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A b s t r a c t  

The deformation characteristics of rocks are of vital importance in addressing most geomechanical issues as they 

are one of the most critical input parameters in rock engineering analyses. For this reason, robust forecasting 

models are required when analysing the stability of tunnels, slopes, mine galleries, and other underground 

excavations. In this research, novel predictive models are proposed to estimate the tangential Young modulus (Eti) 

of weak rocks. To achieve this, an extensive literature review is performed to obtain a comprehensive database 

including critical physico-mechanical properties of various weak rocks. Thanks to the advantages of soft 

computing methods such as genetic algorithm (GA), adaptive neuro-fuzzy inference system (ANFIS), artificial 

neural networks (ANN) and multivariate adaptive regression splines (MARS), novel predictive models are 

established. The effectiveness of the developed predictive models is investigated using various statistical measures 

and it is concluded that empirical models utilizing ANN and ANFIS methodologies are the most effective tools 

for estimating the Eti of weak rocks. In addition, a practical design chart is also developed for assessing the Eti of 

weak rocks. 
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1. INTRODUCTION 

The deformation modulus of intact rock is an essential rock property frequently used as an input 

parameter for estimating the elastic modulus of rock masses [1−10]. It is also utilized to analyze the 

behaviour of various rock masses [11–17]. However, determining the deformation properties of intact 

rocks in the laboratory necessitates specialized equipment like strain gauges, linear variable differential 

transformers (LVDTs) and high-precision stiff-loading machines [18].  

Furthermore, obtaining high-quality core samples with consistent geometry, a critical requirement 

for determining the deformation properties of rocks, can be difficult, especially when dealing with weak, 
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fractured or foliated rocks [19, 20]. Additionally, drilling operations in rock formations linked to 

complex underground mines can also be difficult. Consequently, researchers have developed numerous 

predictive models to estimate critical rock properties. However, most predictive models in rock 

engineering literature are based on traditional regression analysis results. While regression-based 

predictive models are straightforward to implement, they often fall short in addressing certain gaps and 

uncertainties in the dataset [21–23]. Thanks to the developments in computer-aided analysis methods, 

several soft computing methodologies have recently been adopted to estimate some rock properties (i.e., 

deformation properties and shear strength parameters of intact rocks, etc.) that are costly and difficult to 

determine in the laboratory. Table 1 shows several predictive models based on various soft computing 

methods for estimating the Eti of different rock types. 

Table 1. Several predictive models for estimating the Eti of different intact rocks using various soft computing 

methods 

Researcher Independent variable Methodology 
Number of 

datasets 
R2 

Aboutaleb et al. [24] Ed, νd ANN 482 0.92 

Bejarbaneh et al. [25] SHV, Vp 
ANFIS 

96 
0.67 

ANN 0.81 

Köken [26] ne, Q, Sc, Vp ANN 32 0.95 

Shahani et al. [27] ρwet, ρd, BTS 
ANFIS 

132 
0.94 

ANN 0.70 

Köken and Kadakçı Koca [28] ρd, ne, Vp, UCS 

ANFIS 

147 

0.93 

GA 0.84 

ANN 0.94 

Khosravi et al. [29] ρd, Vp, wa ANN 80 0.69 

Jin et al. [30] ne, SHV, Is, Vp 

SVR 

101 

0.87 

ELM 0.88 

GW 0.89 

Armaghani et al. [31] ρd, Vp, Q, Plg 
ANN 

45 
0.99 

ANFIS 0.98 

Abdi et al. [32] ne, ρd, Vp, Id2 

RF 

90 

0.94 

AB 0.93 

XGB 0.91 

CATB 0.93 

Matin et al. [33] Vp, ne, SHV, Is RF 30 0.90 

Explanations: ρd: Dry density,  Vp: Pulse wave velocity, ne: Effective porosity, UCS: Uniaxial compressive 

strength, ρwet: Saturated density, BTS: Brazilian tensile strength, Ed: Dynamic Young modulus, vd: Dynamic 

Poisson’s ratio, SHV: Schmidt hammer rebounding value, Is: Point load strength, Q: Quartz content, Sc: Sorting 

coefficient, wa: Water absorption by weight, Plg: Plagioclase content, Id2: Second slake durability index value, 

ANFIS: Adaptive fuzzy logic inference system, ANN: Artificial neural networks, SVR: Support vector 

regression, GA: Genetic algorithm, ELM: Extreme learning machine network, GW: Grey wolf optimization 

algorithm, RF: Random forest, XGB: extreme gradient boosting, AB: AdaBoost,  

CATB: CatBoost, R2: Correlation of determination value. 

