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ABSTRACT 
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Ph.D. in Electrical and Computer Engineering 

Advisor: Prof. Bülent YILMAZ 

March 2024 

 

 

Upper extremity prostheses vary based on patients' articulation levels and movement 

methods. They can be cosmetic, operate mechanically with shoulder movement, or be 

controlled by myoelectronic and electroencephalography (EEG) signals. However, 

unnatural prosthesis control burdens users mentally. This thesis seeks to enhance bionic 

hand prosthesis control using EEG and electromyography (EMG) signals, coupled with 

users' visual weight perception, aiming to reduce physical and mental discomfort 

associated with mechanical prostheses. The prototype hand's preconditioning evaluates 

objects' weight visually, aiming to reduce shoulder force and mental load while holding 

an object. EEG and EMG signals from subjects were processed for real-time 

implementation. In the first stage, a study focused on operating the prosthesis using the 

motor intention waves of prosthesis users, and the machine learning approaches' 

classification success (detection of the intention to activate the prosthesis) was examined 

using EEG data from 30 healthy participants.  The second stage recorded EEG and EMG 

signals from 31 participants during reaching, lifting, and placing an object, employing 

various classifications for object weight. In the real-time classification of multi-channel 

EEG signals from 20 healthy individuals using Fourier-based synchrosequeezing 

transform (FSST) and singular value decomposition (SVD) approaches, the system aimed 

to control the stiffness of the wrist part of the prosthesis. Consequently, the system could 

detect the weight of the object perceived by the user while using the prosthesis, allowing 

for the preconditioning of the prosthesis based on this weight when the user wants to hold 

and move the object. 

 

Keywords: Brain-machine interface, Electroencephalography, Electromyography, 

Hand prosthesis, Weight perception  



 

ÖZET 

EL PROTEZLERİ İÇİN EEG VE EMG SİNYALLERİYLE ALGI 

KESTİRİMİ VE TORK KONTROLÜ 
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Üst ekstremite protezleri, hastaların eklem düzeyleri ve hareket yöntemlerine bağlı olarak 

değişiklik gösterir. Protezlerin kozmetik, omuz hareketine bağlı çalışan, miyoelektronik 

ve elektroensefelografi (EEG) sinyalleriyle kontrol edilen türleri mevcuttur. Ancak, 

sezgisel ve doğal olmayan protez kontrolü kullanıcı üzerinde büyük bir mental yüke 

neden olmaktadır.  Bu tez ile, EEG ve elektromiyografi (EMG) sinyalleri birlikte 

kullanılarak biyonik el protezinin kontrolünün kullanıcının görsel ağırlık algısından 

faydalanılarak daha iyi hale getirilmesini amaçlayan bir sistem geliştirilmeye 

çalışılmıştır. Bu sistem ile hastaların mekanik bir protezi kullanırken duyabilecekleri 

fiziksel ve mental yükü/rahatsızlığı azaltmak hedeflenmiştir. Bu amaçla öncelikle 

deneklerin EEG ve EMG sinyalleri gerçek zamanlı uygulama için işlendi. İlk aşamada, 

protez kullanıcılarının motor niyet dalgalarından yararlanılarak protezlerin 

çalıştırılmasını hedefleyen bir araştırma yapılmış ve 30 sağlıklı katılımcıdan EEG verileri 

alınarak makine öğrenmesi yaklaşımlarının sınıflandırma başarıları (protezi aktif hale 

getirme niyetlerinin tespiti) incelenmiştir. İkinci aşamada, 31 katılımcının nesneye 

uzanma, kaldırma ve yerleştirme hareketleri sırasında EEG ve EMG sinyalleri kaydedildi 

ve nesne ağırlığının tespiti için çeşitli sınıflandırmalar kullanıldı. 20 sağlıklı bireyin çok 

kanallı EEG sinyallerinin gerçek zamanlı sınıflandırmasında Fourier tabanlı 

senkrosıkıştırma dönüşümü (FSST) ve tekil değer ayrıştırma (SVD) yaklaşımları 

kullanılarak sistem, protezin bilek kısmının sertliğinin kontrolü sağlanmaya çalışılmıştır. 

Sonuç olarak, bireyler protezi kullanırken gördükleri cismin ağırlığının sistem tarafından 

algılanması ve o cismi kaldırmak istediklerinde protezin bu ağırlığa göre 

önkoşullandırılması mümkün olmaktadır. 

Anahtar kelimeler: Beyin makine arayüzü, Elektroensefalografi, Elektromiyografi, El 

protezi, Ağırlık algısı 
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Chapter 1 

Introduction 

 Individuals suffering from neural diseases, such as stroke, motor neuron disease, 

and locked-in syndrome, cannot produce voluntary muscle movements. They may be 

either totally unable or partially able to perform their daily activities or even express their 

wishes to caregivers [1].  To assist these patients, numerous researchers have been 

studying brain-computer interfaces (BCIs) that use brain waves to control external 

devices, including computers, speech synthesizers, assistive appliances, and neural 

prostheses [2]. Additionally, BCIs have recently been utilized in the rehabilitation and 

restoration of extremity movements and in video games [1]. The target audience of this 

area is divided into four groups: (1) Complete locked-in state (CLIS) patients, who have 

lost all voluntary movement [2], (2) locked-in state (LIS) patients, who are only able to 

move and blink their eyes, or twitch their lips [2], (3) physically disabled patients, who 

can speak and move their head, and (4) healthy individuals for entertainment.  

 The brain waves can be obtained using various neuroimaging methods [2], [3]. It is 

possible to categorize the methods as invasive and non-invasive. These methods can be 

categorized as either invasive or non-invasive. Invasive methods include 

electrocorticography (ECoG) and intracortical neuron recording, which allow for the 

collection of signals from within the brain, such as single-neuron action potentials (single 

units), multi-unit activity (MUA), and local field potentials (LFPs) [4], [5]. These signals 

are acquired using a single electrode or an electrode array placed either on the surface or 

inside the cortex [2]. The high-quality spatial and temporal features of these invasive 

methods contribute significantly to the successful decoding of the patient's intention [6], 

[7]. However, it's important to note that invasive techniques require surgery to implant 

microelectrode arrays onto the cortex.  

 An alternative method for recording brain activity is electroencephalography 

(EEG), along with functional magnetic resonance imaging (fMRI), 

magnetoencephalography (MEG), and near-infrared spectroscopy (NIRS), all of which 
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are non-invasive techniques. While fMRI offers higher spatial resolution, EEG is more 

commonly used due to its ease of use, cost-effectiveness, and portability [8].  

1.1 General Perspective 

 EEG-based BCI systems receive the signal during a particular task such as thinking 

to move a cursor, or spelling words by looking at the specific area on the screen to control 

corresponding external devices. The acquired multi-channel waveforms are first pre-

processed, and then time and/or frequency domain features are extracted from them. 

These features are used to generate commands for external devices either directly or 

through machine learning approaches. Hence, a precise protocol and paradigm must be 

selected for all stages of the experiment to apply the EEG-based BCI model to a specific 

implementation [8].   

 The paradigms in EEG-based BCI systems can be categorized in two groups as the 

visual and imagery. P300 is one of the visual paradigms [9], in which letters in a matrix 

flash one at a time, and the subject chooses a specific one by looking continually at it. 

Thus, the P300 potential appears over the parietal cortex as a positive peak ranging from 

5 to 10 microvolts in size at about 300 ms [10].  Another visual paradigm is the steady-

state visual evoked potentials (SSVEP). SSVEP detects the subject’s gaze direction to a 

target character under the flickering stimuli. A light-emitting diode (LED) or a cathode 

ray tube (CRT) can generate the stimulus [8]. The response is observed on the visual 

cortex of the brain. For the imagery paradigm, motor imagery can be given as an example. 

It is a cognitive process in which the subject imagines performing a movement without 

motion and without even tensing the muscles. It requires conscious activation of the brain 

regions due to the fact that the subject prepares the execution of a movement [11].   

 Motor intention is defined as imagining a movement to execute a real movement 

[12]. Previous studies have demonstrated that imagining a movement activates the regions 

of the brain responsible for producing movement (the sensorimotor cortex) [13]. Alpha 

waves with 8-13 Hz frequency that occur in the sensorimotor cortex are called mu 

activity. A decrease in mu activity is observed in the sensorimotor cortex while imagining 

motor movement in the absence of movement. This reduction causes a desynchronization 

between 8–13 Hz mu and 14–25 Hz beta rhythms. This situation is called event-related 

desynchronization (ERD), and the power increase at a specific frequency is called event-
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related synchronization (ERS) [14]. Changes in EEG signals in the mu and beta 

frequencies can be used to control prosthetic devices. 

 In summary, EEG-based BCIs can provide a communication means for the patients 

to control a computer cursor in at least three dimensions, to select letters for word-

processing, to run computer-based programs, and to control external devices such as an 

electric wheelchair and neural prosthesis. The relationship between the recorded brain 

activity and biomechanics of the human body is one of the most challenging topics in BCI 

[8]. Therefore, in recent years, the research on the interactions between EEG signals and 

upper limb motion, both real and imagery (planning the movement), has become a hot 

topic [15], [16].  

1.2 Literature Overview 

 Mental strategy (e.g., imagined movement, whole- body activities) is the center of 

the motor imagery (MI)-based BCI. The similarity in the cerebral activation of executed 

(i.e. motion) and imagined (i.e. motor intention, preparation to a movement) limb 

movement was proved by Lotze et al. in 1999 [17]. Hence, discrimination between 

different motor intentions (e.g., left versus right hand; hand versus foot) was investigated 

until today by numerous researchers [18], [19], [20], [21]. In the motor imagery paradigm, 

the user intention can be captured from the EEG signal before the motion occurs. By using 

motor imagery paradigm, simple motor actions were detectable from the EEG. Penny et 

al. [22] reported that cursor control can be accomplished employing EEG obtained from 

over sensorimotor cortex. In this study, subjects focused on the imagination of the 

movement of right or left hand. After processing the signal with autoregressive 

parameters and logistic regression, they trained their system by using a Bayesian evidence 

framework. As a result, they achieved a one-dimensional cursor movement. Pfurtscheller 

et al. [23] stressed the utility of the MI-based BCI with functional electric stimulation 

(FES) systems for assistive technology. They used the imagination of foot movement as 

a trigger for the FES. Once the trigger was generated, the subject with tetraplegia could 

grasp a glass of water. A similar study was made by Tan et al. [24] in which the goal was 

to make the stroke patients perform training of arm flexion and extension with the MI-

based BCI-FES system. Bai et al. [25] used a combination of spatial and temporal filtering 

in order to discriminate the right and left-hand movement intention with 75% accuracy. 

López-Larraz et al. [26] studied with both healthy and spinal cord injury (SCI) patients 
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on seven self-initiated upper-limb movements, and showed that the studied movement 

could be decoded in both healthy subjects and patients with the same accuracy that ranged 

between 40 to 75%. Kim et al. [27] analysed the connectivity distinction between EEG 

and EMG signals during the movement of the upper limb in the same manner as the 

existence of the motion intention by implementing (linear) coherence and (non-linear) 

analysis of mutual information. 

 Thus far, however, the studies have primarily focused on the detection of the motor 

imagery tasks such as imagination of the right or left hand, foot, and tongue movements. 

On the other hand, detection of starting the movement intention is also important. In the 

movement intention paradigm, the user intention and resting state (task-negative state) 

can be distinguished from the EEG signal before the motion occurs. In the literature, there 

are a few studies about this paradigm. Ang et al. [28] emphasised robotic rehabilitation 

with MI-based BCIs and worked with 18 hemiparetic subjects whose EEG signals were 

acquired from 27 channels. This study consisted of the calibration and rehabilitation 

phases. They used filter bank common spatial pattern (FB-CSP) algorithm to extract 

features in order to discriminate the resting and motor imagery states. When the motor 

imagery was received but no motion was initiated, the user was supported by the robot 

with the purpose of moving the impaired limb. Muralidharan et al. [29] used the paradigm 

in order to distinguish the rest and attempted finger-extension for the purpose of opening 

or closing the hand. Four subjects with subcortical ischemic stroke were recruited in this 

study. They extracted features using power bands between 2Hz and 29Hz obtained from 

common-average referenced EEGs, and common spatial pattern (CSP) analysis. Another 

study of Bai et al. [30] was about the prediction of the movement intention before it 

occurred. The system recognised the movement of wrist extension in seven healthy users. 

They used spatial filtering (surface Laplacian derivation, SLD) and temporal filtering 

(Welch based power spectral density (PSD) estimation) as the feature extraction methods. 

In a different study by Rozado et al. [31] the aim was to monitor the subject’s pupil 

diameter as an extra feature, and they investigated the discrimination of the motor 

intention from the resting state. The results proved that the performance of the classifier 

increased with that extra feature when compared with the traditional approach that used 

just the EEG derived features.  

 In a study conducted by recording EEG activity in the sensorimotor region, it was 

shown that movement execution, imagining the movement and preparing for movement 
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caused changes in the amplitudes of the signals received from the sensorimotor regions 

[32]. In this study, using this amplitude difference, patients were enabled to control the 

cursor of the computer. Leeb et al., obtained EEG signals with a sampling frequency of 

512 Hz using the 16-channel g.USBamp system (Guger Technologies, Schiedleberg, 

Austria), and created power spectral density based feature vectors to be used in 

classification. They achieved an average accuracy of 70% as classification performance 

after user-specific feature selection using canonical variable analysis. In order to increase 

classification performance and ensure stable operation of the system, they applied for the 

9-day training program. Eventually, it was seen that the average classification 

performance obtained from 9 people was 85%. In another study, the Radial Basic 

Functions (RBF) Artificial Neural Network (ANN) structure was created for the 

recognition of brain signals, and a 70% recognition rate was obtained by using NeuroSky 

EEG for the recognition of brain signals [33]. In sensory-motor-rhtythm (SMR) 

applications, Guger et al., used SMR to open and close a robotic hand with the 

imagination of right and left-hand movement [34]. Similarly, Sun, Fan [35], and Jia and 

Roy et al., [36] used motor intention to control the virtual upper limb. Moreover, SMR is 

also used in rehabilitation robots and hand orthoses [28], [37]. Basic level brain-

controlled arm prosthesis design was carried out by Uyar et al. [38]. This study is a 

preliminary study to show that the prosthetic arm can be controlled with EEG signals. 

According to this study, the control of the designed hook prosthesis was carried out by 

transferring the data received from Emotiv and Emotiv software, EmoKey, to the 

microprocessor. However, EEG systems are not stable enough to control a prosthesis. For 

this reason, recent studies on the prosthesis control are on the use of EEG and EMG 

together. In a study carried out in this field, Leeb et al., showed that the fusion of EEG 

and EMG signals results in higher sensitivity than using both signals to generate 

neurofeedback alone [39]. Therefore, the hybrid BMA approach has a growing interest. 

However, there are few studies dealing with bionic applications. Existing studies have 

shown that combined multimodal data of EEG and EMG increase motion intention 

prediction rate with increased motion reliability [40]. In another study, EMG was used as 

a control mechanism, while EEG was used for right and left motor intention 

discrimination [41].  

 Based on the empirical studies, it can be seen that there is still a strong need for 

comprehensive research about the self-initiated EEG-based BCIs. Moreover, patients 
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with motor impairments are not able to start the operation of BCI systems and need 

caregivers’ help. Initiating the BCI system by themselves without the need for someone 

else and any other supplementary systems such as a camera would highly help the patients 

feel more comfortable and independent. In the literature, there are limited number of 

studies focusing on the discrimination of resting, motor imagery, and motion states. The 

transition between these states may be used as a trigger for the external devices in real-

time using EEG signals. Furthermore, in the studies reviewed above, the number of 

subjects included in the experiments was not high enough for a good generalization. Due 

to the characteristics of the EEG, it is proven that the small sample size can cause 

discrepant findings in the literature [42].    

1.3 Research Question/Problem Statement and 

Hypothesis 

 Prostheses that have been developed to facilitate the daily lives of individuals who 

have lost one or more limbs due to accidents or diseases have been used for years. The 

prostheses used especially for the upper extremity differ according to the level of 

amputation, just as the methods used to move the prosthesis. In some prosthesis types, 

only cosmetic use is prominent, while in others, the hand is opened and closed by the 

individual's own power, for example by moving the shoulder. Another type of prosthesis 

is called a myoelectric prosthesis. In this type, arm and hand movements are performed 

with the muscle signals received from the electromyography (EMG) electrodes placed in 

the appropriate places (on the skin) of the amputated limb. Recently, efforts have been 

made to use electroencephalography (EEG) signals in upper extremity prostheses. A key 

problem in the prostheses is that nonintuitive and unnatural prosthesis control causes a 

great mental burden on the user.  

 The central question that this thesis asks, then, is: Can the mental and physical 

burden/discomfort experienced by individuals while using the prosthesis be reduced?  

 In this study, it is planned to create a brain machine interface (BMI) system that 

uses EEG and EMG signals together and to control the bionic hand using this system. 

Preconditioning of the prototype hand prosthesis to be produced by evaluating the weight 

of the objects seen by the patients to the extent that the brain perceives them visually will 

be provided. In this way, the force applied by the patient from the shoulder while holding 
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the object will be reduced. If the object that the patient wants to hold is heavy, a command 

signal will be sent to the prototype hand prosthesis, and it will then be able to lift most of 

the weight. Thus, the load on the patient's muscles will be reduced. As a result, patients 

using the prosthesis, which will be designed as EEG and EMG controlled, will be made 

to accept the prosthesis as their own limb and the patient's motivation will be increased. 

Additionally, the weight upon their body will be significantly reduced when handling 

more challenging objects. To realize this hypothesis, EEG and EMG, which is a non-

invasive method, will be received as brain and muscle signals from the subjects, and these 

signals will be first processed in a laptop computer environment, and then the real-time 

application will be developed. 

 The main purpose of the thesis work is to produce a brain and muscle-controlled 

bionic hand for the use of people who have lost one or two upper extremities. It also aims 

to overcome the physical and mental load that patients can feel while using a mechanical 

prosthesis. The purpose of this study is twofold: (1) To produce a prototype of an 

electromechanical hand prosthesis by applying real-time signal processing approaches to 

the signals received from a multi-channel commercial EEG and EMG device, and (2) to 

test them on subjects. 

 This thesis is divided into four main parts. Chapter 2 presents the first part, which 

investigates self-initiated EEG-based BCI to assess the feasibility of employing portable 

and wireless EEG systems for identifying movement intentions in individuals with motor 

impairments. In Chapter 3, the second part of the thesis delves into the study of weight 

perception using EEG signals, employing both conventional machine learning and 

transfer learning methods. The third part, covered in Chapter 4, explores weight 

perception from EMG signals, employing conventional machine learning techniques. 

Finally, the last part, discussed in Chapter 5, focuses on real-time prosthesis control using 

EEG signals. 
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Chapter 2 

Fundamentals 

2.1 Introduction to Brain-Computer Interfaces 

 A Brain-Computer Interface (BCI), also known as a Brain-Machine Interface 

(BMI), is a technology that enables direct communication between the human brain and 

external devices, such as computers or prosthetic limbs. BCIs translate brain signals into 

commands that can be used to control these devices or to convey information from the 

brain to the external world. The basic principle working a EEG-based BCI system is 

illustrated in Figure 2.1. BCIs typically work by recording electrical activity in the brain 

using various methods, such as electroencephalography (EEG), electrocorticography 

(ECoG), or intracortical electrodes. These brain signals are then processed by a computer, 

which decodes them and performs specific actions based on the user's intent. There are 

several applications for BCIs, including:  

• Assistive Technology: BCIs can help individuals with severe motor disabilities 

regain communication and control over their environment. For example, people 

with locked-in syndrome or spinal cord injuries can use BCIs to operate a 

computer, control a robotic arm, or communicate through text or speech synthesis.  

• Neuroprosthetics: BCIs can be used to control artificial limbs, exoskeletons, or 

other assistive devices, allowing people with limb loss or paralysis to regain 

mobility and independence.  

• Communication: BCIs can be used for augmentative and alternative 

communication (AAC) for individuals with communication disorders. They can 

assist in spelling, typing, or generating speech through brain signals.  

• Neurofeedback and Cognitive Enhancement: BCIs are also used in research and 

clinical settings to provide neurofeedback training, which can help individuals 

enhance their cognitive abilities, manage stress, or improve focus and attention.  
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• Research and Brain Mapping: BCIs are valuable tools for studying the brain's 

function and understanding neural activity patterns, which can aid in the 

development of new treatments for neurological conditions.  

  

 

 BCI technology continues to advance, and researchers are exploring various 

methods to improve its accuracy, ease of use, and applications. As a result, BCIs hold the 

potential to significantly enhance the quality of life for people with disabilities and 

provide valuable insights into the workings of the human brain. 

 The concept of Brain-Computer Interfaces (BCIs) started to take form during the 

1960s and 1970s, with early ideas revolving around the utilization of brain signals for 

communication and control. Pioneering work conducted by researchers such as José 

Delgado delved into the use of brain implants and electrical stimulation for controlling 

animal behavior [43]. In the 1970s, researchers like Vidal and Wolpaw started using 

electroencephalography (EEG) to detect brain signals and explore their use for 

communication [44]. In the 1980s and 1990s, significant progress was made in using EEG 

to develop simple BCIs, primarily for individuals with disabilities. Early applications 

included spelling and cursor control. In the 1990s, research into invasive BCIs began to 

gain traction [45]. These systems involved implanting electrodes directly into the brain to 

improve signal quality. The development of BrainGate in the early 2000s marked a 

Figure 2.1 BCI structure 
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milestone, allowing individuals with severe paralysis to control computer cursors and 

robotic arms using implanted electrodes [46]. Moreover, BCIs continued to advance, 

leading to a wider range of applications. These included assistive technologies for 

communication, neuroprosthetics, and even artistic and gaming applications [47]. 

Research efforts have also focused on non-invasive BCIs, such as functional near-infrared 

spectroscopy (fNIRS) and magnetoencephalography (MEG), to provide additional 

options for users. BCIs have also been used in research settings to study brain function, 

cognitive enhancement, and neurofeedback [48]. In recent years, commercial BCIs and 

consumer-grade EEG headsets have become available, enabling applications in areas like 

gaming and relaxation [49]. Companies like Neuralink, founded by Elon Musk, have 

garnered significant attention for their efforts to develop high-bandwidth BCIs for a wide 

range of applications, including medical and non-medical uses [50]. 

