 
This thesis contributes to the fields of ITS and NIDS within the broader realm of 

the IoT. It addresses challenges and proposes innovative solutions. In ITS, the escalating 

need for efficient and effective vehicle type classification is driven by population growth. 

Effective vehicle type classification is essential for improving traffic management and 

congestion control, facilitating long-term infrastructure planning, enhancing public 

transportation and urban planning, ensuring environmental monitoring, and promoting 

road safety. These contributes significantly enhance the overall quality of urban life and 

form the backbone of modern ITS solutions. 

This research addresses this need by developing an affordable, battery-operated 3-

D magnetic sensor for accurate vehicle type classification. The integration of a DNN 

classifier, enhanced with hyperparameter optimization, feature selection, and extraction 

methods, is an important advancement to vehicle type classification. This approach 

achieves a high accuracy of 91.15% and an f-measure of 91.50%. Furthermore, in the 

second phase of research, DL techniques are combined with a custom soft voting 

ensemble method, which achieves even higher accuracy of 92.92% and an f-measure of 

93.42%. In conclusion, this thesis has made significant contributions to the field of 

vehicle type classification. It has been demonstrated that while individual models possess 

inherent strengths, the confluence of these models through sophisticated ensemble 

methods can yield a classification system of remarkable accuracy and reliability. This 

advancement in vehicle type classification technology is important for the sustainable 

development of transportation infrastructure, particularly on side roads, enhancing 

comfort and road safety, and paving the way for the development of smart cities. It is 
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marking a pioneering approach in terms of energy-efficient traffic monitoring systems, 

addressing the growing environmental concerns and operational costs associated with 

ITS. 

Meanwhile, NIDS are fundamentally important to the security of IoT devices and 

networks. The IoT domain, encompassing diverse internet-connected entities such as 

sensors, actuators, and a variety of smart devices, generates substantial data volumes. As 

IoT devices and networks proliferate, securing data and network infrastructure has 

become a critical concern. Protecting these devices from cyber threats is critical. NIDS 

are one of the keys to detecting and addressing potential security vulnerabilities within 

IoT networks and ensuring the integrity and reliability of data transmitted across IoT 

networks. These systems provide critical capabilities in monitoring, protecting against 

threats, ensuring data integrity, and complying with regulatory standards, which are all 

essential for the successful deployment of IoT technologies. They underscore the 

importance of cybersecurity in the IoT era. This research addresses inherent challenges 

in ML-based NIDS, such as handling high dimensionality, class imbalance, and the 

dynamic nature of network threats. 

To effectively addressing these challenges, an efficient LR-ABC algorithm is 

proposed. The LR-ABC model demonstrates superior performance in network anomaly 

detection, outperforming existing ML and DL models with high accuracy and F1-

measures on benchmark UNSW-NB15 and NSL-KDD datasets. The development of 

CPU and GPU versions of this model marks a significant improvement in training times, 

enabling rapid adaptation to evolving cybersecurity threats, which is essential for 

maintaining the security of IoT networks. The findings from this research are pivotal in 

enhancing both ITS and NIDS within the IoT context. This thesis not only contributes 

significantly to the advancement of ITS and NIDS but also lays the groundwork for future 

research.  

By leveraging IoT technologies, this research paves the way for developing more 

robust, efficient, and adaptable systems, crucial for the rapidly evolving digital landscape 

and the growing demands of modern urban environments and cybersecurity. 
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5.2 Societal Impact and Contribution to Global 

Sustainability 

The United Nations has unveiled the 2030 Agenda for Sustainable Development, 

a global initiative aimed at eradicating poverty, safeguarding the environment, and 

promoting peace and prosperity for everyone. At the center of this agenda are the 17 

Sustainable Development Goals (SDGs), which form a collective blueprint, both in the 

present and for the future. These interconnected goals provide solutions to worldwide 

issues such as poverty, inequality, climate change, environmental decay, and social 

justice. 

The disciplines of electrical and computer engineering are ideally positioned to 

make significant contributions toward these goals. Through innovative technologies and 

solutions, it has the potential to drive progress in various areas, from climate action to 

sustainable cities, equitable healthcare, and beyond. Especially, ML presents unparalleled 

opportunities to accelerate sustainable development with its ability to analyze vast data, 

derive insights, predict outcomes, and automate complex processes. This thesis 

contributes to the field within the context of the IoT, which has notable societal impacts 

and contributions to global sustainability. The research aligns with several SDGs, 

including Industry, Innovation, and Infrastructure (SDG 9), Sustainable Cities and 

Communities (SDG 11), Climate Action (SDG 13), Peace, Justice, and Strong Institutions 

(SDG 16), and Partnerships for the Goals (SDG 17). 

