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ABSTRACT 

SLIDING MODE AND PID BASED TRACKING 

CONTROL OF MAGNETIC LEVITATION PLANT AND 

HIL TESTS  

Magnetic levitation systems are convenient to provide frictionless, reliable, fast 

and economical operations in wide-range applications. The effectiveness and 

applicability of these systems require precise feedback control designs. The 

position control problem of the magnetic levitation plant can be solved with a 

cascade control method. In this thesis, sliding mode and PID based cascade 

controllers are designed to render high position control performance and 

robustness to the magnetic levitation. Sliding mode control (SMC) based 

cascade controller is proposed for controlling magnetic levitation. The SMC 

based controllers for the inner current loop are designed to eliminate the effects 

of the inductance related uncertainties of the electromagnetic coil of the plant. 

For the outer position loop, the integral SMC is designed to eliminate 

disturbances around operating point resulting from the linearization of the 

mechanical part. Finally, numerical simulation and experimental results for 

various cascaded controllers are provided and compared in order to validate the 

efficacy of the approaches. 
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ÖZET 

MANYETİK LEVİTASYON SİSTEMİNİN KAYAN KİP 

VE PID TEMELLİ REFERANS TAKİP KONTROLÜ VE 

DONANIM İÇEREN BENZETİM TESTLERİ 

Manyetik levitasyon sistemleri birçok alanda sürtünmesiz, güvenli, hızlı ve 

ekonomik işlem sağlamaya yatkındır. Bu sistemlerin etkinliği ve uygulanabilirliği 

geri beslemeli kontrol tasarımını zorunlu kılar. Manyetik levitasyon sisteminin 

pozisyon kontrol problemi, kademeli bir kontrol metoduyla çözülebilir. Bu tezde, 

kayan kip ve PID temelli kademeli kontrolörler, manyetik levitasyon sistemine 

yüksek pozisyon kontrol performansı ve dayanıklılığı mümkün kılmak için 

tasarlandı. Kayan kip temelli kademeli kontrolör manyetik levitasyonu kontrol 

etmek için önerildi. Ek olarak, iç akım döngüsünün kayan kip temelli 

kontrolörleri, sistemin elektromanyetik bobinin indüktans ilişkili belirsizliklerin 

etkilerini elemek için tasarlandı. Dış pozisyon döngüsü için kayan kip temelli 

kontrolörler, mekanik bölümün doğrusallaştırılmasından kaynaklı denge 

noktasındaki bozucuları elemek için tasarlandı. Sonuç olarak, bütün kademeli 

tasarlanmış kontrolörlerin nümerik simülasyon ve deneysel sonuçları, metodun 

etkinliğini göstermek için gösterildi ve kıyaslandı. 
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Chapter 1  

 

Introduction 

 

            Magnetic levitation technology is used to levitate an object (e.g., made of 

nickel, cobalt, iron, etc.) with no support other than magnetic field force. It 

makes frictionless and contactless movements possible. So, magnetic levitation 

technology is very important for many industrial systems including maglev 

trains, electromagnetic bearings, electromagnetic cranes, levitation of wind 

tunnel models, vibration isolation of sensitive machinery, levitation of molten 

metal in induction furnaces, rocket-guiding projects, levitation of metal slabs 

during manufacture and high-precision positioning of wafers in 

photolithography [1–8]. I would like to explain some of them. Firstly, the 

maglev train shown in Fig. 1.1 has high-speed and the energy efficiency because 

they do not have friction problem excluding air. Secondly, magnetic bearing 

shown in Fig. 1.2 is a bearing that supports a load using magnetic levitation. 

Magnetic bearings reinforce movable parts of the system by eliminating direct 

contact between materials. Such support includes levitation of a rotating shaft 

and almost frictionless movement and they do not have mechanical wear. In 

addition, induction heater shown in Fig. 1.2b is used to smelt or heat metal by 

levitating the metal. Induction heating is critical in most of the manufacturing 

industry because of its attractive advantages such as good speed, precision and 

control. 
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Figure 1.1 Maglev train. 
 

                      

Figure 1.2 Magnetic bearing and induction heater. 