2.2 Signal Acquisition 

 Brain-Computer Interfaces (BCIs) use various methods to acquire signals from the 

brain. These methods are designed to record and measure the electrical activity produced 

by neural processes. The choice of signal acquisition method depends on factors such as 

the specific application, the user's needs, and the level of invasiveness or non-

invasiveness required. Here are some common signal acquisition methods for BCIs: 

• Electroencephalography (EEG): 

o EEG is a non-invasive technique that involves placing electrodes on the 

scalp to record the electrical activity of the brain.  

o It is widely used for BCIs due to its ease of use, portability, and relatively 

low cost. 

o EEG signals are primarily used for non-invasive BCIs, such as those for 

communication or control of external devices. 

• Electrocorticography (ECoG): 

o ECoG involves placing electrodes directly on the surface of the brain, 

typically by placing a grid of electrodes over the exposed cortex during 

neurosurgery.   
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o ECoG provides high-quality signals with better spatial resolution 

compared to EEG, making it suitable for advanced BCI applications. 

o ECoG BCIs are often used for research and clinical applications. 

• Intracortical Electrodes: 

o Intracortical electrodes, such as microelectrode arrays or single-unit 

recording electrodes, are implanted directly into the brain tissue. 

o These electrodes offer high spatial and temporal resolution, making them 

suitable for precise control of prosthetic limbs and advanced research 

applications. 

o The invasiveness of this method is higher, and it is typically used for 

individuals who have electrode implants for medical reasons. 

• Functional Magnetic Resonance Imaging (fMRI): 

o fMRI measures changes in blood flow and oxygenation in the brain, 

indirectly indicating neural activity. 

o It provides detailed spatial information about brain activity but has 

limitations in terms of temporal resolution and accessibility. 

o fMRI is mainly used in research settings to study brain function and 

connectivity. 

• Near-Infrared Spectroscopy (NIRS): 

o NIRS measures changes in blood oxygenation in the brain by shining near-

infrared light through the skull and detecting the transmitted or reflected 

light. 

o It offers a balance between spatial and temporal resolution, making it 

suitable for some BCI applications. 

o NIRS is non-invasive and can be used for brain-computer communication 

and neurofeedback. 

• Magnetoencephalography (MEG): 

o MEG records the magnetic fields generated by neural activity. 
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o It provides excellent temporal and spatial resolution but is relatively 

expensive and less common in BCI applications. 

 The choice of signal acquisition method depends on the specific requirements of 

the BCI system, including the desired balance between spatial and temporal resolution, 

invasiveness, and user comfort. Each method has its advantages and limitations, and 

researchers continue to explore new technologies and techniques to improve BCI signal 

acquisition and usability. In this thesis, signal acquisition was conducted using EEG due 

to its portability, ease of application (non-surgical), and popularity as a recording method. 

In the Figure 2.2, electrode placements for EEG, ECoG and intracortical recordings is 

illustrated. 

 

Figure 2.2 Neural signal recording methods: EEG, ECoG, and intracortical electrodes 

[51]. 

2.2.1 Electroencephalogram 

 An EEG is a non-invasive neurophysiological test that measures and records the 

electrical activity of the brain. It is a valuable tool for diagnosing various neurological 

conditions, monitoring brain function during surgery, and conducting research on brain 

activity. Small, flat metal discs called electrodes are attached to the patient's scalp using 

a special conductive paste or gel. The number of electrodes used can vary, but a standard 

EEG often involves 19 to 25 electrodes placed at specific locations on the scalp. The 

locations are defined by the International 10-20 System, a standardized method for 

electrode placement. In the Figure 2.3, electrode placement follows the 10-20 

international system is illustrated. The system designates electrode sites with specific 
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combinations of letters and numbers, with the letters indicating the brain region and the 

numbers representing the hemisphere and the specific electrode's position within that 

region. Odd numbers signify electrodes on the left side of the head, while even numbers 

indicate electrodes on the right side. Capital letters denote specific cortical region: frontal 

(F), central (C), parietal (P), temporal (T), and occipital (O). Fp and A represent the frontal 

pole and auricular. Two key reference points are the nasion (the midpoint between the 

forehead's bridge and the top of the nose) and the inion (the bony prominence at the base 

of the skull). The 10-20 System divides the distance between the nasion and inion into 

equal parts, with 10% and 20% increments. And Electrodes are positioned on the scalp 

according to these percentages.  

 

Figure 2.3 The standardized 10-20 electrode placement [52]. 

 EEG is a valuable tool for studying the electrical activity of neurons in the brain 

and provides insights into the timing, synchronization, and information processing within 

different brain regions. Understanding the structure and functioning of neurons is crucial 

for interpreting EEG data and relating it to specific cognitive processes and brain 

functions. The neurons are the essential units of the nervous system, responsible for 

transmitting electrical and chemical signals. They have a complex structure, including the 

cell body, dendrites for receiving signals, an axon for transmitting signals, and myelin 

sheaths that speed up signal propagation. Neurons generate action potentials, which are 

all-or-nothing electrical signals, and transmit them along the axon to communicate with 

other neurons at synapses. The strength and frequency of action potentials convey 

information. Understanding neuron structure and function is crucial for studying brain 

function and neurological disorders. The electrical signals detected by the electrodes are 
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very weak, so they need to be amplified for accurate measurement. EEG machines contain 

amplifiers that increase the strength of these signals. The amplified signals are recorded 

by the EEG machine and displayed on a computer monitor or paper printout. The resulting 

output is a visual representation of the brain's electrical activity, known as an EEG 

recording. A neurologist or EEG technician interprets the EEG recording, looking for 

abnormal patterns, such as spikes, sharp waves, and slow waves, which can provide 

valuable information about brain function and potential neurological disorders.  

 EEG measurements are used in various clinical and research applications, such as 

diagnosing epilepsy, assessing the effects of anesthesia, studying sleep disorders, and 

investigating cognitive processes. The test is painless and safe, making it an essential tool 

in the field of BCI.  

 However, artifacts can significantly impact the quality and interpretation of EEG 

recordings. Artifacts in EEG refer to unwanted signals or interference that are not a direct 

result of neural electrical activity but can obscure or distort the true brain signals. These 

artifacts can arise from various sources, and they can complicate the analysis and 

interpretation of EEG data. Here are some common artifacts and their effects on EEG: 

• Physiological Artifacts: 

o Eye Movements and Blinks: Rapid eye movements or eye blinks can introduce 

voltage changes in EEG recordings. These artifacts often manifest as sharp and 

transient signals in the EEG, which can make it challenging to distinguish from 

neural activity. 

o Muscle Activity (Electromyographic Artifacts): Muscle contractions, even 

subtle ones, can contaminate EEG recordings. These artifacts are often 

characterized by low-frequency noise and can interfere with the analysis of EEG 

rhythms. 

o Cardiac Activity (Electrocardiographic Artifacts): Electrical activity 

generated by the heart can be detected in EEG signals. These artifacts are 
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typically rhythmic and can resemble brain oscillations, leading to 

misinterpretation. 

• Nonphysiologically Artifacts: 

o Power Line Noise: Electrical noise from power lines (at 50 Hz or 60 Hz, 

depending on the region) can introduce a regular, periodic interference into EEG 

recordings. It can obscure underlying brain signals, particularly in the lower-

frequency bands. 

o Amplifier Noise: Noise generated by the EEG amplifier or recording equipment 

can distort the EEG signal. It may appear as random fluctuations and affect the 

overall signal quality. 

o Electrode Artifacts: Sudden changes in the properties of the electrode-scalp 

interface, such as electrode movement or impedance changes, can lead to brief 

artifacts in EEG recordings. 

 The effects of these artifacts on EEG data include reduced signal quality, making it 

difficult to accurately assess brain activity. Artifacts can mimic neural patterns, making 

it challenging to distinguish true EEG features from interference. Therefore, artifact 

removal and filtering procedures are essential in EEG data processing to minimize the 

impact of these unwanted signals. 

 Various techniques, such as filtering, artifact rejection, and independent component 

analysis (ICA), are used to mitigate the effects of artifacts. These methods help enhance 

the reliability and interpretability of EEG data, allowing researchers and clinicians to 

focus on the genuine neural activity of interest. 

2.2.2 Event-Related Potentials (ERPs) in EEG: Understanding 

Cognitive Processing in the Brain 

 Event-Related Potential (ERP) is a type of electrophysiological measurement that 

involves recording the brain's electrical activity in response to specific events or stimuli. 

ERPs are time-locked to the presentation of a stimulus, and they provide valuable insights 

into the brain's processing of sensory, cognitive, and motor information [42]. ERPs, 

represent a unique category of electrical brain responses evoked by specific events or 
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stimuli. These events may encompass visual, auditory, somatosensory, or cognitive 

stimuli, giving rise to characteristic ERP waveforms marked by specific components such 

as the P300 or N400, each indicative of distinct cognitive processes. Importantly, ERPs 

are time-locked to the onset of the event or stimulus under investigation. This temporal 

alignment allows researchers to capture the brain's electrical activity at precise moments 

following the event, and by averaging EEG or MEG signals across multiple trials, the 

ERP response can be extracted from background noise [53]. 

 ERPs offer critical insights into the timing and sequence of cognitive processes 

associated with the perception, processing, and response to stimuli. For instance, the P300 

component is linked to attention and memory functions, while the N400 component is 

associated with language comprehension and semantic processing [54]. These versatile 

neurophysiological measures find applications in both research and clinical domains. In 

research, ERPs are invaluable tools for the investigation of various cognitive functions, 

including attention, memory, language, and perception. In clinical settings, they play a 

crucial role in the diagnosis and monitoring of neurological and psychiatric conditions 

such as epilepsy, autism, and cognitive disorders. To elicit and study ERPs, researchers 

design specific experimental paradigms. For instance, in the context of language 

processing research, participants may be presented with words or sentences, and their 

brain responses (ERPs) are recorded as they read or hear the stimuli. 

 ERPs are commonly recorded through EEG (Electroencephalography), although 

MEG (Magnetoencephalography) can also be employed for this purpose. Electrodes are 

strategically placed on the scalp following standardized systems like the International 10-

20 system to ensure accurate measurement and analysis. 

2.2.3 Types of Neurophysiological Signals in BCI Systems  

P300 

 The P300, also known as the P3, is a positive deflection observed in the EEG, a 

recording of brain electrical activity. It typically appears approximately 300 milliseconds 

(hence the name) after the presentation of a rare or surprising, task-relevant stimulus. The 

P300 is considered a cognitive ERP that reflects processes related to attention, memory, 

and decision-making. To elicit the P300, subjects are asked to observe a sequence of two 

types of stimuli. One stimulus type, referred to as the oddball or target stimulus, appears 
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infrequently in the sequence. The other stimulus type, the normal or nontarget stimulus, 

appears more frequently. Whenever the target stimulus occurs, a P300 component can be 

observed in the EEG [9]. 

 The P300 has been widely used in various cognitive and neuroscience studies to 

investigate processes related to stimulus evaluation, memory updating, and context 

processing. In the context of Brain-Computer Interfaces (BCIs), the P300 has been 

harnessed for communication purposes, allowing users to make selections from a matrix 

of symbols or options displayed on a screen by attending to the desired target. This 

approach is known as the "P300 speller" [55]. 

Steady-State Visual Evoked Potentials 

 Steady-State Visual Evoked Potentials (SSVEPs) are a type of neural response in 

the brain that occurs in response to repetitive visual stimulation [56]. When visual stimuli, 

such as flashing lights or patterns, are presented to an individual at specific frequencies, 

the brain exhibits oscillatory electrical activity at those same frequencies and their 

harmonics or subharmonics. This phenomenon can be measured using 

electroencephalography (EEG) or other neuroimaging techniques. In the context of Brain-

Computer Interfaces (BCIs), SSVEPs are harnessed to enable users to make selections or 

control devices. BCI systems typically display multiple visual stimuli, each flickering at 

a different frequency [57]. When a user focuses their attention on one of these stimuli, the 

corresponding frequency band in the EEG exhibits increased amplitude, indicating their 

choice. SSVEP-based BCIs have found applications in various domains, including 

communication and assistive technologies [58].  

Slow Cortical Potentials 

 Slow Cortical Potentials (SCPs) are a category of neurophysiological signals that 

provide insights into slow electrical activity in the human brain [59]. These signals are 

characterized by their gradual changes in voltage over an extended period, typically 

ranging from seconds to minutes. SCPs primarily originate from the cortex and are 

associated with processes like attention, learning, and self-regulation. Unlike rapid ERPs 

or oscillatory brain rhythms, SCPs unfold slowly and can be consciously modulated. This 

unique feature makes SCPs valuable in the context of BCIs and neurofeedback 

applications, where individuals can learn to control their SCPs to achieve desired 
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cognitive or behavioral states [60]. SCP-based BCIs have been explored for various 

applications, including the management of attention disorders, relaxation training, and 

improving cognitive performance. These applications leverage the ability to regulate 

SCPs as a means to influence cognitive and physiological states, demonstrating the 

potential of SCPs in neuroscientific research and practical interventions. 

Motor-Related Potentials 

 Motor-Related Potentials (MRPs) are a category of electrophysiological signals that 

are independent of sensory perception or cognitive processing [14]. They are directly 

linked to the preparation or imagination of motor movements. MRPs manifest as slow 

negative potentials in the brain, typically observed over the sensorimotor cortex. What 

makes MRPs particularly intriguing is their somatotopic organization, which means that 

the location of the greatest MRP amplitude can indicate which body part is being prepared 

for movement or imagined in the process. This property enables researchers and clinicians 

to infer the intended movement or motor imagery based on the specific area of the 

sensorimotor cortex that exhibits the strongest MRP activity [62]. MRPs have been 

utilized in Brain-Computer Interface (BCI) systems, particularly in those focusing on 

motor imagery tasks, to enable users to control external devices or applications through 

the power of thought, without the need for actual physical movement [63], [64]. The 

MRPs can be connected to the concept of the homunculus, specifically the motor 

homunculus, which is a representation of the body within the brain, with the relative sizes 

of body parts corresponding to the amount of neural representation in the somatotopic 

motor cortex as illustrated in Figure 2.4 [65]. 

Figure 2.4 The somatosensory homunculus and the motor homunculus [61]. 
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 When discussing MRPs, it's important to note that these potentials are observed 

over the sensorimotor cortex and are linked to the preparation and imagination of motor 

movements. Given the somatotopic organization of the sensorimotor cortex, MRPs can 

provide insights into which specific body part is being prepared for movement or 

imagined [66]. The connection to the motor homunculus can be made by considering that 

MRPs essentially offer a way to "read" or interpret the neural activity associated with 

specific body parts in the motor cortex. For example, if there is an increase in MRP 

activity in the area of the sensorimotor cortex corresponding to the hand, it suggests that 

the individual is preparing to move or is imagining movement in the hand. In this way, 

MRPs serve as a bridge between the neural representation of motor control in the brain 

(as depicted in the motor homunculus) and the actual execution or imagination of 

movements [67]. It's a practical application of the somatotopic organization of the motor 

cortex, allowing for the inference of user intentions related to specific body parts. This 

connection highlights the role of MRPs in translating the neural representation of 

movement into actionable information in applications like Brain-Computer Interfaces. 

Oscillatory Brain Activity 

 EEG frequency bands represent distinct ranges of frequencies that are observed in 

EEG recordings. These frequency bands reflect the rhythmic and oscillatory patterns of 

electrical activity in the brain [68]. These bands are essential for characterizing different 

brain states, cognitive processes, and neural activities. Each band corresponds to a 

specific range of frequencies [69]. The primary EEG frequency bands include Delta (0.5-

4 Hz), which is associated with deep sleep and unconscious states, and Theta (4-8 Hz), 

often observed during drowsiness and relaxation, as well as in memory-related processes 

and meditation. Alpha (8-13 Hz) waves dominate in relaxed, non-attentive states and are 

linked to improved focus and inhibition of extraneous brain processes. Beta (13-30 Hz) 

waves are prominent during active, alert, and engaged mental states, such as problem-

solving and cognitive tasks. Gamma (30-100+ Hz) waves, the fastest EEG waves, are 

associated with high-level cognitive functions and sensory perception. The Mu band (8-

13 Hz), a subset of alpha waves, is observed primarily over the sensorimotor cortex and 

plays a role in motor planning and execution. Sigma waves consist of two sub-bands, one 

related to sleep spindles (12-16 Hz) and the other to rapid eye movement (REM) sleep 

(16-31 Hz), contributing to sleep regulation and cognitive processes during sleep.  
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Event-Related Desynchronization/ Synchronization  

 Event-Related Desynchronization (ERD) is a neurophysiological phenomenon that 

involves a decrease in the power of brain oscillations, particularly in specific frequency 

bands, in response to an event or a cognitive task. ERD is often observed in EEG or MEG 

recordings when individuals engage in cognitive activities, such as motor planning and 

execution [70]. During motor preparation and execution, there is a decrease in the power 

of the mu or beta frequency bands (typically 8-30 Hz) in the sensorimotor cortex. This 

decrease in power is referred to as ERD and is thought to reflect increased neuronal 

activation and desynchronization of neural oscillations in the motor-related areas of the 

brain. ERD is often used as a marker for understanding and quantifying motor-related 

brain activity, making it valuable in applications like brain-computer interfaces (BCIs) 

and motor imagery tasks [71]. In essence, ERD provides a window into the dynamic 

changes in brain activity associated with motor planning and execution, shedding light on 

the neural mechanisms underlying motor control and cognitive processing [72]. 

 Conversely, event-related synchronization (ERS) refers to an increase in the power 

or synchronization of neural oscillations and is typically time-locked to the presentation 

of a stimulus or the occurrence of an event. ERS can signify enhanced neural engagement 

in response to specific cognitive demands. It is often associated with cognitive processes 

such as attention, perception, and memory. For example, during a task requiring 

heightened attention, ERS can be observed in regions related to attentional processing, 

indicating increased neural resources allocated to the task [72]. 

2.3 Signal Pre-processing  

 Proper signal pre-processing and artifact removal are crucial for accurate EEG 

analysis, particularly in tasks like event-related potential (ERP) studies or functional 

connectivity analysis. These steps help researchers extract meaningful neural information 

while minimizing noise and artifacts, ensuring the reliability of EEG findings [73]. 

Below, a detailed explanation of signal pre-processing and artifact removal in EEG data 

analysis is provided.  
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2.3.1 Filtering 

Low-Pass Filter 

 This filter is used to allow only low-frequency components to pass through and 

attenuate high-frequency noise. Common settings for low-pass filters in EEG analysis 

are around 30 Hz or lower. It helps smooth out the EEG signal and remove high-

frequency noise introduced by sources such as muscle activity and electrode artifacts 

[74]. 

High-Pass Filter 

 High-pass filters remove slow changes in the EEG signal, often referred to as 

baseline drift. This drift can be caused by factors like electrode impedance or 

physiological processes. High-pass filters are typically set at frequencies around 0.1 Hz 

to 1 Hz to remove DC drift and low-frequency artifacts caused by electrode impedance 

changes or physiological sources [75], [76], [77]. 

Notch Filtering 

 Notch filters are designed to eliminate specific frequencies known to introduce 

noise into the EEG signal, such as electrical interference at 50 Hz (in Europe) or 60 Hz 

(in the United States). Removing these line noise frequencies is crucial for clean EEG 

recordings [78], [79], [80]. 

 

2.3.2 Artifact Removal 

 Artifacts can arise from various sources, including eye blinks, which can cause 

large, sharp spikes in the EEG, muscle activity (EMG), and electrocardiogram (ECG) 

interference. Automated algorithms, visual inspection, and statistical techniques can be 

used to detect and mark segments contaminated by artifacts [81], [82]. Once artifacts are 

detected, various methods can be applied to remove or minimize their impact [83], [84], 

[85], [86], [87], [88]: 
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Independent Component Analysis (ICA) 

 ICA is a powerful technique for separating the EEG signal into independent 

components, some of which may represent artifacts (e.g., eye blinks). These artifact 

components can be removed or corrected. 

Regression-Based Techniques 

 Specific artifacts, such as ECG or EMG, can be regressed out of the EEG data using 

recorded signals from these sources. This approach helps remove the influence of these 

artifacts. 

Data Interpolation 

 Missing data points caused by artifact removal can be interpolated using various 

methods such as spline interpolation to maintain a continuous data stream. 

Riemannian Geometry 

 Artifact handling with Riemannian modification is an approach used in EEG data 

analysis to address artifacts and enhance the quality of EEG signals. This technique is 

particularly useful when dealing with non-stationary artifacts or when traditional methods 

like ICA or regression-based approaches are not sufficient [89]. Artifact handling with 

Riemannian modification is an advanced approach employed in the analysis of EEG data 

to effectively address non-stationary artifacts that pose challenges to traditional artifact 

removal methods. This technique leverages the principles of Riemannian geometry, a 

mathematical framework used to manipulate covariance matrices representing EEG 

signal properties [90]. In this method, the identification of artifacts within EEG data is a 

critical initial step, often achieved through sophisticated artifact detection procedures. 

Once identified, Riemannian modification aims to improve data quality by adjusting the 

covariance matrices associated with segments containing artifacts. These adjustments 

typically involve the alteration of eigenvalues and eigenvectors to minimize the influence 

of artifacts while retaining essential EEG information [91]. 

 Riemannian modification strategies can vary in their specifics but share the goal of 

enhancing the reliability of EEG data. Common approaches include eigenvalue 

adjustments and eigenvector rotations, each designed to disentangle artifact-related 

components from EEG-related components. After application, the technique is evaluated 
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to quantify the degree of artifact reduction and improvement in EEG data quality [89]. 

This method finds application in EEG research areas, such as brain-computer interfaces, 

neurofeedback, and clinical EEG analysis, where the need for robust data quality is 

paramount. Implementing Riemannian modification requires a deep understanding of 

mathematical concepts and EEG data analysis, and careful selection of modification 

strategies and parameters to achieve effective artifact handling [92], [93], [94], [95]. 

2.3.3 Additional Pre-processing Techniques for Ensuring Data 

Reliability 

 In addition to the methods mentioned above, various other techniques, including 

spatial filtering, baseline correction, data segmentation, artifact rejection, montage 

selection, resampling, and quality control, are also employed in the preprocessing of data 

to ensure its reliability. The techniques are summarized below: 

Spatial Filtering 

 Techniques such as common average reference (CAR) or Laplacian referencing are 

applied to improve spatial resolution and minimize the effects of volume conduction, 

where electrical activity from one part of the brain is detected at multiple electrodes [57], 

[96], [97], [98], [99].  

Baseline Correction 

 EEG data are often baseline-corrected to set a particular time point (e.g., the onset 

of a stimulus) as the reference [100]. This correction helps remove the influence of 

baseline shifts, making it easier to analyse changes relative to a consistent reference point. 

This is particularly useful for ERPs and other cognitive studies [101]. 