 

More profoundly, Sonmez et al. [7] adopted artificial neural networks (ANN) to assess the Eti of 

intact rocks. Their analyses considered input parameters of dry unit weight (γd) and uniaxial compressive 

strength (σci or UCS). Aboutaleb et al. [24] also adopted ANN as a research tool, and they considered 
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dynamic Poisson’s ratio (νd) and dynamic elastic modulus (Ed) for estimating the Eti. Bejarbaneh et al. 

[25] used an adaptive neuro-fuzzy inference system (ANFIS), and they considered Schmidt hammer 

value (SHV), pulse wave velocity (Vp), and point load strength (Is) as input parameters in their soft 

computing analyses. Focusing on the variations in Eti values for different sandstones, Köken [26] 

succeeded in estimating the Eti of sandstones from Turkey by considering the rock properties of effective 

porosity (ne), quartz content (Q), sorting coefficient (Sc), and Vp. 

Shahani et al. [27] adopted both ANN and ANFIS, and they used saturated density (ρwet), dry 

density (ρd), and Brazilian tensile strength (BTS) in their analyses. In recent years, Köken and Kadakçı 

Koca [28] collected a comprehensive database to estimate the Eti for various rock types. Their 

investigations considered ANN as a primary research tool where ρd, Vp, ne, and UCS values were 

adopted as input parameters. Based on the ANN methodology, Khosravi et al. [29] modelled the Eti 

based on the rock parameters of ρd, Vp, and water absorption by weight (wa). Jin et al. [30] adopted 

relatively new soft computing methods like extreme learning machine network (ELM) and support 

vector regression (SVR) for estimating the Eti of rocks. In their analyses, ne, SHV, Is, and Vp were used 

as input parameters. To assess the Eti of granitic rocks, Armaghani et al. [31] adopted both ANN and 

ANFIS methods. The ρd, Vp, Q, and plagioclase content (Plg) were used as input parameters in their 

soft computing analyses. Recently, Abdi et al. [32] also adopted relatively new soft computing 

algorithms such as AdaBoost (AB), random forest (RF), extreme gradient boosting (XGB), and 

CatBoost (CATB) for the assessment of Eti for weak rocks. Their analysis results indicated that the 

predictive model found on RF provides promising results in estimating the Eti of weak rocks. Last but 

not least, Matin et al. [33] performed RF methodology for estimating the Eti of travertine samples.  

Nevertheless, it can be claimed that limited studies (e.g., Abdi et al. [32]) directly focus on the 

estimation of Eti for weak rocks. Due to this reason, comprehensive predictive models are necessary to 

assess the Eti of these rock types. To achieve this, an extensive literature review is conducted to gather 

quantitative datasets on weak rocks. As a result of soft computing analyses, several predictive models 

are developed in this study. The performance of the developed predictive models is compared by 

considering the statistical indices of root means squared error (RMSE), correlation of determination 

(R2), and variance accounted for (VAF). The details and robust mathematical expressions of the 

developed predictive models can be found in this research paper. In addition, in this study, a design chart 

for the assessment of Eti of weak rocks was also developed. The predictive models obtained in this work, 

as well as the chart for the assessment of the Eti of weak rocks, can contribute to estimating the Eti of 

weak rocks based on non-destructive testing methods. 

2. DATA DOCUMENTATION AND DATA ANALYSIS METHODS 

The dataset was obtained from scientific publications and the total number of data was 173 in this study. 

These data include basic properties (ρd, ne, Vp and Eti) of weak rocks with relatively high porosity. The 

database adopted is listed in Table 2. The soft computing methods of ANFIS, ANN, GA, and multiple 

adaptive regression spline (MARS) were considered in this paper. ANFIS and ANN analyses were 

conducted in the MATLAB environment. On the other hand, GA and MARS methods were implemented 

using GeneXpro tools and R programming language, respectively. 
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Table 2. Database employed in soft computing analyses 

3. SOFT COMPUTING ANALYSES 

3.1. MARS analyses  

Friedman [40] was the pioneer of MARS analysis, which is based on a nonparametric regression method.  

Typical MARS models consist of two main components: the forward pass, where basis functions (BFs) 

are introduced as constants, and the backward pass, where these BFs are combined with linear regression 

techniques. This research introduced a robust MARS model specifically for estimating the Eti of weak 

rocks. Based on soft computing analyses, Table 3 lists the most accurate predictive model along with its 

BFs.  