In the realm of sustainable development, the creation of resilient infrastructure, 

promotion of inclusive and sustainable industrialization, and support for innovation are 

crucial objectives, as highlighted by the 9th SDG. The development of algorithms for 

vehicle type classification and the implementation of a 3-D magnetic sensor align with 

these objectives, enhancing smarter transportation systems and contributing to 

infrastructure innovation. Furthermore, the 11th SDG emphasizes transforming cities and 

human settlements into inclusive, safe, resilient, and sustainable environments. This goal 

is supported by the advancements in vehicle type classification technology, which, 

through the integration of ML, aid in effective traffic management and urban planning. 

This not only mitigates traffic congestion but also improves road safety, thereby 

contributing to sustainable urban development. Addressing climate change and its 

impacts, a core focus of the 13th SDG, is also a significant aspect of this research. 
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Implementing ML in traffic monitoring and management contributes not just to improved 

transportation efficiency but also significantly aids in the reduction of greenhouse gas 

emissions. This is in line with worldwide initiatives aimed at combating climate change. 

The 16th SDG underscores the importance of reducing cyber violence and increasing the 

accountability and transparency of digital systems. In this context, NIDS are critical. They 

ensure the protection of essential data and information, safeguarding public access and 

fundamental freedoms. Additionally, the 17th SDG brings to light the importance of 

global partnerships in achieving sustainable development. The interdisciplinary approach 

of this research, which encompasses computer science, artificial intelligence, 

transportation, and cybersecurity, exemplifies the necessity of collaborative efforts across 

various sectors and fields. Such collaborations are pivotal in driving innovation and 

achieving the SDGs. 

This thesis demonstrates how advancements in electrical and computer 

engineering, especially in ITS and network security, extend beyond technological 

achievements; they are vital for promoting sustainable development and significantly 

contribute to the overarching goals of the SDGs. 

 

5.3 Future Prospects 
Building upon the significant contributions of this thesis to ITS and NIDS, several 

promising avenues for future research emerge. These prospects aim to extend the current 

findings and address emerging challenges in these rapidly evolving fields. 

In ITS, expanding the data set and diversifying the type of vehicle can be effective 

in increasing the robustness and applicability of classification models. Another exciting 

possibility in ITS lies in the exploration of advanced model architectures for vehicle type 

classification. The use of cutting-edge architectures like EfficientNet, Inception, and 

NasNet, especially in conjunction with transfer learning techniques, can promise 

significant improvements in classification accuracy and efficiency. Transfer learning 

methods, known for their high performance in image and pattern recognition tasks, can 

provide significant benefits when applied to vehicle type classification using 3-D 

magnetic sensor data. The implementation and testing of developed ITS models in real-

world scenarios are very important. This includes deploying 3-D magnetic sensor systems 

in real traffic environments to verify their effectiveness and reliability under changing 
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traffic conditions and environmental factors. Real-world tests will provide invaluable 

information about the practical challenges and performance of the systems and will guide 

further improvements.  

As the IoT continues to grow, developing NIDS to protect IoT networks will 

become increasingly important. Future research should focus on developing NIDS that 

are not only effective in detecting a wide variety of attacks but also capable of rapidly 

adapting to new and evolving threats. This involves exploring advanced ML techniques 

to increase the accuracy and speed of network anomaly detection. Moreover, there is a 

need for models to achieve high performance not only in binary classification but also in 

multi-class classification models. Future work should focus on developing models that 

improve the detection and classification of various network attacks. This is particularly 

important for ensuring comprehensive security in complex network environments. The 

direct integration of developed NIDS models into IoT devices presents a promising 

research direction. This integration, allowing for more decentralized and efficient 

network monitoring and attack detection, will potentially provide faster response times 

and less network load. 

Finally, both ITS and NIDS will greatly benefit from collaborative and 

interdisciplinary research efforts. Collaboration between traffic engineers, cybersecurity 

experts, data scientists, and urban planners can lead to more holistic solutions that address 

the multifaceted challenges in these fields. Additionally, interdisciplinary research can 

facilitate the development of innovative approaches that benefit from insights and 

techniques from different fields. As a result, the future of ITS and NIDS research is 

vibrant and full of potential. By building on the foundations laid by this thesis and 

exploring these future expectations, significant advancements can be made that contribute 

to smarter, safer, and more secure transportation systems and network environments. 
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