Data Segmentation 

 EEG data is typically divided into epochs or segments aligned with specific events 

of interest (e.g., stimulus presentation). These epochs can be further filtered or baseline-

corrected individually, allowing for focused analysis. 
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Artifact Rejection 

 In cases where artifact removal is not feasible or leads to significant data loss, 

segments with severe artifacts may be rejected, ensuring that only clean data is used for 

analysis. 

Montage Selection 

 The choice of EEG montage, which specifies electrode combinations for signal 

recording and referencing, can impact the quality of the recorded signals. The selection 

of an appropriate montage is essential for accurate EEG analysis. 

Resampling 

 In some cases, EEG data may be resampled to a different sampling rate, depending 

on the analysis requirements or to reduce computational load [102]. 

Quality Control 

 Regular quality control checks and visual inspection of the pre-processed data are 

performed to ensure data quality and identify any residual artifacts that may require 

further correction. 

2.4 Feature Extraction 

 In the previous section, the techniques for pre-processing EEG data have been 

discussed. Signal pre-processing has ensured the quality and reliability of EEG data. The 

next crucial step is feature extraction to identify key patterns, characteristics, and relevant 

information within the EEG data. Features refer to distinctive attributes or characteristics 

that are extracted from the EEG data. These features are numerical representations of 

specific aspects of the EEG signal that carry information relevant to the analysis or 

classification of brain activity. Common types of features extracted from EEG signals 

include measures of signal amplitude, frequency, spectral power, coherence, and various 

statistical parameters. These features are used to describe and quantify specific aspects of 

the brain's electrical activity. They are subsequently utilized in tasks such as BCI 

classification, event detection, or cognitive state assessment [103], [104], [105]. The 

choice of features depends on the research or application objectives, and various feature 

extraction methods are employed to capture the most informative aspects of the EEG data 
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for a particular analysis. The extracted features are then used as input to machine learning 

algorithms or other analytical techniques to derive meaningful insights from EEG 

recordings [106]. The methods for extracting features can be categorized into four groups: 

time-domain, frequency domain, time and frequency domain, spatial methods [107], 

[108], [109]. 

2.4.1 Time Domain Features 

 Time domain features in EEG signal processing are quantitative measurements that 

capture characteristics of brain electrical activity over time. These features are computed 

based on the amplitude and timing information of the EEG signal, offering insights into 

the temporal aspects of neural activity. By analyzing the EEG signal in the time domain, 

valuable information about the brain's response dynamics can be obtained [110]. Mean 

amplitude, also referred to as the average amplitude, computes the average magnitude of 

the EEG signal within a defined time window, serving as an indicator of signal intensity 

during that period. This facilitates comparisons between cognitive states or tasks [111], 

[112]. In contrast, Root Mean Square (RMS) quantifies signal energy by calculating the 

square root of the average of squared amplitudes within a specific time frame, making it 

a valuable tool for assessing signal variations and activity intensity [113]. The Zero 

Crossing Rate (ZCR) feature assesses the rate of signal oscillations by quantifying how 

often the EEG signal crosses the zero level in a given time segment, aiding in the detection 

of changes in signal frequency or pattern. On the other hand, standard deviation 

characterizes amplitude variability within a defined time window, with a high standard 

deviation indicating significant signal variations. Skewness and Kurtosis provide insights 

into the shape of the amplitude distribution and the peakedness of the signal, aiding in the 

description of signal characteristics [114], [115]. The Hurst exponent is a measure of 

long-range dependence or self-similarity, aiding in the understanding of patterns or trends 

over time. Additionally, Entropy measures assess unpredictability and complexity, with 

higher entropy values signifying greater unpredictability [116], [117]. Signal Slope is 

useful for identifying rapid changes or trends in brain activity, as it measures the rate of 

change in amplitude over time. Zero-lag correlation helps determine the synchrony or 

coherence of neural activity by quantifying the correlation between EEG channels within 

the same time window. 

 



26 

 

2.4.2 Frequency Domain Features 

 Frequency domain features in EEG signal processing pertain to characteristics that 

are extracted from the spectral content of the EEG signal. These features offer insights 

into the frequency distribution and oscillatory patterns within the brain's electrical activity 

[103]. Power Spectral Density (PSD) characterizes the distribution of signal power across 

diverse frequencies. Computed through methods like the Fast Fourier Transform (FFT), 

it quantifies the signal's power within specific frequency bands. Utilizing PSD analysis 

enables the identification of dominant frequency components in the EEG signal, thereby 

aiding in the recognition of frequency patterns associated with cognitive states or 

disorders [118]. Relative Power, on the other hand, examines the contribution of 

particular frequency bands to the total power of the EEG signal, typically categorized as 

delta, theta, alpha, beta, and gamma. This allows researchers to assess alterations in power 

distribution and track cognitive states or neurological conditions. Moving to spectral 

entropy, this metric gauges the complexity of the frequency spectrum of the EEG signal, 

providing insights into the uniformity of power distribution across different frequency 

components [119], [120]. Applied in tasks like cognitive workload assessment and sleep 

analysis, high spectral entropy values indicate broad power distribution, while low values 

signify concentration within specific frequency ranges. Coherence measures the 

synchronization between EEG signals from distinct electrode locations, evaluating phase 

and magnitude similarity in specific frequency bands [121], [122], [123]. It is 

instrumental in studying functional connectivity within the brain, unveiling relationships 

between brain regions during diverse tasks or conditions. Cross-frequency couplings 

(CFC) explores interactions between different frequency bands, examining how the 

amplitude of low-frequency oscillations modulates the phase of high-frequency 

oscillations [124], [125], [126], [127], [128]. This feature is crucial for understanding 

complex brain dynamics, such as memory processes and information integration. Lastly, 

frequency band ratios involve comparing power or amplitude between different frequency 

bands, such as the theta/beta ratio [129]. Common in clinical EEG, these ratios provide 

insight into conditions like attention deficit hyperactivity disorder (ADHD) by assessing 

the balance between slow and fast wave activity. Each of these frequency analysis 

techniques contributes to a comprehensive understanding of EEG signals and their 

implications in various applications. 
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2.4.3 Time-Frequency Domain Features 

 Time-Frequency domain features in EEG signal processing offer a dynamic 

perspective, capturing changes in brain activity over both time and frequency. These 

features are crucial for understanding how neural oscillations evolve during different 

cognitive tasks or states. One prominent example is the Short-Time Fourier Transform 

(STFT), which reveals how the frequency content of the EEG signal changes over short 

time intervals [130], [131]. This is achieved by applying the Fourier transform to 

successive overlapping windows of the signal, enabling the tracking of frequency changes 

over time. Additionally, the Wavelet transform is employed, decomposing the EEG signal 

into different frequency components with varying temporal resolutions [132], [133], 

[134], [135]. This allows for the identification of specific frequency bands associated with 

distinct cognitive processes. Another notable feature is spectrogram, a visual 

representation of the STFT, providing a time-frequency map of the signal's energy 

distribution [136], [137]. This graphical tool aids in identifying patterns and changes in 

neural activity over time and frequency. Morlet Wavelet transform for time-frequency 

analysis can also be used, as it allows for precise localization of oscillatory components 

in both time and frequency domains. Moreover, the Continuous Wavelet Transform 

(CWT) is utilized to capture non-stationary signals by employing wavelets of varying 

scales. An advanced technique, the Synchrosqueezing Transform (SST), has gained 

attention. SST enhances the precision of time-frequency analysis by reshaping the 

traditional spectrogram, providing improved localization of oscillatory events [104], 

[138], [139], [140], [141], [142], [143]. This makes SST particularly valuable for 

extracting detailed information from EEG signals with complex frequency dynamics. 

2.4.4 Spatial Features 

 Spatial features play a crucial role BCI applications, where the spatial distribution 

of electrical activity is leveraged for various tasks. One significant spatial feature in BCI 

is spatial filtering, a technique that enhances relevant spatial information and suppresses 

noise or unwanted sources. Methods such as Common Spatial Patterns (CSP) play a 

crucial role in enhancing relevant spatial information while mitigating noise and 

unwanted sources [75], [144], [145], [146], [147], [148], [149], [150], [151], [152]. CSP 

optimizes the spatial filters to maximize the variance of one class while minimizing the 

variance of another, making it particularly effective in distinguishing different mental 
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states [153]. Another essential spatial feature is Independent Component Analysis (ICA), 

a powerful method for separating mixed signals into statistically independent components 

[154]. In the context of BCIs, ICA helps identify distinct sources of neural activity, 

contributing to more accurate decoding. By extracting spatially independent components, 

ICA allows BCIs to focus on specific brain regions, improving the precision of control 

commands. Another essential spatial feature is channel selection is a spatial feature 

employed to optimize BCI performance by selecting the most informative EEG channels 

[155], [156], [157]. Techniques like recursive channel elimination aid in identifying 

channels that contribute significantly to the BCI task. Source localization is another 

spatial feature that involves estimating the cortical regions generating EEG signals [158], 

[159], [160], [161], [162]. Advanced methods such as beamforming enhance source 

localization accuracy, contributing to the development of high-resolution BCIs. These 

spatial features are integral to BCI systems, enhancing their reliability and effectiveness 

in translating neural activity into actionable commands. 

2.5 Channel and Feature Selection 

 Selecting the appropriate EEG channels is essential for focusing on regions that are 

most informative for the specific BCI task [155], [157], [162], [163]. Techniques such as 

Spatial Filtering, which includes methods like Common Spatial Patterns (CSP), aim to 

identify the channels that exhibit the most discriminative information for a given task. 

Another approach involves considering anatomical regions, selecting channels from 

specific brain regions relevant to the task at hand. 

 Once relevant channels are identified, extracting informative features is crucial 

[164], [165], [166]. It involves choosing the most relevant features from the available set 

of features extracted from EEG signals, aiming to enhance the system's performance, 

reduce computational load, and mitigate the risk of overfitting. Univariate feature 

selection methods, exemplified by Analysis of Variance (ANOVA), assess individual 

features independently, prioritizing those exhibiting significant differences in means 

between different classes [167]. Recursive Feature Elimination (RFE) employs an 

iterative approach, systematically eliminating the least relevant features until an optimal 

subset is attained [168]. An illustration of RFE in action is provided by Support Vector 

Machine Recursive Feature Elimination (SVM-RFE), which synergizes SVM 

classification with recursive elimination to pinpoint the most informative features [169]. 
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Filter methods, such as mutual information, evaluate feature relevance without 

considering the classifier, relying on statistical or information-theoretic metrics to identify 

features with high mutual information scores [170]. Wrapper methods, like Sequential 

Forward Selection (SFS), gauge feature subsets based on the performance of a designated 

classifier, progressively adding the most discriminative features [171], [172]. Embedded 

Methods, such as L1-Regularization (Lasso), seamlessly integrate feature selection into 

the training process of the classifier itself, encouraging sparsity and automatic feature 

selection [173]. Hybrid Approaches, typified by combining ANOVA with Recursive 

Feature Elimination (RFE-ANOVA), leverage the strengths of multiple selection methods 

for a more comprehensive and refined feature subset. 

2.6 Classification 

 Classification is a pivotal component of Brain-Computer Interface (BCI) systems, 

responsible for translating extracted features from EEG signals into meaningful control 

commands. The process involves assigning EEG patterns to predefined classes or 

categories, allowing users to convey intentions through their brain activity [174], [175], 

[176], [177]. 

 Linear classifiers, such as Linear Discriminant Analysis (LDA), form the 

foundational layer of BCI classification [178]. LDA seeks to maximize the distance 

between the means of different classes while minimizing the spread within each class. 

This technique is particularly effective when the underlying data exhibits a linear 

separability pattern. Support Vector Machines (SVM), on the other hand, are versatile 

classifiers capable of handling both linear and non-linear relationships [169], [179], [180], 

[181]. SVM constructs hyperplanes in high-dimensional spaces, providing an effective 

means of distinguishing between different classes. 

 Non-linear classifiers introduce a layer of complexity to accommodate the intricate 

nature of EEG signals. Random Forests, an ensemble learning method, comprise multiple 

decision trees, each contributing to the final classification [182], [183]. Neural Networks, 

inspired by the structure of the human brain, consist of interconnected nodes that learn 

hierarchical representations, making them adept at capturing non-linear relationships in 

data [33], [111], [182], [184], [185]. K-Nearest Neighbors (KNN) is a proximity-based 
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classifier that assigns a class label based on the majority class among its nearest neighbors 

in the feature space [186], [187], [188]. 

 Ensemble classifiers enhance the robustness of BCI systems by combining 

predictions from multiple classifiers [189]. Voting classifiers aggregate decisions from 

diverse classifiers and assign the class label that receives the majority of votes. Bagging 

(Bootstrap Aggregating) involves training multiple instances of the same classifier on 

different subsets of the training data and averaging their predictions. Boosting, a 

sequential training method, focuses on refining the mistakes of previous learners, 

progressively improving the overall classification performance [190]. One notable 

ensemble classifier is XGBoost (Extreme Gradient Boosting), which has gained 

prominence for its exceptional speed, efficiency, and regularization capabilities [191]. 

 XGBoost, in particular, has become a stalwart in the BCI landscape. It operates as 

an optimized gradient boosting library, building a series of weak learners, typically 

decision trees, and combining their predictions to create a robust final model [192]. With 

features like regularization, cross-validation, and parallelization, XGBoost navigates 

complex relationships within EEG data efficiently. Its adaptability and accuracy have 

made it a popular choice in BCI applications, especially in scenarios where rapid decision-

making is crucial. 

 The choice between linear, non-linear, and ensemble classifiers depends on the 

nature of the EEG signals and the specific requirements of the BCI application. Linear 

classifiers may suffice for scenarios with straightforward separability, while non-linear 

classifiers and ensemble methods shine in situations where the relationships are intricate 

and dynamic. As BCI technology continues to advance, the interplay of these classifiers 

contributes to the development of increasingly sophisticated and adaptive systems, 

enabling users to harness the power of their thoughts for effective control and 

communication. 

2.7 Performance Evaluation 

 After classification, evaluating the performance of the classifiers is an important 

step in assessing their effectiveness in decoding EEG signals. Various metrics and 

methodologies are employed to quantify the diverse aspects of classifier performance 

such as accuracy, precision, recall, kappa, information transfer rate (ITR) [193].  
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Accuracy 

 Accuracy, a fundamental metric, measures the overall correctness of the classifier 

[177]. The equation for accuracy is given by: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (2.1) 

where TP and TN represent true positives and true negatives, FP and FN stand for false 

positives and false negatives. 

Precision, Recall, and F-measure 

 Precision, recall, and f-measure are vital metrics focusing on the classifier's ability 

to correctly identify positive instances. F-measure is the weighted harmonic mean of the 

precision and recall [194]. Precision is computed using equation 2.2. It focuses on the 

accuracy of positive predictions. Recall is a measure of sensitivity and yields how many 

of the actual positives are predicted by the model as positive (equation 2.3). The equations 

are as follows: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (2.2) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (2.3) 

𝑓-𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (2.4) 

Area Under the Curve 

 The Area Under the Curve (AUC) is a metric commonly used to evaluate the 

performance of binary classification models, including those in BCI applications. It is 

particularly associated with the Receiver Operating Characteristic (ROC) curve [195]. 

The ROC curve is a graphical representation of a classifier's performance across different 

discrimination thresholds. It plots the true positive rate (sensitivity) against the false 

positive rate (1 - specificity) at various threshold settings. The curve illustrates the trade-

off between sensitivity and specificity, allowing for the identification of an optimal 

threshold based on the application's requirements [196]. The AUC is the area under the 

ROC curve. It quantifies the classifier's ability to distinguish between positive and 

negative instances [197]. A perfect classifier would have an AUC of 1, indicating a curve 

that reaches the top-left corner of the plot. A random classifier would have an AUC of 

0.5, representing a diagonal line from the bottom-left to the top-right. 
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Cohen's Kappa 

 Cohen's Kappa is a statistic that measures inter-rater agreement for categorical 

items. In the context of BCI, Cohen's Kappa is often used to assess the agreement between 

the predicted and actual class labels produced by a classifier [198], [199]. It calculates 

with equation 2.5. 

𝐾𝑎𝑝𝑝𝑎 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡

1 − 𝐸𝑥𝑝𝑒𝑐𝑡𝑒𝑑 𝐴𝑔𝑟𝑒𝑒𝑚𝑒𝑛𝑡
 (2.5) 

where Observed Agreement is the proportion of instances where the classifier and true 

labels agree, and Expected Agreement is the proportion of instances where agreement is 

expected by chance. Cohen's Kappa ranges from -1 to 1. A value of 1 indicates perfect 

agreement, 0 indicates agreement equal to chance, and negative values suggest agreement 

worse than chance. Kappa adjusts for the possibility of chance agreement, making it a 

robust metric for imbalanced datasets. It provides a more nuanced understanding of 

classification performance, especially when classes are unevenly distributed [200]. 

Information Transfer Rate 

 Information Transfer Rate (ITR) is a metric that quantifies the speed at which 

information is transmitted in a BCI system. It is particularly relevant when assessing the 

real-time performance of a system, as it considers both accuracy and speed of operation 

[201], [202], [203]. 

𝐼𝑇𝑅 =
𝑙𝑜𝑔2(𝑁) + 𝑃 log2(𝑃)

𝑇
 (2.6) 

where N is the number of classes, P is the classification accuracy, T is the time taken to 

make a decision. The term log2(N) represents the uncertainty in the system before making 

a decision. P.log2(P) accounts for the information gained by making a correct decision. 
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Chapter 3 

Detection of Movement Intention in EEG-

Based Brain-Computer Interfaces using 

Fourier-Based Synchrosqueezing 

Transform  

 In this chapter, our primary objective is to discern the purpose behind the movement 

for asynchronous Brain-Computer Interface (BCI) applications, with a focus on aiding 

individuals with motor impairments. The chapter, derived from a published article by the 

author [143]. We have introduced the Fourier synchrosqueezing transform (FSST) as a 

novel approach for feature extraction and employed singular value decomposition (SVD) 

as the method for feature selection/reduction. Additionally, our investigation 

encompassed determining the most effective features and channels for discriminating 

between resting and imagery states in Motor Imagery (MI)-based BCIs. Furthermore, we 

conducted a comparative analysis, pitting the FSST approach against a combination of 

statistical, time-, time-frequency-, and frequency-domain approaches, as well as 

established methods like common spatial patterns (CSP) and sub-band CSP (SBCSP). 

Lastly, we explored the use of both clean and tolerable Electroencephalogram (EEG) 

signals, both independently and in conjunction, for training and testing data, aiming to 

assess the resilience of our feature extraction and classification methods. 

3.1 Introduction 

 Individuals suffering from neural diseases like stroke, motor neuron disease and 

locked-in syndrome cannot produce voluntary muscle movements. They are totally 

unable or partially able to do their daily work, or even express their wishes to the 

caregivers [1], [204]. In order to help these patients many researchers have been studying 

on the brain-computer interfaces (BCI), in which the brain waves are used to control 
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external devices such as computers, speech synthesizers, assistive appliances, and neural 

prostheses, and neurorehabilitation. [57], [163], [205], [206], [207], [208], [209], [210], 

[211], [212], [213], [214]. The brain waves can be obtained using various non-invasive 

neuroimaging methods such as electroencephalography (EEG), functional magnetic 

resonance imaging (fMRI), magnetoencephalography (MEG), and near-infrared 

spectroscopy (NIRS). Although fMRI has higher spatial resolution, EEG is more popular 

in BCI applications because it is an easy to use, low cost, and portable system [8].  

 Some degrees of similarity in the cerebral activation of executed (i.e., motion) and 

imagined (i.e., motor intention or imagery, preparation to a movement) limb movement 

was proven by Lotze et al. in 1999 [17]. In the motor imagery (MI) paradigm, the user 

intention can be captured from the multichannel EEG signals before the motion occurs 

[215]. By using MI paradigm, simple motor actions become detectable from the signals. 

López-Larraz et al., [216] studied with both healthy and spinal cord injury (SCI) patients 

on seven self-initiated upper-limb movements and showed that the studied movement 

could be decoded in both healthy subjects and patients with the same accuracy that ranged 

between 40 to 75%. Kim et al. [27] analyzed the connectivity distinction between EEG 

and EMG signals during the movement of the upper limb in the same manner as the 

existence of the motion intention by implementing (linear) coherence and (non-linear) 

analysis of mutual information. Zapała et al. [217] reported that cursor control can be 

accomplished by employing EEG signals obtained from the electrodes placed over 

sensorimotor cortex. Thus far, however, the studies have primarily focused on the 

detection of the motor imagery tasks such as imagination of the right or left hand, foot, 

and tongue movements. On the other hand, detecting initiation of the movement intention 

is also important. In the movement intention paradigm, the user intention and resting state 

(task-negative state) can be distinguished from the EEG signals before the motion occurs 

[8]. Ang et al. [28] emphasized robotic rehabilitation with MI-based BCIs, and worked 

with 18 hemiparetic subjects whose EEG signals were acquired from 27 channels. They 

used filter bank common spatial pattern (FB-CSP) algorithm to extract features in order 

to discriminate the resting and motor imagery states. Muralidharan et al. [29] used the 

paradigm in order to distinguish the rest and attempted finger-extension for the purpose 

of opening or closing the hand. Only 4 subjects with subcortical ischemic stroke were 

recruited in this study. They extracted features using common spatial pattern (CSP) 

analysis. In another study by Bai et al., [30] they focused on the recognition of the wrist 
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extension in 7 healthy users, and used spatial (surface Laplacian derivation) and temporal 

filtering (Welch based power spectral density estimation) as the feature extraction 

methods. In a different study by Rozado et al., [31] the aim was to monitor the subject’s 

pupil diameter as an extra feature, and they investigated the discrimination of the motor 

intention from the resting state. 

 For discriminating cognitive states using EEG signals many features extraction 

approaches have been investigated so far. One of the methodologies used in this context 

is the short-time Fourier transform (STFT) in which is EEG signals are divided into 

windows to model them as stationary signals even though they are non-stationary [218]. 

On the other hand, the synchrosqueezing transform (SST) is an appropriate method to 

make localized time-frequency (TF) representation of non-stationary signals. It is 

introduced in the context of many applications like audio signal analysis [219], seismic 

data analysis, fault diagnosis of a wind turbine, detection for earthquake-damaged 

structure [140], detecting and quantifying damage in smart highrise building structures 

[220], [221], [222] and biomedical signal processing applications such as emotion 

recognition from EEG [104], [223], discover breathing dynamics from ECG [224], and 

heart beat classification from ECG [225]. 