Table 3. Proposed MARS model its BFs 

Empirical formula 

3.64 2.075 2 4.92 3 0.059 6 13.98 8tiE BF BF BF BF      

 1 max 0; 2.20pBF V   4 max 0;4.57 pBF V   

 2 max 0;2.20 pBF V   6 max 0;17.71 4eBF n BF    

 3 max 0; 4.57pBF V   8 max 0;2.11 1dBF BF    

3.2. GEP analyses  

Various GEP applications were conducted to construct a robust predictive model for evaluating the Eti 

of weak rocks. GeneXproTools software was utilized to implement a range of GEP models for this 

purpose. As a result of GEP analyses, the Eti of weak rocks can be estimated using the equations listed 

in Table 4. 

Rock type ne (%) ρd (g/cm3) Vp (km/s) Eti (GPa) n Reference 

Claystone, 

Siltstone, 

Marl, 

Limestone 

5.44−56.55 1.88−2.62 1.01−3.25 1.12−5.32 61 Abdi et al. [32] 

Dolomite 

Limestone 
6.22–10.36 2.57–2.73 3.30–4.87 2.7–6.1 5 Pappalardo [34] 

Sandstone 9.96–14.51 2.15–2.38 1.35–2.62 2.9–7.2 2 Abdi et al. [35] 

Carbonate 

Rocks 
1.09–18.66 2.00–2.53 2.20–5.00 5.2–6.9 13 Madhubabu et al. [36] 

Limestone 

(Caliche) 
16.23–32.49 1.77–2.34 0.44–1.58 0.18–1.4 18 Dinçer et al. [37] 

Andesite 

Trachyte 
8.72–24.58 2.60–2.72 3.26–4.08 2.60–3.36 4 Herşat [38] 

Travertine 

Limestone 
0.15 – 7.75 2.24 – 2.63 3.76–5.34 2.17–8.03 70 Fereidooni et al. [39] 

Explanations: ne: Effective porosity ρd: Dry density,  

Vp: Pulse wave velocity, Eti: Tangential Young modulus,  

n: number of samples 

Total 173  
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Table 4. Proposed GEP model 

Empirical formula 

 1 20.84 0.65tiE x x    
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3.3. ANN analyses  

In this paper, detailed ANN analyses were performed in the MATLAB environment. Before conducting 

the ANN analyses, the dataset was normalized between ‒1 and 1 to mitigate overfitting issues. Different 

ANN architectures were attempted in the analyses and the optimal one can be identified as 3-6-1, which 

includes three input parameters (ρd, ne, and Vp), six hidden layers, and one output (Eti). The equations 

for estimating the Eti of weak rocks are detailed in Table 5. 

Table 5. Proposed ANN model 

Empirical formula 
6

1

3.925 tanh 0.778 4.105ti i

i

E x


 
   

 
  

 1 0.50031tanh 1.2068 9.1231 14.6189 4.0375n n n

d e px n V      

 2 0.52767 tanh 9.2297 2.7982 18.4459 4.6571n n n

d e px n V      

 3 0.88387 tanh 1.2363 0.83018 0.39926 0.22588n n n

d e px n V       

 4 0.5704 tanh 4.0979 2.5028 9.1738 4.3992n n n

d e px n V      

 5 0.59728tanh 2.7437 9.5452 5.1678 0.51952n n n

d e px n V      

 6 0.29147 tanh 2.974 11.127 14.4403 2.2854n n n

d e px n V      

Normalization functions 

2.083 4.687n

d d   0.0355 1.0053n

e en n  0.4076 1.1793n

p pV V   

3.4. ANFIS analyses  

The MATLAB environment was also used to perform the ANFIS analyses. Each input parameter (ne, ρd 

and Vp) was represented by six Gaussian membership functions. These membership functions activated 

six if-then rules governing the ANFIS model. The analysis continued until achieving minimal root 

means square error (RMSE) values. Figure 1 in MATLAB illustrates some examples of the proposed 

ANFIS model. 
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Fig. 1. ANFIS analyses and processes: a) identification of input parameters, b) training process, c) The structure 

of the optimal ANFIS model, d) ANFIS rule viewer 

4. RESULTS AND DISCUSSION  

Based on the collected data (Table 2), four robust predictive models were developed to evaluate the Eti 

of weak rocks. The performance of the proposed predictive models is first revealed by scatter plots, and 

then through some statistical indicators such as the correlation of determination (R2) and root means 

square error (RMSE). Accordingly, the predictive models that yield the best results are based on the 

ANN and ANFIS methodologies. The R2 and RMSE values for these models are between 0.65 – 0.85 

and 1.006 – 1.574 GPa, respectively (Fig 2).  