 

            Magnetic levitation technology is able to serve reliable and high-speed 

operations with the use of feedback controllers. On the other hand, it is difficult 

to provide high control performance with standard controllers for the magnetic 

levitation systems because of some control problems. First of all, they have 

open-loop unstable mechanical part. Secondly, they include highly nonlinear 

dynamics. Finally, the coil inductance value is assumed as a constant but it 

depends on the steel position to be controlled, so there exists parameter 

uncertainty due to inductance of the electromagnetic coil. Thus, a robust 
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controller is needed for controlling of the magnetic levitation system. In this 

thesis, I will use a sliding mode controller (SMC) to increase the system 

performance and to eliminate disturbances due to its robustness feature. 

            Recently, many works have been reported for controlling magnetic 

levitation in the literature. The designed control techniques include feedback 

linearization based controllers (including input-output and  input-state 

linearization techniques) [4], [6], [9–11], observer-based  control [5],  linear 

state feedback control design [6,12], the gain scheduling approach [13], neural 

network techniques [14], sliding mode controllers [8,15,16], backstepping 

control [17], model predictive control [18] and PID controllers [19]. In short, 

many known linear and nonlinear control methods were designed for magnetic 

levitation systems. In the linear controller designs, the approximate linear model 

found by perturbing the system dynamics about a desired operating point is 

used, and thus, the controller are usually valid only around the operating point. 

The performance of the linear controllers can be improved with some kind of 

gain scheduling procedure to change operating points, but the stability may not 

be guaranteed. So, the nonlinear controllers seem more attractive as the system 

consists highly nonlinearity. However, many nonlinear control designs need 

exact knowledge about the plant nonlinearities to ensure a good performance. 

The modeling and parameter uncertainties in the magnetic levitation plant model 

makes practical implementations of the nonlinear controllers difficult.  

            In this thesis, a practical cascade control approach is proposed. The 

cascade control allows us to design a more stable and robust inner current 

controller to deal with the effects of plant disturbance and uncertainty. Because 

the magnetic levitation plant consists of the mechanical and electrical parts, the 

cascade controller can give a good performance.  

            The cascade controller includes an inner part and an outer part control 

loop. In nature, the electrical part is much faster than the mechanical part. So, 

our inner loop controller should be faster than our loop controller. Thus, in this 

thesis, for the electrical part which is much faster than the mechanical part, the 

PI (proportional plus integral) controller and several SMC controllers are 
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designed to give fast response for the inner loop. The SMC has ability to high 

performance current controller and to render robustness in the presence of 

inductance uncertainties due to the coil inductance. For the mechanical part of 

the system, a PI plus velocity (V), SMC and integral SMC controllers are 

designed for tracking control of the position of the magnetic levitation plant. 

The SMC and integral SMC (ISMC) are able to eliminate disturbances around 

the operating point. The position tracking performances of the cascaded 

controllers are demonstrated with numerical simulations and experimental 

results. 

            This thesis is organized as follows: Section 2 provides a background on 

magnetic levitation system. Controller design strategies are given in Section 3. 

Numerical simulations, experimental results and comparisons are given in 

Section 4.  Conclusions of the thesis are provided in Section 5. 

            Before Section 2, I would like to mention about a general PID and a 

general SMC design procedure since the cascade controllers to be designed in 

this thesis are based on PID and SMC controllers. 

 

1.1 PID Controller Design 

 

Figure 1.1.1 Block scheme of PID controller. 

 

            PID controller is designed as shown in Fig. 1.1.1. Here, r is the reference 

input, e is the tracking error we want to keep it around zero, u is the control 

input, designed PID controller which consists of proportional, integral and 
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derivative gains, i.e., the control gains, 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑. PID controller is 

described by 

          
( )

( ) ( ) ( )p i d

de t
u t k e t k e t dt k

dt
                             (1.1.1) 

where 𝑒(𝑡) = 𝑟(𝑡) − 𝑦(𝑡). The system output with Laplace transform of 

Equation (1.1.1) can be written as 

                                ( ) ( ) ( ( ) ( ))i
p d s

k
Y s G s k k R s Y s

s

 
    

 
                         (1.1.2) 

where 𝐺(𝑠) is the open loop transfer function of the system, and 

( ) ( ) ( )E s R s Y s   is the tracking error in the Laplace domain. Thus, the closed 

loop transfer function can be obtained from Equation (1.1.2) as follows 

                                      