 Although there are various studies on motor imagery-based BCI in the literature, 

the SST algorithm, whose compatibility with EEG signals has been proven, has not been 

investigated on this paradigm. In this study, it is aimed to contribute to the literature by 

using the Fourier-based SST algorithm (FSST) to distinguish resting and imagery states 

to be used in the self-initiated EEG-based BCIs. The transition between these states might 

be used as a trigger for the external devices in real-time using EEG signals. 

 Based on these empirical studies, it can be seen that there is still a strong need for a 

comprehensive research in this field. Currently, the classification accuracy levels attained 

in the abovementioned studies are not sufficient to control external devices outside the 

laboratory [47]. Furthermore, in the studies reviewed above, the number of subjects 

included in the experiments was not high enough for a good generalization. Due to the 

characteristics of the EEG, it is proven that the small sample size can cause discrepant 

findings in the literature [42].  
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 The main goal of this study is to identify the intention of the movement for 

asynchronous BCI applications in order to assist people with motor impairments. If 

detectable, this motor-planning activity may be used in real-time to activate (wake-up 

from the sleep mode) external devices like wheelchair, arm/hand prosthesis, and/or 

computer application.  

 In this study, the main contributions to the motor imagery literature are as follows: 

(i) We introduced the usability of the Fourier synchrosqueezing transform (FSST) as the 

feature extraction approach, which has recently been proposed, and singular value 

decomposition (SVD) as the feature selection/reduction method, (ii) we investigated the 

most effective features and channels for the discrimination of the resting and imagery 

states in the MI-based BCI, (iii)  we compared the FSST approach with a combination of 

statistical, time-, time-frequency- and frequency-domain approaches and well-known 

methods such as common spatial patterns (CSP) and sub-band CSP (SBCSP), and (iv) we 

examined the use of clean and tolerable EEG signals alone and together as the training 

and test data to investigate the robustness of our feature extraction and classification 

methods. 

 The rest of this paper is organized as follows; the custom-built EEG dataset used in 

our study is presented in Sections 3.2.1 and 3.2.2. The analysis of the EEG signals and 

proposed FSST and SVD feature sets are introduced in Section 3.2.3. The classifiers, 

performance evaluation metrics, along with statistical analysis of the data are presented 

in Section 3.2.4. Experimental results are dedicated in Section 3.3. The discussion of the 

results is given in Section 3.4 and the conclusions are depicted in Section 3.5. 

3.2 Materials and Methods  

3.2.1 Experimental Setup 

 The multichannel EEG signals from 28 right-handed subjects were collected while 

they were seated in a chair approximately 60 cm away from a monitor that delivered 

visual and auditory cue. All the subjects (mean age 23, age range 20-34) were healthy, 

and were asked to remain relaxed during the recordings. Except for eye blinks, they were 

asked to avoid eye movements, body adjustments, throat clearing, and other movements. 

The research was approved by the Erciyes University Ethics Committee (January 9, 2019, 

2019/32), Kayseri, Turkey. In the experiments g.tec (Schiedleberg, Austria) products and 
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MATLAB based software were used. The active dry electrode (g.Sahara) cap and the 

wireless EEG signal amplification system (g.Nautilus), were employed in order to record 

16 channels located at Cz, FP2, F3, Fz, F4, T7, C3, FP1, C4, T8, P3, Pz, P4, PO7, PO8, 

and Oz electrode positions according to the 10-20 international system [226]. The 

reference electrodes were attached to antitragus (behind the ear). The sampling rate of the 

signal acquisition system was 500 Hz. In the system, the signals were filtered using a 

hardware bandpass (2-30 Hz) and a notch (50 Hz) filter. 

3.2.2 Experimental Protocol 

 During the experiments each subject carried out three mental tasks. Each subject 

performed at least two sessions; each session was 6–7 min, and was followed by a 5–10 

min break. A session consisted of 30 trials each of which included 13 seconds of 

recording. Each trial began with the preparation (2 s), and was followed by the resting (1 

s), motor intention (3.8 s), and the motion states (2.8 s), respectively. The pictorial 

explanation of the experimental paradigm can be seen in Figure 3.1. Briefly, at the 

beginning of each trial, the background of the screen was grey corresponding to the 

preparation time. The preparation time corresponds to lay the groundwork mentally for 

the following states in the trial. A beep sound was heard after the preparation, and a 

relatively large plus sign was displayed in the middle of the screen, meaning that the 

resting state has begun. The participants were instructed to keep relaxed during this state. 

A red arrow appeared on the right or left side of the plus sign after the resting state was 

over (on the third second), and lasted only one second. For the next 3.8 s, they were asked 

to imagine the movement of their respective hand (opening and closing the right hand for 

example when the arrow was pointing to the right), but not to perform the motion. The 

condition is referred to as the preparation to movement. At the 7.8 s instant, the second 

arrow appeared on the plus sign for 1 s, which corresponded to the motion of the 

respective hand (opening and closing the hand). Motor execution is the name given to this 

condition. As a result, we had a total of 30 repetitions (15 right and 15 left hand) of each 

mental task for each session for each subject. 
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Figure 3.1 The experimental paradigm. 

3.2.3 Data Selection and Feature Extraction 

Data Selection 

 Once the experiments were over, our dataset was ready to be pre-processed 

manually using a custom-built MATLAB (R2019a, Mathworks®) code. First, we 

checked the EEG signals from each channel, and found that the signals coming from the 

FP1 and FP2 channels on the forehead were highly corrupted due to the muscle 

movement, and thus did not carry any information about the underlying brain activity. 

Therefore, we decided to eliminate these channels from the study, and only 14 channels 

were used for further steps. In addition, in order to determine the channels and states 

(resting, motor imagery, and motion) to be included in the analysis we checked the signals 

visually, and selected clean and tolerable trials. For this reason, we considered noisy 

portion duration on the whole signal in each trial and its amplitude. For a signal to be 

tolerable, its amplitude should be greater than 100 µV and the duration of the noisy 

portion should be longer than 10% of the whole trial duration (13 sec). Otherwise, we 

labelled the signal as clean. Besides, the trials that included high amplitude and long 

duration noisy signals were labelled as noisy and discarded from the experiment. There 

were 30 trials for each run, 2, 3 or 4 runs for each subject, and a total of 78 runs. Therefore, 

the number of trials was 7020 (78 runs x 3 states x 30 trials). However, 5643 trials were 

labelled as workable/clean and 1014 trials were labelled as tolerable. Both were included 

in the data set for further steps. Examples of clean and tolerable trials can be seen in 

Figure 3.2. By this way we were left with 14-channel EEG data from 28 participants. The 

number of trials from each state differed from participant to participant. 
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A)  

B)  

Feature Extraction 

 In this study, the second phase consisted of the investigation of the feasibility of 

statistical methods, time-domain, frequency-domain, and time-frequency domain features 

in the MI-based BCI. In order to determine the best features twelve methods were used: 

(1) Statistical features such as the skewness, log energy entropy, Shannon entropy, 

kurtosis, and energy, (2) as the time-domain methods, autoregressive (AR) modelling 

Figure 3.2 A. An example of a clean raw data and its intervals of resting (R), motor 

intention (I), and motor execution (M) can be seen. B. An example of a tolerable raw 

data and its intervals. 
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(order was empirically selected as 4), (3) as the frequency-domain approaches power 

spectral density (PSD) using the Welch method with a Hamming window (50% overlap), 

mu (8-12.5 Hz) and beta (13-30 Hz) powers, and their ratio (mu power/beta power) (4) 

as the time-frequency domain feature, discrete wavelet transform (DWT) with 

Daubechies 4 wavelet function and the Fourier-based synchrosqueezing transform 

(FSST). In further steps, we will refer these methods except for the FSST as “S-T-F-TF.” 

The methods were applied to each channel separately.  

 In this study, our main focus was to discriminate resting and motor intention states 

from the multichannel EEG signals. To achieve this goal, FSST provides a powerful tool 

for time-frequency representation. It is based on the short-time Fourier transform and 

focuses on the spectrogram’s energy. Unlike conventional transform, FSST offers 

sharpened time-frequency representation [140]. We refer to [218], [227] for the basis and 

theoretical aspects of SST. We summarize the process of FSST relevant to this study as 

follows: (1) FSST was applied to each EEG channel and coefficients were obtained as 

complex numbers. While computing the coefficients a Kaiser window of length 128 was 

used to provide adequate frequency resolution and a 65x501 matrix was obtained for each 

channel. (2) A series of frequencies over the frequency range from 2 Hz to 30 Hz was 

extracted and the dimension of the matrix became 7x501. (3) Absolute values of the 

coefficients obtained from each channel were calculated and then the values were 

normalized by subtracting mean and dividing by the standard deviation (z-score). In the 

scope of this work, 7 frequencies of interest for each channel were determined as the 

FSST coefficients and a 98x501 matrix was obtained from 14 channels. (4) For dimension 

reduction and extract significant features from the FSST coefficients the singular value 

decomposition (SVD) algorithm was used to make the analysis more effective and 

simpler because of its stability [228]. 

𝐴 = 𝑈 × 𝑆 × 𝑉′ (3.1) 

where A is the FSST coefficient matrix, U is the left singular vectors in 501x501 

orthogonal matrix and V is the right singular vectors in 7x7 orthogonal matrix. S is 

diagonal with the singular vectors in 501x7. When extra rows of zeros in S are excluded 

for the economy-size decomposition, S becomes the singular vectors in 7x7. In this work, 

the diagonal values were taken into consideration as the features with matrix dimension 

of 1x98 for 14 channels on a trial. 
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 Besides, performance comparison of S-T-F-TF with well-known feature extraction 

methods in motor imagery such as common spatial patterns (CSP) and sub-band CSP 

(SBCSP) was also investigated. CSP method extracts spatial information which is needed 

in multichannel EEG recordings. CSP maximizes the variance of one class and minimizes 

of other class using spatial filter pairs [29]. In this study, odd numbers from 1 to 14 spatial 

filter pairs were conducted on the data, and 9 spatial filter pairs were found to be the 

optimal filter pairs. The SBCSP method comprises multiple bandpass filters using zero-

phase Butterworth filters, spatial filters using the CSP algorithm. There were no feature 

selection algorithms, so all CSP features were used to classify two states. The sub-band 

frequencies were: 2-6 Hz, 6-10 Hz, 10-14 Hz, 14-18 Hz, 18-22 Hz, 22-26 Hz, and 26-30 

Hz. 

3.2.4 Classification 

 In this work, we focused on the discrimination of resting and motor imagery states. 

We split our data into two subsets using a subject-based approach: testing data and 

training data. Additionally, we fitted our model on the training data, in order to make 

predictions on the testing data. Moreover, to determine the best performing classifier as 

the method of choice for the test phase of the classification and to avoid overfitting, we 

created validation data from the training data leave-one-out in which we did not use data 

from the same subject in both training and validation sets. In the test set each of 28 

participants considered as test data in different iterations. To prevent any bias, we did not 

use any data coming from the test subject in the training and validation phases. Moreover, 

for S-T-F-TF 154 features (11 features x 14 channels) and for FSST 98 (7 features x 14 

channels) served as the feature set for the training and validation.  

 On the other hand, for the sake of investigating the robustness of the model, we 

included tolerable data as the test set. In this stage, clean trials (3100 trials) were used for 

training of the model. 

 The classification methods we investigated were the k-nearest neighbors (k-NN, 

k=10, distance metric was Euclidean), linear discriminant analysis (LDA), fine tree 

(maximum number of splits = 100, split criterion was based on Gini’s diversity index), 

Naive Bayes (kernel type was Gaussian), and the support vector machines (SVM) with 

fine Gaussian kernel and quadratic kernel [229], [230]. A statistical comparison using 
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Kruskal-Wallis test (KWT) on test subjects’ classifier accuracies was performed for each 

feature extraction method. The null hypothesis was that the medians of all classification 

accuracies were equal, and the alternative hypothesis was that at least one median of one 

classifier was different from the median of at least one other classifier. The p-values 

obtained for tolerable and clean and tolerable data combined cases were less than 0.05, 

rejecting the null hypothesis. A multiple comparison test following KWT demonstrated 

that only SVM with fine Gaussian kernel was statistically different from and significantly 

lower than the other classifiers. This result showed that well performing classifiers did 

not have statistically significant accuracy differences. In conclusion, the best performing 

classifier in terms of accuracy, SVM with quadratic kernel, was selected as the method of 

choice in the test phase of this part oof the study. The c parameter of the SVM method 

with quadratic kernel was 1, and the gamma parameter was determined automatically by 

the classification learner application of MATLAB [231]. 

Performance Metrics 

 In this study we evaluated the performance of the classification methodologies 

using accuracy, area under curve (AUC) and f-measure metrics. Accuracy is the 

percentage of correctly predicted classes [230] and is computed using the following 

equation: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 (3.2) 

where TP and TN represent true positives and true negatives, FP and FN stand for false 

positives and false negatives. f-measure is the weighted harmonic mean of the precision 

and recall [194]. Precision is computed using equation 3.3. Recall is a measure of 

sensitivity and yields how many of the actual positives are predicted by the model as 

positive (equation 3.4). In our study, precision and recall have the same weights, and thus, 

we calculated f-measure using equation 3.5. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 (3.3) 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 (3.4) 

𝑓𝑚𝑒𝑎𝑠𝑢𝑟𝑒 = 2 ×
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
 (3.5) 
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Statistical Analysis 

 IBM SPSS Statistics 25.0 software package was used to analyze the data and the 

results statistically. To determine the most discriminative (of resting and motor imagery 

states) electrode-feature combinations, we explored whether each electrode-feature 

combination was statistically significantly different. In the comparison of resting and 

motor imagery states, we took one of the features (say skewness) obtained using one 

electrode (say T7) during the resting state, and compared them with the values obtained 

using the same electrode during the motor imagery state. Our null hypothesis was that the 

distribution of these features had equal means or medians according to the normality of 

the distribution of the samples. When we had significant evidence against the null 

hypothesis (p<0.05) we claimed that this specific electrode-feature combination (T7-

skewness) would be a good choice for the discrimination of these two states. In the 

statistical comparisons, we initially checked the normality of the data (features in the 

second phase) based on Kolmogorov-Smirnov approach with the Lilliefors significance 

correction, and observed that the data were not normally distributed. Hence, we used the 

Mann-Whitney U test as the non-parametric method. Additionally, a statistical 

comparison was performed between the classifiers with the accuracies obtained for each 

feature method. Since the sample size for each group less than 30, we used Kruskal-Wallis 

test for multiple group comparison. 

3.3 Results  

 The classification methods were compared to determine the best performing 

classifier according to accuracy, area under curve (AUC) and f-measure metrics. Figure 

3.3 illustrates the classification performances on the test data for the resting and motor 

imagery states. As depicted by the results in Figure 3.3A, Fine Tree, SVM Quadratic and 

Medium KNN had the highest accuracy level on S-T-F-TF.  

 On the other hand, SVM Fine Gaussian and LDA yielded better classification 

performances using SBCSP and CSP methods respectively. Nevertheless, except for the 

Fine Tree method all approaches resulted in 100% accuracy with FSST features. Figure 

3.3B shows the comparison of methods when only clean trials were used as the training 

set. Accuracy levels ranged between 91% and 99% when S-T-F-TF was considered, 

whereas the accuracies were between 99% and 100% when FSST was used as the feature 

extraction method. Moreover, the maximum accuracy was 77.69% when CSP features 
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were used for the classification using LDA. Additionally, when LDA was used to classify 

SBCSP features, the maximum accuracy attained was 96.84%.  Although the SBCSP has 

given better results than the CSP, it has fallen behind the classification performances 

when the features came from FSST and S-T-F-TF. We chose the SVM method with 

quadratic kernel over the other classification approaches for further analysis because it 

produced more robust accuracy results in the test phases of the analysis. This paragraph 

summarizes the results of the validation phase of the classification process. The goal here 

was to determine the best method to be used in the test phase whose results are reported 

in the following paragraph. 

A) 

 

B) 

 

Figure 3.3 The classification accuracies, area under curve and f-measure values on 

the testing data using different classification methods. A) When clean and tolerable 

trials were used together as training set. B) When only clean trials were used as the 

training set. 
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 We summarize the mean, maximum and minimum of subject’s accuracies when 

clean and tolerable trials were used together in Figure 3.4A. According to the results, the 

classification accuracy levels in S-T-F-TF were above 97% for all test subjects whereas 

FSST have provided 100% accuracy for all test subjects. On the other hand, using CSP 

and SBCSP methods, the results of the classification performances were significantly 

lower than S-T-F-TF and FSST.  

 The mean, maximum and minimum accuracies when only tolerable trials were used 

as the test set are presented in Figure 3.4B. According to our results, the classification 

accuracy levels in S-T-F-TF were above 66.8% whereas FSST provided 100% accuracy 

A)  

B)  

FSST Our Combination CSP SBCSP

Mean 100,00% 99,62% 63,19% 89,85%

Max 100,00% 100,00% 75,42% 98,88%

Min 100,00% 97,16% 52,74% 66,85%
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Max 100,00% 100,00% 100,00% 100,00%
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Figure 3.4 The average, maximum and minimum classification accuracies. A) When 

clean and tolerable trials were used together. B)  When only tolerable trials were used 

as the test set. 
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for all test subjects. The maximum and minimum accuracies for features extracted with 

CSP were 100% and 38.89% respectively. On the contrary, accuracies for SBCSP 

changed between 50% and 100%.  

  In the second phase of the study whose aim was to determine the most 

discriminative channel-feature combination for the classification of two states, we 

performed comparisons on the data with clean trials and the data with combination of 

clean and tolerable trials. For this reason, we performed feature extraction on the data 

within each trial. In the classification of resting and motor imagery states both on clean 

trials and on the clean and tolerable trials combined, over the feature set which belongs 

to S-T-F-TF the electrode-feature combinations were investigated. For each dataset, the 

Mann-Whitney U test (p<0.05) indicated that the prominent channels and features were 

F4, Fz, C3, Cz, C4, and Pz, and relative power, DWT, kurtosis, Shannon entropy, log 

energy entropy, and energy. On the other hand, PSD and AR did not have statistically 

significant difference between classes for any of the channels. Besides, FSST features on 

each dataset were statistically significant for all channels. The channel-feature 

combinations that do not have any statistically significant difference between resting and 

imagery states have been highlighted in Table 3.1, and the remaining cells (without 

highlight) mark the prominent channel-feature combinations. We should note that the 

significance values were adjusted by the Bonferroni correction for multiple testing. 

 Computation cost analysis was also necessary to evaluate the speed of our model. 

The execution durations for processing one-second signal with 14 channels are shown in 

Table 3.2 for different feature extraction methods and SVM Quadratic as the classification 

method. The values indicate the averages of ten repeated computations. For S-T-F-TF, 

the computation times are also presented according to each feature extraction approach 

in order that the impact of each method in the combination could be examined. The results 

showed that the minimum computation cost belonged to AR with 53.2 milliseconds 

whereas the maximum cost referred to DWT with 427 milliseconds. Moreover, S-T-F-TF 

was analyzed, and it is found that its computation cost is about 1 second while the 

combined duration of FSST based feature extraction and SVD based feature selection was 

0.24 seconds. 
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3.4 Discussion  

 In this paper, we introduce FSST and SVD approaches for the discrimination and 

classification of resting and motor imagery states with high accuracy. Our goal in this 

study was to identify and characterize the movement intention using multichannel EEG 

signals to be used as a means to initiate a BCI system without an extra 

accessory/methodology. In our work, we performed experiments in which 28 participants 

were asked to stay at rest with no movement and imagination of the movement of their 

limbs, or to imagine the opening and closing of their hands (motor imagery), and to realize 

that movement. For each state we obtained more than 1500 trials in total. We recorded 

EEG signals from 28 participants while imagining opening and closing their hands in 

order to overcome the limitation of previous studies in the literature [163], [232], [233], 

[234], [235], [236], [237], [238].  

 We employed 14 EEG channels spread over the scalp, and extracted time-frequency 

features using FSST. Moreover, we propose SVD for feature selection. In our proposed 

method, the FSST and SVD were investigated for the first time in the motor imagery 

literature. The performance of the FSST and SVD is compared with several popular 

feature extraction approaches such as CSP, SCSP, DWT, AR and nine more approaches. 

Table 3.2 Computation cost for different feature extraction approaches. 

Algorithm Time (sec) 

FSST and SVD 0.24 

CSP 0.075* 

SBCSP 6.330* 

S-T-F-TF 

PSD 0.081 

Total: 1.063 

Mu Band Power 0.081 

Beta Band Power 0.081 

Ratio Band Power 0.163 

AR 0.053 

DWT 0.427 

Kurtosis 0.092 

Skewness 0.079 

Shannon Entropy 0.193 

Log Energy 

Entropy 
0.088 

Energy 0.058 

*For computation CSP needs 2 classes. That is why the values are valid for a signal 

with 14 channels whose duration was 4.8 seconds (2400 samples = 500 samples 

corresponding to resting state and 1900 samples for motor intention state). 
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In addition, for each classification scheme, we investigated the most discriminative 

electrode-feature combinations. Especially, our focus in this research was to suggest the 

best electrode-feature combination and the classification methodology to distinguish the 

resting and motor imagery states. We believe that this can pave the way for the use of a 

self-initiated, portable, and wireless EEG based BCI system used by the patients. This 

classification scheme is important, because the preparation for the movement may be used 

to turn on the external devices in real-time, which is currently a significant issue in BCI 

applications. 

 We have proven in this study that although the classification accuracy of S-T-F-TF 

(methods that comprise S-T-F-TF have commonly been used in the literature separately 

but not in a combined manner as we have done here) is as good as FSST, the performance 

of FSST is the best in terms of accuracy with between 99% and 100%, computation time 

0.24 seconds with SVD and robustness to noise.  

 As illustrated in Table 3.2, although SBCSP was more effective than CSP in the 

classification of motor imagery tasks, it was not as good as the combination of 11 features 

that we introduced in this study. Collectively, our results indicate that the intention of the 

movement in people with motor impairments can be identified with high classification 

accuracy. Overall, our study was the one that obtained the best classification 

performances. Additionally, use of FSST and SVD makes a great contribution to motor 

imagery based self-initiated BCIs.   

 In the literature, there are many studies about motor imagery that use different 

features. Niazi et al. [232] detected the movement-related cortical potential (MRCP) from 

EEG signals in 8 healthy subjects in real-time. They used an optimized spatial filter (OSF) 

method to create template of the initial negative phase of MRCPs. They obtained true 

positive rate (TPR) of 67.15 ± 7.87% for the motor imagery (MI) task. Another study was 

about the detection of the readiness potential (RP, cortical potential). [239] In their study, 

they implemented constrained blind source extraction (CBSE) algorithm for detecting RP 

with 3 healthy subjects. Pre-movement trials were used for true positive rate evaluation. 