 



188 Ekin KÖKEN, Paweł STRZAŁKOWSKI 

 
 

 
Fig. 2. Performance evaluation of each predictive model: a) MARS, b) GEP, c) ANN, d) ANFIS 

 

In these models, non-destructive testing methods (ρd, ne and Vp) were used effectively. For this 

reason, the proposed methods based on ANN and ANFIS methodologies can be effectively used to 

estimate the Eti of weak rocks. The validity of the ANN and ANFIS methods to estimate the Eti of various 

rocks has also been confirmed in other publications [7, 24, 26].  

The previous studies also confirmed that soft computing methods are more effective than 

conventional regression analyses for estimating the deformation modulus of rocks [41‒45]. 

Nevertheless, when it comes to the performance of other introduced models, the ones found on GEP and 

MARS methods should be improved by increasing the number of datasets and/or input parameters.  

The relative errors of the predictive models found on the ANN and ANFIS methodologies are 

also listed in Fig 3 for different subclusters of Eti. Accordingly, when the Eti values are below 2 GPa, 

the average relative error (ARE) is at the highest degree (ARE = 32–67%). On the other hand, for other 

Eti classes described in Fig 3, The predictive models based on ANN and ANFIS can be reliably used to 

estimate the Eti of weak rocks. The overall ARE values for these models are between 19–25%, which is 

statistically acceptable. 
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Fig. 3. Average relative errors of the proposed predictive models based on different Eti subclusters 

 

When it comes to comparing the performance of the proposed predictive models with the ones of 

previous predictive models in the literature, the predictive models found on the ANN and ANFIS 

methodologies outperform the ones provided by Fereidooni et al. [39]. On the other hand, the predictive 

models by Abdi et al. [32] seem to have a better prediction performance than the models highlighted in 

this study. The underlying reason can be attributed to the fact that Abdi et al. [32] considered only 

sedimentary rock types such as claystone, siltstone, marl and limestone in their soft computing analyses. 

In this regard, the highlighted predictive models (ANN and ANFIS models) can be considered as 

comprehensive predictive tools for estimating the Eti of a wide range of weak rocks.  

To facilitate the practical implementation of the proposed ANFIS method, a novel design chart is 

established to evaluate the Eti of weak rocks. Design charts or graphical design tools offer several 

advantages in rock engineering [46]. For example, they allow for rapid comparisons between different 

input parameters, helping in quick decision-making. The main motivation in the preparation of the 

design chart is to reveal common Eti values required for the analysis of rock structures practically and 

safely. 

Accordingly, the common Eti values based on varying rock parameters can be estimated by using 

the design chart given in Fig 4. Nevertheless, it should be mentioned that although the prepared design 

chart is suitable to estimate the Eti of weak rocks, it is not recommended to use this chart for the condition 

of Eti < 2 GPA due to having relatively higher ARE values (Fig 3). Fig 4 also illustrates four examples 

of implementing the proposed design chart. As observed from the examples, it is confirmed that each 

coupling variable (ne-ρd, Vp-ρd and Vp-ne) provides promising results in estimating the Eti of weak 

rocks. 
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Fig. 4. Proposed design chart based on the ANFIS methodology 

5. CONCLUSIONS 

Since dealing with weak rocks in the laboratory is a labour-intensive issue, researchers have postulated 

several theories to assess some rock properties that are relatively hard to obtain. In this study, the Eti of 

weak rocks are investigated based on four soft computing algorithms.  

The performance of the proposed predictive models is assessed using scatter plots and various 

statistical metrics such as R2 and RMSE. Consequently, it is found that the models based on the ANN 

and ANFIS methodologies outperform the other models. The R2 values for these models are found to be 

greater than 0.82, showing their relative success. Additionally, by adopting the ANFIS method, a novel 

design chart is also prepared to easily estimate the Eti of weak rocks. The design chart can be regarded 

to reveal the Eti of weak rocks when Eti tests are not possible or easy to implement. However, the use of 

the proposed design chart is not recommended for the conditions of Eti ≤ 2 GPa. Further research and 

analysis should be conducted in this area. 

Keep in mind that laboratory tests become crucial when analysing any rock structure. However, 

predictive models and/or design charts may help provide practical information on rock properties that 

are both necessary and hard to determine in the laboratory. In this regard, the present study can be 

declared as a novel research tool by providing comprehensive forecasting models to assess the Eti of 

weak rocks. However, further studies may be beneficial by dividing analysed datasets into different parts 

that enable one to analyse the Eti of weak rocks more precisely. 
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