Furthermore, Jochumsen et al. [234] used 15 healthy subjects with 5 stroke patients. They 

investigated the possibility of recognizing MRCPs from a single EEG channel during 

palmar grasping tasks. Their aim was to detect movement intention from executed and 

imaginary grasps. They extracted features by using the following 4 methods: (i) peak of 
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maximum negativity, (ii) mean amplitude, (iii) slope of a linear regression fitted to the 

data window, and (iv) the average power in the interval from 0–5 Hz. They performed the 

SVM classifier to compare motor execution, motor imagery, and attempted motor 

execution (for stroke patients). They detected about 75% of the movements correctly 

~100 ms before the onset of the movement. A similar study about the capture of voluntary 

motor intentions from EEG was demonstrated in [235]. They detected the MRCPs by 

using Locality Preserving Projection methods, and classified using the linear discriminant 

analysis. Nine healthy subjects were used in this study. To discriminate execution and 

imagery tasks, they performed classification with 79 ± 11% true positive rate (TPR). 

Aliakbaryhosseinabadi et al. [236] investigated the effect of random and non-random cue 

paradigms on the detection of MRCP. In the experiment, the researchers used a template-

matching algorithm in 8 healthy subjects. They showed that the TPR of detection of 

movement intention were 63.5 ± 5.9% for random cue, and 75.3 ± 5.5% for the non-

random cue. Several other studies have been carried out to investigate the feasibility of 

different approaches [28], [29], [30], [31]. In these studies, the number of electrodes used 

ranged between 27-32, and the feature extraction approaches were filter bank or regular 

common spatial pattern, band powers, and surface Laplacian derivation. 

 Our results, just like other studies in the literature, confirm that the imagination of 

movement manifests a significant effect on brain signals. Despite all this, the prediction 

accuracy of the movement intention is lower than that of our proposed study. In [25], for 

the prediction accuracy of the movement intention was 75%. Additionally, in [240], the 

researchers used the MRCPs to detect motor execution and imagination, worked with 15 

subjects, and demonstrated an optimized spatial filtering method to obtain high TPR (82.5 

± 7.8%). Another study [241] was about the detection of gait initiation by using MRCP. 

Although they used ICA as the pre-processing method, the TPR of detection was 76.9 ± 

8.97%. On the other hand, in [242], authors used FSST of EEG signals for classifying 

focal and non-focal classes by using 2D-convolutional neural network (CNN) with 100% 

accuracy rate.  

 The FSST based methods allow analyzing nonstationary signals, like EEG, in time-

frequency (TF) domain. Unlike the STFT, FSST has the ability to obtain a high-resolution 

TF representation by minimizing the unnecessary information of nonstationary signals. 

Therefore, we introduced the classification accuracy of the FSST for classifying resting 

and motor intention states that showed high success rates by using machine learning 
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approaches. However, the FSST suffers from the limitation that it requires feature 

selection to extract representative features from TF coefficient matrix when it is used with 

machine learning algorithms. 

 Although the highest possible accuracy values were obtained, our study suffers 

from some limitations due to offline analysis. Furthermore, we collected EEG data not 

from patients with motor disabilities but from healthy subjects although our goal was to 

identify and characterize the movement intention in people with motor impairments. 

From a previous study [234], we know that the data recorded from the patient with motor 

impairments can affect the classification accuracy in a negative way. In the future, this 

limitation will be addressed by developing online classification approaches with high 

accuracy and robustness using the data collected from the patients with motor 

impairments. 

 As part of our future research agenda, we plan to investigate the feasibility of novel 

classification approaches such as Neural Dynamic Classification algorithm [243], 

Dynamic Ensemble Learning Algorithm [182], Finite Element Machine for fast learning 

[244], and Deep Support Vector Neural Networks [184], [245], [246]. 

3.5 Conclusions 

 This study provided a detailed analysis of the combination of popular feature 

extraction techniques used for EEG-based resting and motor imagery task discrimination. 

Among the feature extraction approaches the Fourier-based Synchrosqueezing Transform 

(FSST) (singular value decomposition was also used to reduce the number of features) 

were found to have the best discrimination performance. This study is the first showing 

the feasibility of this approach in motor intention paradigm in BCIs. Moreover, this study 

also investigated the use of tolerable data, which contain certain amount of noise but not 

dominating the information carried in the EEG signals in addition to the clean 

counterparts. Furthermore, the statistical analysis of EEG channels with the best 

discrimination (of resting and motor imagery states) characteristics demonstrated that the 

frontal and central electrodes were the most effective ones. 

 To conclude, the resting state has a role in the idle state (baseline) of the participants 

whereas the motor intention state represents the intention required to start a BCI. Our 

approach proposes the use of FSST-SVD features coming from the EEG channels, and if 
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the outcome of the classification method indicates motor intention state the BCI system 

will be initiated. We propose here that the signal acquisition, preprocessing, feature 

extraction/selection and classification will be performed continuously until such an 

intention is detection. Once the system is started MI-based EEG signal decoding will be 

in place for other specific operations. If no further motion intention were detected in a 

certain time period the system will be switched to the idle state and will wait for another 

detection of intention to restart the system.    
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Chapter 4 

EEG-Based Preconditioning for Object 

Weight Estimation in Upper-Limb 

Prostheses: Enhancing Functionality and 

Usability 

 In this chapter, we aim to explore the estimation of object weight using EEG signals 

in the context of upper-limb prostheses. By leveraging neuroimaging techniques, we seek 

to develop a neurofeedback system that enables individuals to estimate the weight of 

objects grasped by their prosthetic limbs. This research has the potential to enhance the 

functionality and usability of upper-limb prostheses, empowering individuals with more 

natural and intuitive control over their interactions with the environment. For this 

purpose, widely used feature extraction algorithms in the literature have been applied to 

EEG signals to classify objects' weights into light, medium, and heavy categories. Part of 

this section is excerpted from the author's accepted article. 

4.1 Introduction 

 Accurate perception of the weight of objects is crucial for individuals utilizing 

upper-limb prostheses to interact with the environment effectively. The prostheses used 

especially for the upper extremity differ according to the level of amputation, just as the 

methods used to move the prosthesis. In some prosthesis types, only cosmetic use is 

prominent, while in others, the hand is opened and closed by the individual's own power, 

for example by moving the shoulder. Another type of prosthesis is called a myoelectric 

prosthesis. In this type, arm   and   hand   movements   are   performed   with   the   muscle   

signals   received   from   the electromyography (EMG) electrodes placed in the 

appropriate places (on the skin) of the amputated limb [247], [248]. Recently, efforts have 

been made to use electroencephalography (EEG) signals in upper extremity prostheses. 
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While traditional prosthetic devices offer remarkable functionality, they often lack the 

ability to provide real-time feedback on the weight of grasped objects. Consequently, 

individuals with upper-limb prostheses may struggle to regulate their grip force and 

adequately adapt their movements to different object weights.  

 Recent advancements in neuroimaging techniques, such as EEG, present an 

innovative approach to address this challenge. EEG allows for the analysis of brain 

activity patterns associated with object weight perception, providing an opportunity to 

develop a neurofeedback system that enables individuals to estimate the weight of objects 

grasped by their prosthetic limbs. 

 Previous research has demonstrated the potential of EEG in decoding various 

aspects of motor control and perception, including studies on motor imagery [62], [174], 

[209], [249], [250], [251], emotion recognition [252], sleep stage classification [253], 

tactile perception [254]. However, the application of EEG to estimate the weight of 

objects to be carrying specifically in the context of upper-limb prostheses remains largely 

unexplored. Investigating the neural correlates of weight perception in individuals using 

prosthetic limbs can offer valuable insights into the underlying mechanisms and inform 

the development of neurofeedback-based strategies for weight estimation. The primary 

objective of this study is to investigate the feasibility and accuracy of estimating the 

weight of objects using EEG signals in individuals.  

 The effectiveness of classifying EEG signals relies directly on the discriminative 

capability of a combination of chosen features and the machine learning classifier 

employed. Numerous approaches for extracting features have been explored thus far to 

differentiate cognitive states using EEG signals. A methodology commonly employed in 

the field of EEG analysis is Common Spatial Pattern (CSP) [181], [255]. It is specifically 

employed in the context of motor imagery-based brain-computer interfaces (BCIs). CSP 

aims to enhance the discriminative power of EEG signals by transforming them into 

spatial patterns that highlight the differences between different cognitive states or tasks. 

The conventional Common Spatial Pattern (CSP) approach in the time domain can 

sometimes struggle to preserve the distinguishing characteristics between different 

classes.  To address this limitation, various enhanced CSP algorithms have been 

suggested. Examples of these improved approaches include sub-band common spatial 

pattern (SBCSP) in which SBCSP analyzed the EEG data on different sub-bands [149], 
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filter bank common spatial pattern (FBCSP) that chose features extracted from various 

frequency sub-bands according to the maximal mutual information criterion [103], and 

deep CSP (DCSP) [256]. Nanxi Yu et al. [256] proposed DCSP model with optimal 

objective function to improve classification accuracy. Another alternative approach to 

CSP is a method based on Online Recursive Independent Component Analysis (ORICA)-

CSP [181]. Antony et al. demonstrated that ORICA-CSP yielded more reliable motor 

imagery feature extraction compared to conventional CSP and Wavelet-CSP methods. 

This superiority can be attributed to ORICA-CSP's ability to provide additional 

information about the interactions among different cortical areas during mental activities.  

 On the other hand, various methods for extracting features from EEG signals to 

distinguish between different cognitive states have been explored extensively. In this 

context, one of the methods employed is the short-time Fourier transform (STFT). STFT 

is commonly used in the EEG signal processing community. STFT method divides EEG 

signals into segments/windows to analyze them as if they were stationary signals. In 

[131], two deep learning pipelines utilizing Convolutional Neural Networks (CNN) and 

Long Short-Term Memory (LSTM) are used for the classification of motor imagery tasks. 

Frequency domain representations from EEG signals are extracted with STFT and fed 

into pipelines for training the models. Feature selection from STFT covariances are 

proposed to extract spatial, time and frequency features concurrently in [130]. Since EEG 

signals inherently exhibit non-stationary characteristics, synchrosqueezing transform 

(SST) provides a better time-frequency representation for the feature extraction as 

compared to STFT [141], [143], [228], [257], [258]. SSF is suitable for generating a 

localized time-frequency (TF) representation of nonstationary signals. In [228], a novel 

approach is introduced for emotion classification using EEG signals. This approach 

incorporates singular value decomposition (SVD) and multivariate SST. In another study, 

emotion recognition methodology that relies on multivariate SST analysis on 

multichannel EEG data [104]. Precise TF localization of SST is also convenient for the 

epileptic seizure detection as reported in [258]. In EEG based BCI framework, time-

frequency coherence using STFT and SST methods are found between 

electrophysiological signals.  

 The successful development of an EEG-based weight estimation system for upper-

limb prostheses carries several potential benefits. Firstly, it can enhance individuals' 

ability to interact with objects in their environment by providing them with accurate real-
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time weight information. This, in turn, can improve their ability to regulate grip force and 

adapt their movements, accordingly, resulting in more natural and efficient interactions. 

Additionally, this research can contribute to advancements in prosthesis design and 

neurofeedback technologies, further enhancing the functionality and usability of upper-

limb prostheses. 

4.2 Materials and Methods 

4.2.1 Experimental Setup and Dataset 

 In this work, two experimental setups were used for the analysis. Thirty-one healthy 

volunteers enrolled in the study, with a mean age of 22 years and an age range of 19–35. 

The research received approval from the Erciyes University Ethics Committee on January 

9, 2019 (Approval No: 2019/32), Kayseri, Turkey. The experiments utilized g.tec 

products (Schiedleberg, Austria) and MATLAB-based software. The active dry electrode 

cap (g.Sahara) and the wireless EEG signal amplification system (g.Nautilus) recorded 

16 channels located at Cz, FP2, F3, Fz, F4, T7, C3, FP1, C4, T8, P3, Pz, P4, PO7, PO8, 

and Oz electrode positions according to the 10-20 international system [226]. Reference 

electrodes were attached to the antitragus (behind the ear). The signal acquisition system 

had a sampling rate of 500 Hz. The signals were filtered using a hardware bandpass (2-

200 Hz) and a notch (50 Hz) filter in the system. 

 Subjects performed actual movement and imagery sessions in a different sequence 

with 30 repetitions. Trials for the actual movement session comprised five phases: the rest 

phase, holding phase, lifting phase, replacement phase, and relaxation phase. In the rest 

phase, a red circle was presented in the middle of the plus sign for 2.5 seconds, and 

subjects fixed their eyes on the circle. During the holding phase, three visual cues 

representing objects with different weights were displayed for 0.5 seconds to aid subjects 

in grasping the weight for 1 second. In the lifting phase, the up-arrow icon was presented 

for 2 seconds to guide subjects in lifting the object. In the replacement phase, subjects 

returned the object to its initial position after the appearance of the down-arrow icon. In 

the relaxation phase, subjects relaxed and mentally prepared for the next trial. Each of the 

three weights was performed 10 times. 

 In the imagery session, trials consisted of three phases: the rest phase, imagination 

phase, and relaxation phase. In the rest phase, a red circle icon was displayed in the middle 
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of the plus sign, instructing subjects to stay relaxed. A visual cue representing one of the 

three objects with different weights appeared for 0.5 seconds, and the plus sign was 

presented for three seconds to guide subjects in imagining the weight of the object. The 

relaxation phase was performed similarly to the actual movement session. The 

experimental paradigm is shown in Figure 4.1. 

 

A) 

 

Figure 4.1 The experimental paradigm. (A) Actual movement session. (B) Imagery 

session. 

B) 

 In both the actual movement and imagery sessions, subjects were asked to carry out 

the requested task immediately after the execution cue appeared. Each of the three 

different weights of the objects in any given epoch was randomly selected. All subjects 

were healthy with no history of neurological disease and were instructed to remain relaxed 

during the recordings. Apart from eye blinks, they were asked to avoid eye movements, 

body adjustments, throat clearing, and other movements. After the actual movement 

session, the imagery session was performed since performing real movements first would 

make it easier to perform the imagined movement [259]. Between the actual movement 

and imagery sessions, we set up a minimum 15-minute break to minimize fatigue. 

 The data for each subject in one session consist of a total of 30 trial data, with each 

trial representing either one actual movement or one MI task, belonging to one of three 
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weight classes: 10 trials of light weight (25g empty bottle), 10 trials of medium weight 

(523g half-full bottle of water), and 10 trials of heavy weight (1037g full bottle of water). 

Thus, there are a total of 60 trials (30 actual movement, 30 MI) per subject in the dataset. 

The grand total of trials from all subjects is 924 trials for the actual movement session 

and 924 trials for the motor imagery session. 

4.2.2 Preprocessing 

 EEGLab toolkit (version eeglab2021.0) of MATLAB (R2019a) software was used 

to pre-process the collected data. We applied independent component analysis (ICA) to 

remove eye-movement and blinking artifacts from single channel EEG signal. 

Additionally, the pre-processing includes filtering with an 8-30 Hz Butterworth band-pass 

filter to eliminate physiological-, movement-, and equipment-related artifacts in EEG. 

 We use time domain, frequency domain, time-frequency domain methods for 

feature extraction in MATLAB (2019a).  In this study, we first conducted feature 

extraction to the signals from 2.5s - 5.5s (visual cue and imagination phase) of imagery 

session. Afterwards, to explore the effect of actual movement session on the predicting 

of the weight perception, we employed a new method that includes the data from the 4s - 

6s (lifting phase) of the actual movement session. 

4.2.3 Statistical and Time Domain Features 

 In order to investigate the feasibility of statistical methods, the skewness, log energy 

entropy, Shannon entropy, kurtosis, and energy were used.  

 Skewness is a measure of the asymmetry of the corresponding probability 

distribution [114], [260]. In the context of analyzing EEG (Electroencephalogram) 

signals, skewness can be used as a feature to describe the shape of the signal's amplitude 

distribution [260]. Equation (4.1) use to calculate skewness: 

𝑆 = [
∑(𝑥𝑖 − 𝜇)3

𝑁𝜎3
] (4.1) 

where S is the measure of skewness for the EEG data, x represents the data point i in the 

EEG data, μ is the mean of the EEG signal, N is the total number of data points in the 

EEG signal, σ is the standard deviation of the EEG signal.  
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 Entropy is about how much information a signal carry. Entropy can be used to 

describe the complexity or irregularity of the brain activity [215]. The study conducted 

two different types of entropy measures: Shannon entropy (ShanEn) and log energy 

entropy (LogEn). Shannon entropy measures the uncertainty or information content in a 

dataset, whereas log energy entropy measures the distribution of energy across different 

frequency bands. The formulas for ShanEn and LogEn can be introduce with equation 

(4.2) and (4.3), respectively [116].  

𝑆ℎ𝑎𝑛𝐸𝑛(𝑥) = − ∑(𝑝𝑖(𝑥))
2

(𝑙𝑜𝑔2(𝑝𝑖(𝑥)))2

𝑁−1

𝑖=0

 (4.2) 

𝐿𝑜𝑔𝐸𝑛(𝑥) = − ∑(𝑙𝑜𝑔2(𝑝𝑖(𝑥)))2

𝑁−1

1=0

 (4.3) 

 

where pi represents the probability distribution function, and i indicates one of the discrete 

states. 

 Kurtosis is a measure of the difference between the highest value of the probability 

distribution and the highest value of the normal distribution of a random variable with 

real values, and it can be used to describe the peakedness or flatness of the distribution of 

amplitudes in analyzing EEG signals [115]. The equation 4.4 to calculate kurtosis is as 

follows: 

𝑲𝒖𝒓𝒕𝒐𝒔𝒊𝒔 = [
∑(𝒙𝒊 − 𝝁)𝟒

𝑵𝝈𝟒
] (4.4) 

where xi represents each data point in the EEG signal, μ is the mean of the EEG signal, N 

is the total number of data points in the EEG signal, σ is the standard deviation of the 

EEG signal. 

 In the context of EEG signal processing, energy is often computed to measure the 

total energy or power in a specific frequency band or across the entire signal. The formula 

for calculating energy in an EEG signal depends on the specific context and the desired 

frequency range. In a time-domain EEG signal to calculate the total energy, square each 

data point in the EEG signal and then sum up all the squared values [261]. 

 AR modelling was adapted to EEG data as a time domain feature, and the means of 

the AR coefficients from each channel were extracted as features. In this approach, the 

best AR order, 4, was selected by trial and error [262]. 
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All the features were calculated with MATLAB built-in functions. These features were 

applied separately for each of the 16 channels. Therefore, 6 features were extracted from 

each channel. 

4.2.4 Frequency Domain Features 

 Another feature extraction method used for MI-based BCI was the power spectral 

density (PSD) in which the Welch method with a Hamming window (50% overlap) was 

employed. The state was divided into eight segments, and all segments were averaged to 

obtain a smoothed estimation. Additionally, this method was preferred to estimate the 

power at chosen frequency bands, the range between 8-12.5 Hz (mu band) and 13-30 Hz 

(beta band). Moreover, the band power ratios of the mu and beta activity served as the 

additional features. The methods were applied to each channel separately. In further steps, 

we will refer these methods mentioned above section 4.2.3 and section 4.2.4 as “S-T-F-

TF”. 

4.2.5 Time-Frequency Domain Features 

 Different EEG signal frequency bands contain different information about the MI. 

In order to decompose a signal in multiresolution frequency and time, discrete wavelet 

transform (DWT) and Fourier-based synchrosqueezing transform (FSST) was used in this 

study. In DWT, Daubechies 4 was the wavelet function, and the wavelet decomposition 

level was determined automatically using MATLAB.  

  EEG is a non-stationary signal whose spectral characteristics change with time. 

The short-time Fourier transform (STFT) and continuous wavelet transforms (CWT) have 

a deficiency in linear projection for non-stationary signals [141]. On the other hand, FSST 

is effective for a sharpened time-frequency representation. We previously demonstrated 

the contribution of FSST in the detection of motor intention [257]. We recommend 

consulting References [218] and [227] for the fundamental principles and theoretical 

aspects of FSST. Additionally, the singular value decomposition (SVD) algorithm was 

performed after applying FSST to reduce the dimensionality of the output of FSST and 

to extract significant features from the FSST coefficients. The process is also summarized 

in the algorithm provided in Table 4.1. According to the algorithm, FSST was applied to 

individual EEG channels, generating complex number coefficients. To compute these  
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coefficients, a Kaiser window of 256 units in length was employed to ensure accurate 

frequency resolution, resulting in a 128x500 matrix for each channel. After that, since the 

frequency range of interest was 8-30 Hz, the size of the matrix obtained from the FSST, 

which represents 128 frequencies, was reduced to 11x500 by selecting only the 

frequencies within the range of interest. Then, the absolute values of the coefficients for 

each channel were calculated and then normalized these values. Next, to reduce 

dimensionality and extract important features from the FSST coefficients, we utilized the 

Singular Value Decomposition (SVD) algorithm for a more effective and streamlined 

analysis due to its stability. The SVD formula was introduced with equation (4.5). 

𝐴 = 𝑈 × 𝑆 × 𝑉′ (4.5) 

where A represents the coefficient matrix, U signifies the left singular vectors, V denotes 

the right singular vectors, and S takes the form of a diagonal matrix with singular vectors 

in a 500x11 configuration. Excluding extra rows of zeros in S for a more efficient 

Table 4.1 The algorithm to calculate the FSST coefficients with the SVD as a 

dimension reduction method. 

Algorithm 1: FSST-SVD 

Input: Processed EEG signals 

Window: Kaiser 

Window Length: 256 

Selected Frequency: 8-30Hz 

Output 

1. Apply FSST to each channel 128x500 complex  

2. Select interested frequencies 11x500 complex  

3. Calculate absolute values of the coefficients 11x500 double 

4. Apply SVD to each channel. 

 

A: 11x500 

U: 500x500 

V: 11x11 

S: 500x11 

5. Exclude extra rows of zeros in S for the 

economy-size decomposition 

S:11x11 

6. Select the diagonal values of S S: 1x11 

7. Gather the 16 channels features s: 1x176 (11x16) 
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decomposition yields singular vectors in a 11x11 configuration. In our study, we regarded 

the diagonal values as features, creating a 1x176 matrix for each of the 16 channels in a 

single trial. The visualized FSST coefficient matrix, created by taking the average of trials 

for each weight, is shown in Figure 4.2. 

A) 

   

B)   

C)   

Figure 4.2 The time-frequency representation created using FSST for the weights (first 

2.5 seconds for the rest phase and the intention phases between 3 and 6 seconds). A) 

Average of trials for light weight object. B) Average of trials for medium-weight object. 

C) Average of trials for heavy object. 
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Gray Level Co-Occurrence Matrix 

 Gray level co-occurrence matrix (GLCM), commonly used for texture 

classification, is also employed to extract features from signals with time-frequency 

domain representations [263]. GLCM provides information about the relationships 

between pixel intensities, indicating how often neighbouring pixels repeat in horizontal, 

vertical, and diagonal directions [264]. Therefore, the co-occurrence matrix carries 

information about the angle (θ), distance (d), and frequency. The angle value varies in 45-

degree increments, creating matrices at θ = 0°, 45°, 90°, and 135° angles. Due to 

computational simplicity, d is often chosen as 1. 

 The co-occurrence matrix holds spatial distribution information about the gray 

levels in the image [265]. M. Haralick defined 14 texture features, including 

homogeneity, entropy, energy, and contrast, providing information about the image [266]. 

In this study, GLCM is utilized to extract second-order statistical features, namely 

contrast, correlation, energy, and homogeneity, from the FSST image. The steps to create 

feature matrix from the GLCM image is shown in Figure 4.3. 

 

Figure 4.3 The method used for representing FSST coefficient matrix with GLCM 

image. 
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4.2.6 Relative band power 

 Another commonly used method for analyzing EEG signals is to focus on relative 

band powers [267]. After averaging band power signals in different sub-frequency bands 

(2-4 Hz Delta; 4-7 Hz Theta; 8-12 Hz Alpha; 13-30 Hz Beta, 31-120 Hz Gamma), power 

spectral densities (PSD) are obtained. This yields a single number summarizing the 

contribution of a frequency band to the total power of the signal [174]. This number is 

calculated using the equation 4.6. 

𝑃𝑜𝑟𝑡 =
𝑃𝑆𝐷𝑖

𝑃𝑆𝐷𝑡𝑜𝑝𝑙𝑎𝑚
 (4.6) 

 Equation 4.6 represents the average power of Port for frequency bands, denoted by 

i. Figure 4.4 illustrates the calculated average band powers for each weight. Here, the 

average band powers of signals obtained from the intention phase, including the visual 

stimulus portion of the signal recorded during the imagination phase, are calculated. 

Light Medium weight 

  

Heavy 

 

Figure 4.4 The average band powers obtained from Participant 1. 

 For relative band power, calculations were made using signals recorded during the 

rest (R) and intention phases in the imagination phase. The ratio of the average band 
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power in the intention phase (MI) to the average band power in the rest phase provides 

the relative band power. The following equation 4.7 was used to obtain relative band 

power. 

𝑃𝐵𝑖 = 100 ×
𝑃𝑀𝐼𝑖 − 𝑃𝑅𝑖

𝑃𝑅𝑖

 
(4.7) 

 Equation 4.7 represents PB as the relative band power, PMI as the band power 

during the motor intention phase, and PR as the band power during the rest phase. Here, 

i is used as a representation for each band (alpha, beta, gamma, theta, delta). The values 

of relative band powers are reported in Table 4.2. Negative results imply that the band 

power during the rest phase is greater than the band power during the motor intention 

phase. 

Table 4.2 Relative band powers for Participant 1 

Class 

Band 
Light Medium-weight Heavy 

Delta -37 4.3 -9.2 

Theta -5.5 9.5 -20.4 

Alpha -25.7 -0.09 -16.1 

Beta -6.3 -20.8 -12.2 

Gamma -2.5 -0.4 -1.9 

High gamma 3.1 1.2 -12.6 

4.2.7 Convolutional Neural Network 

 Obtained data from the mentioned methods have been used as input to the classifier 

for machine learning. In addition to these methods, deep learning applications are widely 

used today to enhance classification performance. In BMI applications, deep learning is 

utilized in various domains such as speech recognition, computer vision with natural 

language processing, and classification of activities performed from brain frequency 

bands [268]. To investigate whether different weights have a meaningful effect on brain 

signals, Convolutional Neural Network (CNN) is a powerful architecture for time-

frequency-based image input. A CNN is a deep learning algorithm that can take an input 

image, calculate pixel values in the image, and analyze the relationship between pixels, 

consisting of layers as shown in Figure 4.5. 
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Figure 4.5 CNN layers [269]. 

 

 In this study, two methods were applied using CNN architecture. These can be 

categorized as classifying time series using wavelet analysis and being a continuous 

convolutional neural network (CCNN) with three-dimensional input. 

Wavelet Analysis and Deep Learning 

 Continuous wavelets transform (CWT) was utilized to generate time-frequency 

spectrogram images used as input in the CNN architecture to classify time series [135]. 

A spectrogram is calculated as the absolute value of CWT coefficients, representing 

frequency-time energy density [270]. Figure 4.6a and b respectively display the raw EEG 

signal and its spectrogram. Signals in the imagination phase of carrying the specified 

object were transformed into images, and three classes were classified based on the 

object's weight: light, medium, and heavy. When converting EEG signals to images, a 

separate image was created for each channel (Figure 4.6c), and these channel images were 

stacked on top of each other to cluster, preserving channel information before being input 

into the deep learning algorithm. The clustered image is shown in Figure 4.6d. The 

GoogLeNet neural network, a pre-trained neural network, was used for model training, 

and hence, input dimensions were fixed at 224x224x3. To avoid overfitting due to an 

excess of deep learning parameters, a dropout was recommended [156] and applied in this 

study. The dropout layer sets input elements to zero randomly with a probability of 0.6. 

Training a neural network is an iterative process involving minimizing a loss function. A 

gradient descent algorithm was employed to minimize the loss function. In each iteration, 

the gradient of the loss function was evaluated, and the descent algorithm updated the 

weights. 



67 

 

Continuous Convolutional Neural Network with 3D Input (CCNN) 

 Yang et al., used a continuous convolutional neural network (CCNN) to recognize 

emotions with a 3D EEG signal as input [271]. The 3D input integrates multiple frequency 

bands while preserving spatial information between electrodes. In this method, signals 

from the imagination phase of carrying the specified object were used. Additionally, 

signals filtered with bandpass filters (with lower bands) were used to obtain EEG waves: 

2-4 Hz (delta), 4-8 Hz (theta), 8-12 Hz (alpha), and 12-30 Hz (beta). Furthermore, an 

equivalent matrix was created using the EEG electrode map to form a two-dimensional 

plane. The EEG electrode map and the equivalent matrix are shown in Figure 4.7. 

 
 

(a) (b) 

  

(c) (d) 

Figure 4.6 a) EEG signal in the time domain, b) time-frequency representation of the 

signal (spectrogram), c) RGB image of the spectrogram, d) clustered 16-channel EEG 

spectrogram image (sub: participant, trial: trial number, chn: EEG channel) 
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 During the mapping process, the energy of the channels was computed, and these 

energy feature values were utilized within the 3D matrix. The steps of creating the 2D 

matrix and the 3D cube are discussed in Figure 4.8. 

 

 

 

Figure 4.8 Creating the stages of a 3D cube [271]. 

mapping 

Figure 4.7 Creating an equivalent two-dimensional matrix using EEG electrode 

mapping [271]. 



69 

 

 Yang et al., suggested that the 3D cube generated by this method can be considered 

as an image [271]. Therefore, this cube has been used as an input to the CNN. Four 

convolutional layers were used to construct the CCNN architecture. While the filter sizes 

of the first three layers are 4x4, the filter size of the last convolutional layer is selected as 

1x1 for computational simplicity. The values of the feature maps for these four layers are 

64, 128, 256, and 64, respectively. Following the convolutional layer, a rectified linear 

unit layer (ReLU) was added for the activation process. A fully connected layer (FC) with 

a dropout was used to transform the image's pattern-related features into a one-

dimensional feature vector. Finally, a softmax layer was used as the classification layer 

to compute the probability distribution of the classes. The reason for naming this 

architecture as CCNN is the absence of a pooling layer between the two convolutional 

layers, providing dimension reduction. Due to the spatial features containing channel 

information of the 3D cube, a pooling layer was not used. Figure 4.9 represents the CCNN 

architecture. 

4.2.8 Classification 

 The aim was to predict weight perception from EEG. Thus, we used two sessions 

paradigm which allows decoding weight perception from both actual movement and 

imagery sessions.  

 First, we used only imagination phase signals of imagery session for the interested 

signal area. For the binary class classification problem, each subject has 20 trials. After 

calculating the features such as S-T-F-TF, FSST-SVD, we created the test dataset from 

four trials of one subject by dividing the trails into five folds whereas the remaining 16 

trials of the subject and 600 trials recorded from the other 30 subjects were employed for 

 

Figure 4.9 Continuous convolutional neural network (CCNN) architecture [271]. 
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the training dataset. By taking the average accuracy of all folds, we computed the 

classification performance for the subject. This technique was applied to all subjects using 

the subject-based “leave-one-subject-out” approach.  

 On the other hand, we proposed a new method that originally constructs the training 

dataset and test dataset of each subject to investigate the effect of the actual movement 

on the evaluation of the classification performance in the weight perception problem. For 

this purpose, the trials from the imagination phase of the imagery session of one subject 

were divided into five-folds and one-fold was used for the test dataset. The remaining 

four folds (16 trials) of the subject and the 20 trials from lifting phases of the actual 

movement session of the subject were used in the training dataset. This procedure was 

repeated for each subject. The proposed methodology is illustrated in Figure 4.10. 

 MATLAB (2019a) was used for classification. We investigated k-nearest neighbors 

(k-NN, k=10, distance metric was Euclidean), linear discriminant analysis (LDA), fine 

tree (maximum number of splits = 100, split criterion was based on Gini’s diversity 

index), Naive Bayes (kernel type was Gaussian), and the support vector machines (SVM) 

with fine Gaussian kernel and quadratic kernel [230].  

 

 

Actual movement section 

4-6s lifting phase 

Imagery section 

2.5-5.5s imagination phase 

One participant  

20 trials, 2 classes 

Fold 1 | Fold 2| Fold 3| Fold 4 | Fold 5 

 

20 Trials 

Training Data  

(36 trials of one participant) 

Test Data 

 (4 trials) 

Figure 4.10 The procedure of the proposed methodology. 
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4.2.9 Real-time Processing of EEG Signals 

 A model design was created using the MATLAB/SIMULINK program with the aim 

of obtaining and extracting features from EEG signals in real-time. Real-time EEG data, 

obtained using 1-second samples, were stacked, and feature extraction processes were 

applied to these samples. FSST approach, a time-frequency domain analysis method, was 

employed to obtain the feature matrix. FSST facilitates a clearer representation in the 

time-frequency axis by separating components of linear and non-stationary signals. 

 In this study, FSST was applied to each channel, and coefficients for the time-

frequency space were obtained as complex numbers. For coefficient calculations, a Kaiser 

window of length 256 was used to ensure sufficient frequency resolution, resulting in a 

matrix of size 65x500 for each channel. The frequency range of interest is 8-30 Hz, and 

accordingly, 11 frequencies of interest were determined for each channel, resulting in an 

11x500 matrix for each channel. The absolute values of the coefficients obtained from 

each channel were calculated, standardized by subtracting the mean and dividing by the 

standard deviation (z-score). The SVD algorithm was used for dimensionality reduction 

and to extract significant features from the FSST coefficients. Consequently, diagonal 

values were considered as features with a matrix size of 16x11 for 16 channels in one 

trial. 

 The calculated features were classified using SVM. There are two classes: heavy 

and medium-heavy. The light class was used to indicate the prosthetic hand in the default 

(zero) position. The classification was applied to the grasping phase. The block produces 

a "2" value for other phases, which was randomly selected and used for signals not in the 

area of interest. Signals in the area of interest (grasping phase) were classified to produce 

output as 0 or 1. The outputs from the classification block were sent as commands to 

Arduino; if the output is 0 or 1, it is sent as a command, and if the output is 2, it is only 

displayed on the screen. This way, only the classification output from the area of interest 

is sent as input to Arduino. 

 Commands from the decision-making block are sent to Arduino. Arduino is 

connected to the computer via USB for serial communication. The generated commands 

are sent to digital pin 13 of Arduino, and the required input data for the motor is read from 

this pin. 
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 In this context, a new model supporting the mentioned algorithm was created when 

constructing the SIMULINK model. The blocks used in SIMULINK are shown in Table 

4.3, and their names and functions are detailed Figure 4. 11. 

Table 4.3 Blocks used in modeling and their functions 

 Block name Function 

1. g.Nautilus Transfers real-time EEG signals to Matlab/SIMULINK. 

2. Preprocessing block Suppresses powerline noise in signals. 

3. Subsystem Subsystem is a sub-model in which features are calculated from 1-second signals 

using FSST and SVD methods. 

4. Classification The signals coming from the holding phase are classified to produce 0 or 1 output. 

5. Decision Making Classification output is sent to Arduino as input. 

6. Arduino IO support 

blocks 

Incoming commands are detected and sent to Arduino. 

7. To workspace Saves raw EEG signals, extracted features and predicted labels to MATLAB 

workspace. 

8. Paradigm This block is where we set the duration of the simulation and the visuals in the 

experiment setup. The experimental setup is integrated into this block in 

accordance with the S-function standards. 
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4.3 Results 
 

 Research has been conducted at various stages and with different approaches to 

detect visual weight perception from EEG signals discriminating the tasks listed in Table 

4.4 for different classes. The fundamental approach involved extracting features using S-

T-F-TF and FSST-SVD feature extraction and selection methods, followed by a 

classification process. Accuracy, AUC, and p-values for these classification problems are 

presented in Table 4.5. In the studies encompassing all classification possibilities, the 

highest accuracy values were achieved using the kNN classification method with S-T-F-

TF features, particularly during the differentiation of imagining light and heavy objects 

and imagining light and medium-weight objects. The accuracy level is in the range of 62-

62.5%. Generally, low achievements have been observed in this part of the thesis. 

 

 In addition to these methods, deep learning results containing a weight dataset for 

classifying object weights are presented in Table 4.6. Here, a multi-class classification 

problem has been applied. Scalogram images and 3D cube images were provided as 

inputs to the deep learning algorithm. According to the results, when the scalogram image 

is considered as input separately for each channel (RGB image), it achieved the highest 

accuracy of 63.54%. 

 The classification results of features obtained from relative band power are 

presented in Table 4.7. According to this feature, the highest classification performance 

was achieved in the classification of light and medium-heavy objects with an accuracy 

rate of 52%. These accuracy rates were even higher than random selection (50% for 

binary, 33.3% for ternary). 

 

Table 4.4 Tasks to be classified. 

Classification Classes Experiment 

2 classes Resting - weight imagination  

2 classes Binary combination of the weights (light- medium weight), (light- 

heavy), … 

3 classes Light, medium weight, heavy object  

4 classes Resting, light, medium weight, heavy object 



75 

 

 

Table 4.6 Accuracy according to different input shapes for CNN.  

Classification Problem Input Network Accuracy (%) 

Imagination of Heavy, Light, Medium-

weight object 

(3 classes) 

Stacked EEG GoogLeNet 33.15 

RGB image GoogLeNet 63.54 

3D cube CCNN 43.08 

 

Table 4.7 Mean accuracy of 30 subjects’ relative power features for subbands. 

Classes/Subbands RDelta RTheta  RAlpha RBeta RGamma 

Multiclass 34% 34% 35% 32% 34% 

Light vs Heavy 49% 47% 49% 50% 49% 

Light vs Medium weight 52% 48%b 51% 47% 50% 

Medium weight vs Heavy 49% 48% 51% 49% 48% 

 

 The second-order statistical features calculated from the matrix obtained through 

the GLCM method were classified using the kNN classifier, and the results are presented 

in Table 4.8. When objects of light and medium weight were classified, the highest 

accuracy of 53.1% was achieved. The results are comparable to the outcomes of relative 

 
1 Except for the skewness method, other methods have statistically significant for both classes. 
2 The average rank in the imagination of light and medium-weight objects showed statistical differences for PSD, alpha band power, 

beta frequency band power, energy and the logarithmic Energy Entropy, whereas imagination of light and heavy objects have 
statistically significance for DWT and skewness. 
3 The resting group has statistically significant difference from the other groups. 
4 The resting group has statistically significant difference from the other groups. 

Table 4.5 Classification accuracy, AUC and p-values obtained with the S-T-F-TF 

and FSST-SVD features used in the study. 

Classification Problem Features p-value Classifier Accurac

y (%) 

 AUC 

Imagination of Light, Heavy 

object (2 classes) 

S-T-F-TF > 0,05 KNN 62,1 0.61 

FSST-SVD > 0.05 KNN 54.3 0.55 

Imagination of light, medium-

weight object  

(2 classes) 

S-T-F-TF > 0.05 KNN 62.4 0.62 

FSST-SVD > 0.05 Decision tree 54.7 0.52 

Imagination of medium-

weight, heavy object 

(2 classes) 

S-T-F-TF > 0.05 KNN 55.5 0.57 

FSST-SVD > 0.05 KNN 55.5 0.57 

Rest- Weight imagination 

(2 classes) 

S-T-F-TF < 0.051 KNN 57.9 0.6 

FSST-SVD > 0.05 Decision tree 53.2 0.54 

Imagination of Heavy, Light, 

Medium-weight object  

(3 classes) 

S-T-F-TF < 0.052 Decision tree 42.4 0.54 

FSST-SVD > 0.05 KNN 39.0 0.54 

Rest, Imagination of Heavy, 

Light, Medium-weight object  

(4 classes) 

S-T-F-TF < 0.053 KNN 50.0 0.48 

FSST-SVD < 0.054 Naive Bayes 22.0 0.44 
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band power. In the imagination section, when only signals from the imagination phase 

were utilized, it was observed that the classification performance remained at a low level. 

To overcome the challenges of low accuracy levels, the utilization of actual movement 

data in the training set proves to be a valuable advantage compared to relying solely on 

the imagination section. 

Table 4.8 Accuracy of classification of second-order statistical features 

Classes/Features FSST + GLCM 

Multiclass 36.7% 

Light vs Heavy 50.9% 

Light vs Medium weight 53.1% 

Medium weight vs Heavy 52.7% 

 

 In Table 4.9  the results when we only used signals from the imagination phase of 

the imagery session are reported. The classification performance was assessed using six 

different machine learning algorithms: SVM with Gaussian kernel, SVM with quadratic 

kernel, KNN, LDA, Fine Tree, and Naive Bayes. Accuracy and f-measure values were 

calculated as performance metrics. The features utilized, FSST-SVD and S-T-F-TF, were 

presented for comparison. Three binary classification scenarios were considered: light vs 

heavy, light vs medium, and heavy vs medium. 

Table 4.9 Classification performance of the imagery session.   

Classes Features Evaluatio

n Metrics 

Classifier 

SVMG SVMQ KNN LDA FineT NaïveB 

Light- 

Heavy 

FSST-SVD ACC (%) 50 40 50 35 50 45 

f-measure 0.60 0.45 0.55 0.38 0.54 0.48 

S-T-F-TF ACC (%) 35 50 40 40 45 45 

f-measure 0.29 0.66 0.50 0.44 0.44 0.0 

Light- 

Medium 

FSST-SVD ACC (%) 45 30 55 30 70 50 

f-measure 0.28 0.2 0.59 0.26 0.62 0.63 

S-T-F-TF ACC (%) 50 30 45 50 40 55 

f-measure 0.1 0.53 0.57 0.26 0.2 0.0 

Heavy- 

Medium 

FSST-SVD ACC (%) 55 35 45 40 60 45 

f-measure 0.26 0.13 0.44 0.29 0.49 0.44 

S-T-F-TF ACC (%) 50 50 45 45 45 45 

f-maksure 0.1 0.0 0.24 0.23 0.21 0.61 
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 According to feature comparison, the highest accuracy, reaching 70%, was 

achieved in distinguishing the Light-medium class using features obtained with FSST-

SVD. In the classification comparison, the Fine Tree classifier yielded the highest 

accuracy, particularly in distinguishing between light and medium, as well as heavy and 

medium. However, the binary classification for light vs heavy did not surpass the chance 

level (0.5).  

 From the results, we can clearly observe that the classification performance remains 

low. To overcome this problem, using the actual movement session in training data has a 

valuable advantage in comparison with using only the signals corresponding to 

imagination of lifting the object. As demonstrated in Table 4.10, we got the highest 

accuracy with the level of 80% using FSST-SVD as a feature and SVM quadratic as a 

classifier to discriminate medium weight and heavy objects. The proposed method has 

been observed to achieve a 20% increase in accuracy in distinguishing between the light-

heavy classes and separating the heavy-medium classes. 

 

Table 4.10 Classification performance of the proposed method (imagery session 

+ actual movement session).  

Classes Features Evaluation 

Metrics 

Classifier 

SVMG SVMQ KNN LDA FineT NaïveB 

Light- 

Heavy 

FSST-SVD ACC (%) 55 55 45 52 70 50 

f-measure 0.64 0.45 0.5 0.46 0.68 0.66 

S-T-F-TF ACC (%) 55 65 50 60 50 45 

f-measure 0.66 0.46 0.61 0.52 0.47 0.58 

Light- 

Medium 

FSST-SVD ACC (%) 50 45 50 55 50 40 

f-measure 0.51 0.44 0.57 0.53 0.6 0.08 

S-T-F-TF ACC (%) 50 30 45 50 40 55 

f-measure 0.46 0.24 0.54 0.36 0.42 0.23 

Heavy- 

Medium 

FSST-SVD ACC (%) 65 80 50 60 65 50 

f-measure 0.52 0.82 0.49 0.54 0.58 0.1 

S-T-F-TF ACC (%) 45 60 55 60 60 55 

f-measure 0.23 0.58 0.42 0.55 0.56 0.23 
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Findings on Real-time Tests 

 In the current state, the most efficient results have been obtained from offline 

studies, particularly with the novel method we propose. Therefore, a similar approach to 

this method has been employed in real-time studies, where training data were generated 

using pre-recorded data. Accordingly, an offline training dataset was created, taking into 

account the data from 31 individuals during the holding and imagining phases of 

movement, considering grasping the object and imagining the weight of the object. This 

offline training dataset was then tested on participants. Real-time signal processing was 

performed in segments of 500 samples (1 second), and the classification experiment setup 

was applied only to the 3-second signals obtained from the specified phase of lifting the 

object. Therefore, the classification result is generated three times based on the 

participants' performance during the experiment. However, only the third decision output 

is sent to the prosthesis motor. This output is visually presented in Figure 4.12. As there 

were 5 trials in one session, the classification was performed 5 times. The labels 0 and 1 

on the y-axis represent the classified weight, while label 2 is used for phases other than 

the object-holding phase in the experiment, as there is no signal of interest for our 

classifier in those phases. 

 As seen in the Figure 4.12 our classifier model predicted correctly for each trial. 

However, since the third decision was used as a command to the motor, trial 3 and trial 4 

Figure 4.12 Label values predicted by the classifier recorded from participant 001's 

online trials 
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were evaluated as incorrectly classified. For this reason, the accuracy value was noted as 

60%. 

 The classification results of these tests with 20 healthy individuals are summarized 

in Table 4.11. According to the results obtained, the average accuracy for all participants 

is 48.83%. There are instances where the classifier made correct classifications in at least 

one of the three decisions it produced (This situation is explained in Figure 4.12). 

However, since only the third decision is transmitted to the prosthetic hand's motor, the 

classification accuracies are calculated based on the third decision. 

Table 4.11 Real-time session accuracy results  

Participants Accuracy (%) 

Decision produced in 1 

second 

Decision produced in 3 

seconds 

Most produced 

decision 

001 80 46.67 53.33 

002 46.67 40.00 46.67 

003 40 40.00 40 

004 46.67 46.67 46.67 

005 50 60.00 60 

006 46.67 53.33 46.67 

007 50 50.00 50 

008 46.67 46.67 46.67 

009 60 46.67 53.33 

010 60 66.67 73.33 

011 50 60.00 50 

012 46.67 46.67 46.67 

013 40 46.67 46.67 

014 40 53.33 40 

015 53.33 40.00 40 

016 46.67 40.00 43.33 

017 46.67 46.67 46.67 

018 26.67 53.33 26.67 

019 46.67 46.67 40 

020 46.67 46.67 46.67 

Average 48.50 48.83 47.17 
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4.4 Discussion and Conclusions 

 In this research, we introduce the use of FSST (Fourier-based Spatio-Temporal), 

statistical, time, frequency, and time-frequency domain features (S-T-F-TF), relative band 

power features, and second-order statistical features from GLCM. The purpose is to 

discriminate and classify the weight categories (light, heavy, medium weight) of objects 

to be manipulated, utilizing EEG signals. Our study is designed to discern and 

characterize different weights through the subject-specific imagination phase during 

testing, and a combination of imagination and actual movement sessions during the 

training of multichannel Electroencephalogram (EEG) signals to precondition muscles. 

Accurately estimating the weight of the object to be manipulated is crucial for pre-

adjusting the prosthesis's torque prior to movement. 

 The experiments were conducted in two sessions: actual movement and imagery 

movement. The actual movement session comprised five phases: resting, holding, lifting-

up, putting-down, and relaxation. The imagery movement session involved subjects 

performing mental imagery tasks of lifting up and putting down bottles. In this session, 

trials consisted of four phases: resting, visual cue, imagination, and relaxation. Each 

subject performed 30 imagination trials (10 for each bottle). In total, there were 924 trials 

for the actual movement session and 924 trials for the motor imagery session. EEG 

recording was conducted using 16 channels.  

 Our proposed method incorporates subject-specific, intertrial classification. 

Initially, the method constructs distinct training and test datasets for each subject to 

systematically investigate the impact of actual movements on evaluating the classification 

performance within the context of weight perception. To achieve this, the trials from the 

imagination phase of the imagery session for a given subject were partitioned into five-

folds, with one-fold designated as the test dataset. The remaining four folds, comprising 

16 trials from the subject's imagination phase and 20 trials from the lifting phases of the 

actual movement session, constituted the training dataset. This procedure was iteratively 

performed for each subject, allowing for a comprehensive examination of the method's 

performance across different subjects. 

 This study concentrated on forecasting the weights of objects categorized as light, 

heavy, and medium weight through the analysis of EEG signals. The results indicate that 



81 

 

the FSST-SVD features representing medium and heavy objects exhibited the most 

distinctive characteristics when compared to the other pairwise groups. 
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Chapter 5 

Surface Electromyography Based Weight 

Perception During Holding Phase for 

Torque Control of Upper Limb Prosthesis  

 

 This chapter focuses on using the one-second holding phase signal to differentiate 

between light, medium, and heavy weights for torque control in an EMG-based upper 

limb prosthesis. Time-domain features are employed to dynamically adjust the wrist 

component's stiffness during this phase, emphasizing the importance of perceiving the 

object's weight for controlling muscle contraction intensity. The research aims to enhance 

upper-limb prostheses' functionality and user-friendliness, granting users more natural 

and intuitive control over their interactions with the environment. The study used 32 time-

domain methods to extract features from one-second EMG signals. In addition to the 

features, empirical mode decomposition (EMD) was evaluated. Feature selection 

employed the analysis of variance (ANOVA) test. For binary classification, logistic 

regression, K-nearest neighbors (KNN), support vector machines (SVM), and XGBoost 

were employed with leave-one-subject-out cross-validation approach. The methodology 

introduced in this study has shown an impressive classification accuracy when 

distinguishing between light and heavy objects. Specifically, it achieved a high accuracy 

of 78.5% using time-domain features directly derived from EMG signals, whereas using 

features extracted from IMF1 (68.8%) and IMF2 (67.6%) obtained through EMD resulted 

in slightly lower accuracy levels. This research promises to significantly improve upper-

limb prostheses, enhancing user experience and control. 

5.1 Introduction 

 Surface electromyography (sEMG) is a non-invasive method used to capture 

myoelectric signals. It involves placing electrodes on the skin's surface, allowing for the 

measurement of neural activity in muscles without the need for surgical procedures. This 
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approach enhances our comprehension of muscle activity and neuromuscular control. 

sEMG is a safe, user-friendly, and painless technique that provides valuable information 

for various applications, including prosthetic system design [272]. The potential uses of 

sEMG encompass a wide range of applications, such as electric wheelchairs, the control 

of upper limb robotic arms, with a particular focus on neural prostheses [273]. 

 Reaching and grasping, which are typical activities for human control, are widely 

encountered in our daily lives and function as interfaces for controlling robotic systems 

[133]. Ozdemir et al., proposed an approach for classifying seven different hand gestures 

using deep learning with spectrogram images of sEMG signals and achieved a test 

accuracy of 99.59% [274]. Sharmina and Raghunadhan focused on the classification of 

hand movements with entropy features and found that combining them with other features 

improved classification accuracy [275]. Overall, these papers demonstrate the potential 

of sEMG measurements for accurately identifying hand movements using various 

machine learning techniques. 

 Additionally, to investigate the application of sEMG for object weight 

classification, Maoz and Lashgari developed an automated pipeline that utilized EMG 

data for predicting object weight during a reach-grasp-lift task [276]. They achieved a 

high classification accuracy by employing dimensionality reduction and classification 

algorithms. Similarly, Aziz et al., employed EMG signals for weight-lifting tasks, 

achieving high classification accuracy through denoising and feature analysis [277]. On 

the other hand, Liang focused on object detection rather than classification, proposing 

novel methodologies to improve the accuracy and performance of object detection models 

using EMG data [278]. These papers collectively demonstrate the potential of EMG for 

object weight classification and detection tasks. 

 Moreover, as signal processing and machine learning techniques have progressed, 

a range of novel approaches has emerged for classifying sEMG signals. EMG signal 

processing techniques consist of three main steps: preprocessing, feature extraction, and 

classification. Filtering is a commonly used preprocessing method [279]. There is a 

wealth of information and methods in the literature related to feature extraction and 

classification. Phinyomark et al., highlighted challenges of feature selection in biological 

signal pattern recognition, present a novel approach using topological tools to address 

these challenges, and demonstrate its effectiveness through a case study with EMG 
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datasets. The approach helps identify meaningful feature groups that can be applied across 

different datasets for classification and analysis purposes [280]. Too J. et al., focused on 

the extraction of electromyography (EMG) features to improve the accuracy of 

classifying hand movements. Two novel EMG features, namely, enhanced wavelength 

(EWL) and enhanced mean absolute value (EMAV), were introduced. These features 

were modifications of the existing wavelength (WL) and mean absolute value (MAV) 

measures. The goal was to enhance the prediction accuracy for the classification of hand 

movements [133]. Furthermore, Samuel et al., introduced a set of new, straightforward 

yet highly effective time-domain features. These features involve calculating the absolute 

value of the mean value of the square root (MSR) and the absolute value of the summation 

of the square root (ASS) of the data within a defined set of analysis windows [281]. 

Hudgins et al., emphasized the idea of employing four distinct time-domain 

characteristics to decode the intention behind limb movements [282]. These features are 

the most widely used feature sets consist of mean absolute value, waveform length, zero 

crossings, and slope sign changes [283]. Additionally, in the study by Karabulut et al., the 

main objective was to conduct a comparative evaluation of commonly used time-domain 

features of EMG signals, specifically integrated EMG (IEMG), root mean square (RMS), 

and waveform length (WL), in the estimation of external forces applied to human hands 

[284]. After extracting these features, a classification process was implemented using 

artificial neural networks (ANN) to predict the external forces.  

 On the other hand, empirical mode decomposition (EMD) is an effective technique 

for processing EMG signals. Andrade et al., compared EMD with wavelet transform for 

EMG signal filtering and found that EMD successfully attenuates background activity in 

EMG signals [285]. Moreover, Zhang and Zhou explored the use of ensemble EMD 

(EEMD) for denoising surface EMG signals and demonstrated that EMD-based methods 

outperform traditional digital filters, especially in low signal-to-noise ratio conditions 

[286]. Srivastava et al., focused on the suppression of additive white Gaussian noise 

(AWGN) in EMG signals using EEMD and morphological filtering, reporting improved 

results compared to conventional EMD and EEMD approaches [287]. Overall, these 

papers highlight the effectiveness of EMD and its variants for processing EMG signals 

and reducing noise interference. 

 While there have been numerous studies on EMG signal processing and EMG-

controlled upper limb prostheses in existing literature, there has not been sufficient 
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exploration of weight perception algorithms that are compatible with EMG signals. This 

study aims to fill this gap by focusing on the use of the holding phase (a one-second 

signal) to differentiate between light, heavy, and medium weights. These distinctions will 

be utilized in the torque control of an EMG-based upper limb prosthesis, employing time-

domain features [133], [288], [289]. In this study we hypothesize that utilizing signals 

from holding/grasping phase (before actual lifting starts) to control the adjustment of the 

stiffness of the wrist component of the prosthesis, which constitutes the primary focus of 

this study. This hypothesis stems from the observation that lightly feeling the object's 

weight is essential in adjusting the intensity of muscle contraction while lifting the object. 

This research has the potential to improve the functionality and user-friendliness of upper-

limb prostheses, granting individuals more natural and intuitive control over their 

interactions with their surroundings.   

5.2 Materials and Methods  

5.2.1 Experimental Setup and Dataset 

 In this work, 30 healthy volunteers have enrolled (mean age: 22 years, age range: 

19–35). Subjects sat in a chair approximately 1 meter away from the computer screen and 

performed an actual movement session in a sequence with 30 repetitions. Trials consisted 

of five phases: the rest phase, holding phase, lifting phase, replacement phase and 

relaxation phase. In the rest phase, a red circle was presented in the middle of the plus 

sign for 2.5 s. The subjects fixed their eyes on the circle. In the holding phase, three visual 

cues representing one of the three objects with different weights were presented for 0.5 s 

to aid the subjects in holding for the grasping the weight for 1 s. Then, in the lifting phase, 

the up-arrow icon was presented for 2 s to lead the subjects in lifting the object up. In the 

replacement phase, the subjects replaced the object to its initial position after the 

appearance of the down-arrow icon. In the relaxation phase, the subjects relaxed and 

prepared mentally for the next trial. Each of the three weights was performed 10 times. 

The experimental paradigm is shown in Figure 5.1.  
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Figure 5.1 The experimental paradigm. 

 

 In the actual movement session, subjects were asked to carry out the requested task 

immediately after the execution cue appeared. Each of the three different weights of the 

objects in any given epoch was randomly selected. All the subjects were healthy with no 

history of neurological disease and were instructed to remain relaxed during the 

recordings. Except for eye blinks, they were asked to avoid eye movements, body 

adjustments, throat clearing, and other movements. The research was approved by the 

Erciyes University Ethics Committee (January 9, 2019, 2019/32), Kayseri, Turkey. [259].  

 In the experiment g.tec (Schiedleberg, Austria) products and PYTHON based 

software were used. g.USBamp bioamplifier was employed in order to record four 

channels located at extensor carpi radialis brevis (ECRB), extensor digitorum (ED), 

extensor carpi ulnaris (ECU), and flexor carpi radialis (FCR). The electrode placement of 

the four EMG channels on the forearm is illustrated in Figure 5.2. The sampling rate of 

the signal acquisition system was 512 Hz. In the system, the signals were filtered using a 

hardware bandpass (2-200 Hz) and a notch (50 Hz) filter. 

Figure 5.2 EMG electrodes' placement (ECRB: extensor carpi radialis brevis, ED: 

extensor digitorum, ECU: extensor carpi ulnaris, FCR: flexor carpi radialis) [290]. 
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 The data of each subject for one session has a total of 30 trial data, and each trial 

represents one actual movement task, belongs to one of three weight class: 10 trials light 

weight (25g empty bottle), 10 trials medium-weight (523g half full bottle of water) and 

10 trials heavy weight (1037g full bottle of water). The grand total of trials from all 

subjects amounted to 900 trials for the actual movement session. The EMG signals 

corresponding to the 30 repetitive muscle contraction and relaxation durations of 

participant number 1 and the EMG signals from the 4th trial of the same subject, depicted 

in phases, were shown in Figure 5.3. 

5.2.2 Preprocessing 

 Python software was used to pre-process the collected data. After the frequency 

analysis of the collected signals, the observed 150 Hz noise was removed using a notch 

filter that suppresses this frequency (fo = 150; Q = 35; BW = 2*(fo/(fs/2))/Q). When 

examining the signals corresponding to the fourth trial (highlighted in the red box in Fig. 

3. top panel) in more detail, the time intervals corresponding to the phases of resting 

(phase 1), reaching for the bottle (phase 2), preparing the muscles to lift the bottle (phase 

3), lifting the bottle (phase 4), holding it aloft (phase 5), lowering it (phase 6), and 

returning the hand to its initial position (phase 7) can be observed in Figure 5.3 bottom 

panel. It should be noted that, even though instructions were presented to participants 

with precise timing cues (such as "at this second, perform this action"), there were slight 

variations in the onset and offset times of these phases from person to person and even 

from trial to trial. Therefore, the signals of all participants were individually examined, 

and at least the onset timing of phase 1 was manually determined.  

 On the other hand, it has been assessed as more suitable to utilize signals from phase 

3 (highlighted in green in Figure 5.3 bottom panel) to control the adjustment of the 

stiffness of the wrist component of the prosthesis, which constitutes the primary focus of 

this study. The general observation from both participants and the authors is that lightly 

feeling the object's weight is essential in adjusting the intensity of muscle contraction. In 

line with this observation, one-second signals were segmented for each participant and 

each trial and subsequently transferred into a matrix format for all four channels. Thus, 

feature extraction procedures have been initiated on a matrix comprising a total of 3600 

rows (30x30 trials, each with four channels) and 512 columns (one-second signal sampled 
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at 512 Hz). In Figure 5.4, one-second signals recorded from participants 1 and 11 are 

displayed for three different weight conditions. 

 

 

 

Figure 5.3 The raw EMG signals of subject number 01 that belong to the flexor carpi 

radialis muscle (Sub: Subject number, Tr: Trial number, Ch: Channel). The 30 repetitive 

muscle contraction and relaxation durations (top panel). The 4th trial of the same subject 

in the form of phases (bottom panel). 
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Figure 5.4 A one-second signal with three different weight conditions for Subject 01 and 

Subject 11. 

5.2.3 Feature Extraction / Selection 

 The aim was to predict weight perception using EMG signals collected from the 

section that prepares the muscles for lifting the bottle. Therefore, we utilized phase 3 of 

the paradigm, which enables the decoding of weight perception during the holding of the 

bottle. 
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 The names of the 32 time-domain methods used to extract features from the one-

second EMG signals extracted from each trial are listed in Table 5.1. 

Technical/methodological details about these methods are widely available in the 

literature [279], [280], [291], [292], [293]. 

Table 5.1 Features for a single time window. 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

11 

12 

13 

14 

15 

16 

17 

18 

19 

20 

21 

22 

23 

24 

25 

26 

27 

28 

29 

30 

31 

32 

Maximum Fractal Length 

Log Detector 

Zeros Crossing 

Interquartile Range 

Difference Variance Value 

Log Teager Kaiser Energy Operator 

Enhanced Mean Absolute Value 

Difference Absolute Standard Deviation Value 

Slope Sign Change 

Standard Deviation 

Mean Absolute Deviation 

Log Difference Absolute Mean Value 

Mean Value of Square Root 

Energy of Autoregressive Coefficient 

Modified Mean Absolute Value 

Waveform Length 

Average Amplitude Change 

Mean Absolute Value 

Coefficient of Variation 

Difference Absolute Mean Value 

Log Difference Absolute Standard Deviation Value 

Absolute Value of Summation of Square Root 

Modified Mean Absolute Value 2 

Root Mean Square 

Integrated EMG 

Kurtosis 

Temporal Moment (Order = 3) 

Cardinality (Threshold = 0.01) 

Absolute Value of Summation of *exp* Root 

V-Order (Order = 2) 

Log Coefficient of Variation 

Enhanced Wavelength 
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 As a result of using the methods listed in Table 5.1, a feature matrix was created by 

combining the 32 features extracted for each trial. The matrix was reshaped as 900 × 128 

(32 features, each with four channels) in size. Each attribute was normalized to each 

participant. Instead of global normalization, participant-based normalization was 

performed. During normalization, the minimum value was set to zero, the maximum value 

was equal to one, and the values were adjusted to increase linearly. The last column of 

this matrix was added as the label for each trial: light (1), heavy (2), and medium-heavy 

(3).  

 In scikit-learn library, analysis of variance (ANOVA) test was used for the feature 

selection. Thus, a structure that combines attributes and labels and allows the use of 

various machine-learning methods was obtained. Additionally, for a single channel, 

matrices consisting of features were prepared for the channel selection. 

 In addition to the features indicated in Table 5.1, empirical mode decomposition 

(EMD) was evaluated in this study. EMD is a signal processing technique used to analyze 

and decompose nonstationary time-series data. Huang et al., introduced this method in 

the late 1990s to adaptively decompose signals into a set of intrinsic mode functions 

(IMFs) [294]. 

 The basic idea behind EMD is to decompose a signal into components with well-

defined instantaneous frequencies. Unlike the traditional Fourier-based methods, EMD 

does not assume that the signal is composed of a fixed set of sinusoidal components with 

constant frequencies. Instead, it aims to extract components directly from the data by 

identifying and separating oscillatory modes. This decomposition can help extract useful 

information from EMG signals [295], [296], [297]. The obtained intrinsic mode functions 

(IMFs) from Channel FCR for one second of the first trial of participant number 01 can 

be seen in Figure 5.5. After extracting the IMFs using the EMD method, the feature 

extraction methods listed in Table 5.1 were applied to IMF1 and IMF2, resulting in a new 

feature matrix. 
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5.2.4 Classification 

 The classification performances of different machine learning approaches were 

analyzed using features obtained from EMG signals. Tests were conducted using logistic 

regression, K-nearest neighbors (KNN), support vector machines (SVM), and XGBoost 

for binary classification. Observations were made to determine which method yielded 

higher accuracy compared to the others. Subsequently, it was observed that all approaches 

produced similar results, but logistic regression yielded approximately 1-2% higher 

classification accuracy compared to the others. Therefore, it was decided to report the 

results of this method in the interest of simplicity, as it provided consistency across 

numerous trials with varying feature sets and classification types. At this point, it should 

be noted that in this part of the study, an approach was demonstrated where all channels 

and all features were examined for binary classification. Additionally, an approach was 

presented where individual channels were considered, and analyses were conducted using 

reduced or selected features.  

 Leave-one-subject-out cross-validation (LOSOCV) classification was used in 

machine learning studies. Additionally, the classification was repeated three times, and 

the average accuracy values were included in the tables. The aim of this study was to 

understand which channel or channels, and how many features, resulted in higher 

Figure 5.5 The obtained IMFs from Channel FCR for the one second of the first trial of 

participant number 01. 
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accuracy in binary classification. Similar classification experiments were repeated with 

the selected features as well. 

5.3 Results  

 The performance of machine learning approaches was examined on the 32 features 

listed in Table 5.1 Features for a single time window.. Additionally, for binary 

comparisons (1 vs. 2, 1 vs. 3, and 2 vs. 3) made from these features, the ANOVA feature 

selection and reduction method were applied using the “SelectKBest” class from the 

scikit-learn library in Python to obtain different numbers of features, and new feature 

matrices were obtained by combining these selected features. 

 The results of the LOSOCV method used in classification can be seen in Figure 5.6 

for each participant in the experiment. In Figure 5.6, the results obtained by directly 

applying the features listed in Table 5.1 to the EMG signals, forming the feature matrix 

(EMG) and providing it as input to the classifier, are shown. Additionally, the results 

acquired by applying the features from Table 5.1 on IMF1 and IMF2 generated from the 

EMD method and providing the resulting feature matrix as input to the classifier are also 

displayed. When binary classification is performed based on three classes (light, heavy, 

medium-weight), the results are visualized in Figure 5.6 as follows: (a) light vs. heavy, 

(b) light vs. medium-weight, and (c) heavy vs. medium-weight. The figure reveals 

discernible variations in classification accuracy among participants. Notably, subject 16 

consistently demonstrates lower accuracy results. Conversely, subjects 14, 17, 18, 25, and 

30 consistently achieve accuracy rates ranging between 75 and 100% in light and heavy 

object weight classification. 

 A closer examination of the feature methods used reveals in Figure 5.7 that the 

average accuracy (Figure 5.7(a)) and f-measure (Figure 5.7(b)) values for the 30 

participants are presented on a per-channel basis when employing the feature matrix 

generated by directly applying the features listed in Table 5.1 to the EMG signals. As 

seen in Figure 5.7, the highest accuracy value was achieved by directly applying the 

features from all channels to the EMG signals. When channels were evaluated 

individually, Channel 2 exhibited the highest accuracy with 75% accuracy when 

classifying light and heavy object weight. 
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Figure 5.6 The accuracy results (out of one) of LOSOCV classification for features versus 

subject ID (SubX). (a) Classification accuracies of class light and class heavy, (b) 

classification accuracies of class light and medium weight, (c) classification accuracies of 

class heavy and class medium weight. 
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 In Figure 5.8 and Figure 5.9, the accuracy and f-measure values obtained by using 

the feature matrix generated by sequentially applying the features listed in Table 5.1 on 

IMF1 and IMF2 obtained from the EMD method are presented as the average of 30 

individuals. The highest accuracy obtained from IMF1 shown Figure 5.8, using features 

from all channels, is 68.8%, which is for classifying the weights of light and heavy 

objects. When examined individually by channels, Channel 2 yielded the highest 

accuracy. The lowest accuracy, on the other hand, comes from Channel 1 and Channel 4 

with a value of 53.3%. 

 Similar observations can also be made for Figure 5.9. When examining the figure, 

the highest accuracy, once again, is achieved for the classification of the weights of light 

and heavy objects, with an accuracy of 67.6%, when using features from all channels. 

When individually examining the channels in a similar manner for Figure 5.9, Channel 2 

provides the highest accuracy, with an accuracy value of 64.5% whereas the lowest 

accuracy comes from Channel 1, with an accuracy of 54%. 
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Figure 5.7 Classification results for the features in Table 1 when applied to EMG 

signals. (a) Accuracy (%), (b) f-measure out of one. 
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Figure 5.8 Classification results for the features in Table 1 when applied to IMF1. (a) 

Accuracy (%), (b) f-measure out of one. 
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Figure 5.9  Classification results for the features in Table 1 when applied to IMF2. (a) 

Accuracy (%), (b) f-measure out of one. 
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 In addition to the results reported here, it has been observed that the accuracies can 

be improved to the 1% level using the feature selection approach. In other words, by 

utilizing signals from all channels, an accuracy of 79.5% was achieved in binary 

classification (for distinguishing between light and heavy objects). 

5.4 Discussion 

 In this paper, we introduce Empirical Mode Decomposition (EMD) and 32 

commonly used time-domain features for discriminating and classifying the weight of 

objects (light, heavy, medium weight) to be carried using EMG signals. Our study aims 

to identify and characterize different weights through the holding phase of multichannel 

EMG signals to precondition muscles. Properly estimating the weight of the object to be 

carried is crucial for adjusting the prosthesis's torque before movement. We conducted 

experiments, during which the participants were instructed to rest, reach for and hold a 

bottle, prepare their muscles to lift the bottle, lift it, hold it at a higher position, lower it, 

and return their hand to the initial position. To address variations in muscle strength 

among participants, we recorded EMG signals from 30 participants. Each phase was 

repeated 30 times, resulting in a total of 900 trials across three weight classes. We utilized 

four EMG channels distributed across the forearm and extracted 32 features from both 

the Intrinsic Mode Functions (IMFs) obtained through EMD and the raw EMG signal. 

Additionally, we selected specific channels for single-channel analysis. Our proposed 

method incorporates EMD as a feature, and for the first time in EMG signal processing 

literature, explores the problem of weight perception during the holding phase. The effect 

of EMD is compared with several popular feature extraction approaches listed in Table 

5.1. Our primary focus in this research was to propose the optimal electrode-feature 

combination for distinguishing the weight of objects during the holding phase (muscle 

preparation for lifting). We believe that this can facilitate the use of an easily and quickly 

controllable upper limb prosthesis for patients. This classification scheme is crucial 

because it can be utilized in real-time to adjust the torque of the prosthesis based on the 

weight of the object being carried. 

 The study illustrates noticeable differences in the classification accuracy among the 

participants. These findings are supported by the fact that EMG data is specific to each 

subject. It is worth mentioning that Participant 16 consistently exhibits lower accuracy 

results. One possible explanation for this phenomenon is that it may imply a potential 
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case of muscle fatigue. Factors such as genetics, dietary habits, and physical activity could 

be considered as potential contributors for this participant. This inference is also 

supported by the study conducted by A.K. Mukhopadhyay and S. Samui [298].  

 This study focused on predicting the weights of light, heavy, and medium weight 

object using EMG signals. According to our findings, when all channels were used, it was 

determined that the features representing light and heavy objects had the most 

distinguishing features compared to the other pairwise groups. The outcomes of this study 

are in line with earlier research by Cisotto et al., in which they used both EEG 

(Electroencephalography) and EMG (Electromyography) to classify WAY-EEG-GAL 

dataset. [122], [254]. In their study, they focused on classifying two out of three available 

classes, specifically the most extreme weights, which were 165 grams and 660 grams. 

Despite having imbalanced classes with an imbalance ratio of 0.81 between the number 

of trials in the two classes, they chose to evaluate their results in terms of accuracy. They 

achieved a maximum accuracy of 94% when considering only the Brachioradial muscle 

data. When we conduct our analysis using all available muscles but restrict it to the data 

from only the 12 subjects, we achieve an accuracy rate of 89.5%. As a result, despite 

exclusively utilizing EMG data, we managed to attain similar outcomes. However, 

Lashgari and Maoz used only EMG to classify the WAY-EEG-GAL dataset [254], [276]. 

They used multichannel classification with 3 classes (165, 330 and 660 gr). They 

developed an automated feature-extraction directly from the (filtered) raw EMG time-

domain signal. They achieved high classification accuracy in terms of f1-score 

88.2±3.5%. They performed a classification process using features obtained from all 

phases of reaching, grasping, and lifting recorded signals in the signal processing step. 

Nevertheless, our findings have contributed to the literature by focusing solely on the 

grasping phase and determining whether EMG signals were preconditioned based on the 

target weight. 

 The direct application of commonly used feature extraction methods to EMG 

signals has been compared with their application to IMF1 and IMF2 obtained from EMD. 

According to this comparison, the classification accuracy of common features directly 

obtained from EMG signals is 78.5%, whereas the classification accuracy of features 

obtained from IMF1 and IMF2 is 68.8% and 67.6%, respectively. The fact that the IMFs 

are sorted by frequency and that IMF1, which has a higher frequency, performs better 

than IMF2, which has a lower frequency, might be explained by the high-frequency 



99 

 

characteristics of the EMG. In this case, we can observe that the low frequency (IMF2) is 

relatively weak in representing EMG signals. There is a study in the literature regarding 

the use of EMD for EMG signals. Aziz et al., proposed a methodology for load 

classification using sEMG signals, achieving a classification accuracy of 99% for a three-

class problem [277]. However, the results of this study diverge from our research, 

indicating an alternative approach to utilizing EMD for signal denoising. While they 

reconstructed the signal using selected IMFs, we, on the other hand, employed the IMFs 

as individual signals. 

 Furthermore, it is noteworthy that various muscles exhibit distinct performances in 

terms of class differentiation, particularly in distinguishing between light and heavy 

objects. For example, the classification accuracies are ranked as follows, from highest to 

lowest: Channel 2 (extensor carpi radialis brevis (ECRB)) at 75.5%, Channel 3 (extensor 

digitorum (ED)) at 69.3%, Channel 4 (extensor carpi ulnaris (ECU)) at 67%, and Channel 

1 (flexor carpi radialis (FCR)) at 61%. To state it another way, the muscles that provide 

the highest classification accuracy can be regarded as the most informative for 

distinguishing between two weights. In particular, when all muscles were used, they 

achieved the highest accuracy in classifying the weights. Cisotto et al., presented findings 

that suggest considering a greater number of muscles leads to enhanced accuracy [122]. 

 The upper limb prosthesis can be used more effectively if torque control can be 

adjusted when the object is visually perceived. Therefore, we introduced that the selected 

signal area during the holding phase has the potential to provide informative features for 

recognizing object weight perception. The classification accuracy of the common features 

extracted from the EMG signal, used to classify light and heavy object weights, showed 

high success rates through the application of machine learning approaches.  

 Additionally, we made a contribution to the literature on the use of the EMD method 

for representing EMG signals with its IMFs. Although the classification accuracies of the 

IMFs from the EMG signals remain low, they offer valuable accuracy in representing the 

EMG signals. Consequently, these findings support the notion that IMFs can be employed 

for data augmentation in deep learning. 

 While we achieved successful classification of both light and heavy weights, our 

study is constrained by certain limitations stemming from its offline analysis. In 
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subsequent research, we plan to overcome this limitation by implementing real-time 

classification methods that offer enhanced accuracy and robustness. 

5.5 Conclusions 

 In this chapter, we introduced an innovative approach for weight perception using 

sEMG signals. Our methodology focuses on utilizing sEMG signals captured during the 

holding phase to differentiate between object weights. Furthermore, we explored the 

implementation of EMD-based feature extraction techniques. The selected feature set was 

then employed in logistic regression to distinguish between different binary load 

categories. The proposed methodology in this study achieved a classification accuracy of 

78.5% for light vs. heavy load category, specifically 25g (empty bottle) and 1097g (full 

bottle of water). The findings of this research validate the utility of analyzing the holding 

phase of sEMG signals for weight perception purposes. Future studies may consider 

incorporating real-time analysis, which can further enhance the practicality of our 

proposed approach. 
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Chapter 6 

Conclusions and Future Prospects  

6.1 Discussion 

 In the initial phase of our project, the primary goal was to automatically determine 

the intention to move by using multi-channel EEG signals to transition the brain-machine 

interface system from sleep mode to active mode without the need for additional 

accessories/methodologies. An approach was developed based on Fourier-based 

synchrosqueezed transform (FSST) for feature extraction and singular value 

decomposition (SVD) for feature selection, aiming to achieve high accuracy in 

distinguishing and classifying rest and motor intention states using multi-channel EEG 

signals. This approach was compared with other machine learning approaches, including 

common spatial patterns (CSP), supervised CSP (SCSP), discrete wavelet transform 

(DWT), and autoregressive (AR), among nine other feature extraction methods. It is 

important to note that the experiments involved 30 participants, with data from 28 

participants being used for analysis. Participants were instructed to stay still, imagine 

moving their limbs, or imagine opening and closing their hands during experiments with 

a 16-channel EEG system. The data resulted in over 1500 trials for each class. 

 The performance of FSST and SVD was compared with CSP, SCSP, DWT, AR, 

and the other mentioned feature extraction methods in terms of classification results. 

Additionally, distinctive electrode-feature combinations were explored for each 

classification scheme. The main focus of this study was to propose the best electrode-

feature combination and classification methodology for distinguishing between rest and 

motor movement imagination states. The ultimate goal was to pave the way for the use of 

a self-initiated, portable, and wireless EEG-based Brain-Computer Interface (BCI) system 

for weight perception. 

 In this study, it was found that, although the classification accuracy of the S-T-F-

TF method (the constituent methods of S-T-F-TF have been individually used in the 
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literature but not commonly combined as we did here) was comparable to FSST, the FSST 

method achieved the highest accuracy, ranging between 99% and 100%, and had a 

calculation time of 0.24 seconds with SVD, demonstrating superior noise resilience. 

While the SBCSP approach was more effective than CSP in the classification of motor 

imagery tasks, the combination of the introduced 11 features in this study (S-T-F-TF) did 

not perform as well as expected. The achieved high accuracies indicate the potential 

usefulness of this approach (feature extraction with FSST and SVD) in the field, 

particularly in detecting motor intention waves and transitioning brain-machine interfaces 

from sleep mode to active mode. 

 Various studies in the literature have explored different features related to motor 

movement. For instance, Niazi et al., detected movement-related cortical potentials 

(MRCP) from EEG signals in real-time for eight healthy subjects [232]. They reported a 

true positive rate (TPR) of 67.15% ± 7.87% for the MRCP task. Another study, Ahmadian 

et al., used constrained blind source extraction (CBSE) to detect readiness potentials (RP) 

for three healthy subjects, achieving a TPR of 75% ± 11% [233]. Jochumsen et al., 

investigated recognizing MRCPs during grasp tasks in five stroke patients and 15 healthy 

individuals using a single EEG channel [234]. They reported detecting approximately 

75% of the movements accurately around 100 ms before the onset of the movement. 

Similarly, Xu et al., demonstrated the intentional movement detection using MRCPs, 

achieving a classification accuracy of 79% ± 11% in their study [235]. 

 The results of our study affirm the significant impact of motor imagery on brain 

signals. However, the accuracy of predicting motor intention in our study is lower 

compared to some other works in the literature, such as Bai et al., who reported an 

accuracy rate of 75% for predicting motor intention [25]. Additionally, Niazi et al., used 

MRCPs to distinguish between real and imagined movements, achieving a high TPR of 

82.5% ± 7.8% [240]. Nevertheless, Madhavan et al., achieved a 100% accuracy rate using 

a 2D-convolutional neural network (CNN) to classify focused and unfocused categories 

using FSSD of EEG signals [242]. 

 Methods based on FSST allow the analysis of non-stationary signals like EEG in 

the time-frequency (TF) domain. Unlike STFT, FSST has the advantage of obtaining a 

high-resolution TF representation of non-stationary signals by minimizing unnecessary 

information. Therefore, the classification accuracy of FSST for distinguishing rest and 
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motor intention states was proposed in the initial phase of our project, along with machine 

learning algorithms. However, it's worth noting that FSST, when used in conjunction with 

machine learning algorithms, has limitations, such as the need for feature selection to 

extract features from the TF coefficient matrix. 

 In the second phase of our project, research was initiated to detect weight perception 

using EEG and/or EMG signals before establishing a connection between the decision 

information obtained from the signals and the prosthetic limb. A literature review 

revealed studies that employed keywords such as "Weight perception," "grab and lift 

(GAL)," and "EEG and EMG" in various focus areas and datasets. For example, Luciw 

et al., designed an experimental setup using 32 electrodes on the scalp to investigate 

sensation, intention, and action detection using EEG signals from individuals performing 

a grab and lift task [254]. The dataset, named WAY-EEG-GAL, was made publicly 

available for other researchers to use. Another study, Hasan et al., conducted experiments 

on the same dataset, exploring various preprocessing methods and deep learning 

approaches such as convolutional neural networks (CNN) and long short-term memory 

(LSTM) to determine their performance [299]. They found that a combination of a 

discrete wavelet transforms (DWT)-based noise removal filter, data standardization, and 

a CNN-based classification approach achieved a high area under the curve (AUC) value 

of 0.944. Additionally, Liu and Yang classified stages of hand movements using a three-

branch CNN architecture on the WAY-EEG-GAL dataset [300], while Orellana et al., 

used DWT and empirical mode decomposition (EMD) to achieve the best classification 

performance (around 89%) for the six movements within the 0-4 Hz range [300].  

 Other research groups working on their specific datasets have also contributed to 

the literature. Aslam et al., conducted a study where participants applied pressures 

corresponding to different weight levels to their hands as a tactile stimulus, and 4-channel 

EEG signals were used to classify the brain's weight perception [301]. They achieved 

successful results using the relative power values of alpha and beta sub-bands as features 

and a radial basis function (RBF) kernel support vector machine (SVM) classifier. Van 

Polanen and Davare used 32-channel EEG signals and EMG signals from five arm and 

hand muscles to estimate the weight of randomly selected light or heavy objects lifted in 

a semi-random order [302]. Chang proposed a comprehensive study on using brain signals 

during a human-in-the-loop robotic system, where EEG signals were employed for a 

robot's grasping and lifting function [303]. In their study, Chacko et al., collected EEG 
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signals from a 129-channel system while participants performed the task of grasping and 

lifting a water-filled cup, achieving a 95% accuracy in detecting motor imagery intentions 

using the 8-14 Hz frequency band [304]. 

 In addition to EEG-based studies, there are works in the literature that focus on 

EMG signals. Furmanek et al., provided open access to EMG signals recorded during 

hand and arm movements performed in a virtual reality environment [305]. Totah et al., 

investigated the feasibility of developing an assistive device for weight lifting based on 

the electromyographic signals recorded during the process of lifting various loads [306]. 

They extracted seven features from EMG signals and used multinomial logistic regression 

for classification, achieving successful results in predicting the weight carried by the 

participants. Shair et al., conducted an experimental study on detecting fatigue during 

weight lifting in workers using EMG signals [307]. 

 Unlike the studies summarized above, this thesis focuses on the decomposition of 

visual perception related to weights. In our study, we aim to predict weights from the 

brain signals of an individual exposed to different weights and precondition the prosthetic 

hand system accordingly. Both offline (without a prosthesis) and with healthy individuals 

using a prosthesis, trials have been conducted, contributing a significant dataset and 

approach to the literature. In our study, a binary classification accuracy of 70-80% was 

achieved for weight prediction using offline EEG signals. In a machine learning study 

using data from the phase corresponding to the time when the weight was grasped but not 

lifted, EMG signals achieved approximately 85% binary and 70% ternary classification 

accuracy with a single channel. In the latest study, experiments were conducted with 

healthy individuals using prosthetics, resulting in approximately 50% classification 

accuracy in binary classification. 

 In conclusion, this thesis addresses a unique aspect by focusing on the visual 

perception of weights and aims to contribute valuable insights and a dataset to the 

literature. 

6.2 Conclusions 

 Our main objective in the project, as can be inferred from the title, is to harness 

multi-channel brain signals for reducing the mental burden in individuals with 

amputations, particularly in the context of shoulder-controlled prosthetic hands—the 
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most widely used type of prosthetics. The aim is to provide users with a more natural 

prosthetic experience in their daily lives. To achieve the reduction of mental burden, the 

primary focus is on the role of visual weight perception. The idea is to utilize brain signals, 

expected to vary based on whether the perceived object is heavy, medium-weight, or light, 

to adjust the torque of the electric motor embedded in the wrist part of the prosthetic hand. 

Consequently, it would be possible to set higher stiffness for lifting heavy objects and 

lower stiffness for lifting light objects. Additionally, to support this concept, the study 

explores the use of electromyography (EMG) signals from the arm muscles during the 

moments corresponding to post-grasping and pre-lifting for adjusting the wrist stiffness. 

 Within this framework, complementary and interrelated activities are carried out. 

Initially, the collection of biosignals such as EEG and EMG from healthy participants is 

performed using specially designed paradigms for the given problem. Subsequently, 

offline and online methods are employed to analyze the signals and investigate the 

application of machine learning to generate decisions addressing issues in the functioning 

of the prosthesis. Various preprocessing, feature extraction, reduction, and classification 

methods have been experimented with to process the signals and determine the weight 

perception and amount, aiming to identify the most suitable combinations. 

 In the scope of the thesis, the first study aimed to process, analyse, and classify 

biosignals using machine learning methods. The focus was on investigating the potential 

of activating any prosthesis or external device from a sleep mode using motor intention 

waves. This offline analysis involved multi-channel EEG signals obtained from 30 

healthy participants during motor intention, utilizing Fourier-based synchrosequeezing 

transform (FSST) for feature extraction and singular value decomposition (SVD) for 

dimensionality reduction. The second-order kernel Support Vector Machine (SVM) with 

a quadratic kernel achieved a classification accuracy of 99% for rest and movement 

imagination. 

 The discriminative power of some channels over others was observed, and the study 

demonstrated that using signals categorized as acceptable, rather than only clean EEG 

signals, did not compromise performance. The combination of FSST and SVD for feature 

extraction and classification, based on the cleanliness level of the signals, was applied for 

the first time in detecting motor intention waves from EEG signals. 
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 Initiating the functionality of a Brain-Machine Interface (BMI) trigger is crucial. 

Different methods were proposed for achieving this goal. The project suggests that 

detecting the imagined movement of a prosthesis system through the identification of 

motor intention in brain signals can achieve high performance. The application of the 

novel FSST method in the time-frequency domain may facilitate this. These findings 

could potentially be applied to the developed prosthetic hand system in future work, and 

the approach could be tested on other publicly available datasets. 

 In the second phase of the project, a preparatory study was conducted before the 

real-time and online signal processing and classification application with the prosthesis. 

Offline signal processing and classification involved collecting multi-channel EEG and 

EMG signals simultaneously from 31 participants during grasping and lifting 

experiments. Different feature extraction and reduction approaches were applied, and 

various machine learning and deep learning methods were explored for classification in 

binary and ternary problems. The study included a paradigm where participants imagined 

the weight levels of objects seen on the screen (light, medium, and heavy) while EEG 

data were collected, alongside a paradigm where EEG and EMG data were collected 

during the guidance of actual grasping and lifting movements. 

6.3 Societal Impact and Contribution to Global 

Sustainability  

 The thesis carries significant societal impact and contributes substantially to global 

sustainability by revolutionizing the field of upper-limb prosthetics. At the societal level, 

the research is poised to greatly enhance the lives of individuals with limb loss. The 

incorporation of neuroimaging techniques, particularly the innovative use of EEG signals, 

promises a breakthrough in the control mechanisms of prosthetic limbs. This not only 

addresses the physical challenges faced by amputees but also significantly reduces the 

mental burden associated with conventional mechanical prostheses, thereby improving 

overall well-being. 

 The neurofeedback system's development, enabling users to estimate the weight of 

grasped objects through their prosthetic limbs, signifies a major leap forward in assistive 

technology. By integrating user-centric visual weight perception, the project strives to 
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provide a more natural and intuitive control system, empowering individuals with limb 

loss and fostering independence. 

 From a global sustainability perspective, the project aligns with principles of 

resource efficiency and environmental responsibility. Advancements in prosthetic 

technology through biosignal processing and machine learning have the potential to create 

more sustainable and durable prosthetic devices. This, in turn, could reduce the need for 

frequent replacements, ultimately lessening the environmental impact associated with the 

production and disposal of prosthetic materials. 

 The commitment to innovative methodologies, such as the Fourier-based 

synchrosequeezing transform (FSST) and singular value decomposition (SVD) 

approaches, reflects a dedication to pushing the boundaries of knowledge. Disseminating 

these findings in high-impact journals not only contributes to academic discourse but also 

fosters a culture of knowledge-sharing and collaboration, vital components for addressing 

global challenges. 

 In conclusion, the societal impact of this project is profound, offering 

transformative possibilities for individuals with limb loss and contributing significantly 

to global sustainability through the development of advanced, resource-efficient 

prosthetic solutions. The dissemination of knowledge further positions the project as a 

key player in advancing technological innovation for societal well-being on a global scale. 

6.4 Future Prospects 

 The study observed that the feature set obtained from the FSST-SVD combination, 

along with common spatial patterns (CSP) approaches, achieved around 70% accuracy in 

binary weight perception classification (e.g., distinguishing between light and heavy 

objects). However, the accuracy significantly dropped in ternary classification. CSP-

based feature extraction yielded better results, but the lower performance in 

distinguishing between rest and movement imagination in EEG signals raised some 

concerns. Further in-depth analyses and additional experiments are planned to address 

these issues before publishing the study in a high-impact journal. 

 In conclusion, the research identified a crucial application and approach: the 

inclusion of EEG signals collected during actual movement in the training dataset 
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significantly contributes to the test performance in classifying the imagined weight 

perception. This observation suggests potential improvements and novel avenues for 

research in the field of Brain-Machine Interfaces (BMI). Additionally, a novel approach 

involving the adjustment of the wrist part's stiffness during the lifting process based on 

the perceived weight level is introduced. While the desired accuracy values have not been 

achieved at this stage, the significance of this study prompts a revaluation of the process 

from both signal processing and classification perspectives and prosthetic design. Post-

project, there is ample room for further development and improvement efforts. 
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