2

2

( ) ( )( )

( ) ( ) ( )

d p i

d p i

k s k s k G sY s

R s k s k s k G s s

 


  
                            (1.1.3) 

The roots of the denominator of the closed loop transfer function of the system 

should be negative for the stability. The gains, 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 must be selected 

appropriately to provide the stability and a good performance. There are some 

methods to find the gains, such as pole placement method and empirical tuning 

methods (e.g. Ziegler-Nichols method). In this thesis, I use the pole placement 

method to find the gains for providing stability. According to this method, the 

denominator of the closed loop transfer function is equated to the characteristic 

function which is obtained from the desired system requirements. Thus, the gain 

parameters of the PID controller, 𝑘𝑝, 𝑘𝑖 and 𝑘𝑑 are obtained for providing the 

desired stability and performances. 

 

1.2 Sliding Mode Controller Design 

 

            A sliding mode controller is designed as shown in Fig. 1.2.1. Here, 𝑟 is 

the reference input, 𝑒 is the tracking error and 𝑢 is the control input. The sliding 
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surface (s) we want to keep it around zero is designed in the SMC design. The 

sliding surface, s, can be expressed as follows [20] 

                                                 

1n
d

s e
dt





 
  

 
                                           (1.2.1) 

where 𝑒 = 𝑟(𝑡) − 𝑦(𝑡) and λ should be bigger than zero (𝜆 > 0), and 𝑛 is the 

degree of the system (the system’s order). 

 

 

 

Figure 1.2.1 Block scheme of SMC controller. 

 

            For 𝑛 = 2, state-space diagram of error dynamics around sliding surface 

is shown in Fig. 1.2.2. Here, sliding mode controller brings any tracking error 

(e) trajectory to the sliding surface and keeps it on that surface. If the SMC 

keeps the system trajectory on the sliding surface, then this mode is called as 

sliding mode, and during sliding mode we have 𝑠 = 𝑠̇ = 0. 

 

Figure 1.2.2 The state-space diagram of error dynamics around sliding surface. 

 

            During the sliding mode, the equivalent (average) control input, 𝑢𝑒𝑞, can 

be found from 𝑠̇ = 0, and it is the necessary control action to keep the system on 

the sliding mode. 
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            The control input, 𝑢, usually consists of the combination of equivalent 

control and a discontinuous controller as follows 

                                                 0 sgn( )equ u u s                                          (1.2.2) 

where 

             

           

1 0
sgn( )

1 0

if s
s

if s



 

                                    (1.2.3) 

By achieving the Lyapunov based reachability (or stability) condition (𝑠𝑠̇ < 0),  

which is obtained from the Lyapunov stability theorem [20,21], the range of 

control gain parameter, 𝑢0, can be found to ensure stability. The most 

appropriate gain value can be obtained via simulation. It should be noted that in 

practical implementations of the SMC, the saturation function 𝑠𝑎𝑡(𝑠), can be 

used instead of 𝑠𝑔𝑛(𝑠) to eliminate chattering on the system output. Chattering 

is defined as small oscillations in the system trajectory. Chattering is an 

unwanted phenomenon because it causes power loss in electrical parts, wearing 

out in mechanical parts, and decreasing the system’s life span. 

            In the following Chapters, the SMC design summarized above will be 

studied in detail for the magnetic levitation system. 
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Chapter 2 

 

Magnetic Levitation and its Modeling 

 

            Magnetic levitation technology does not establish a contact with the 

earth and it does not have any friction problem excluding air friction. Therefore, 

it has been used in many industrial systems including the high-speed maglev 

trains, electromagnetic bearings, electromagnetic cranes, levitation of wind 

tunnel models, vibration isolation of sensitive machinery, levitation of molten 

metal in induction furnaces, rocket-guiding projects, levitation of metal slabs 

during manufacture and high-precision positioning of wafers in 

photolithography [1–8]. In my thesis study, I examine a basic form of the 

magnetic levitation system which includes controlling of the steel ball, through 

vertical x-axis. Both numerical simulations and HIL (Hardware in the Loop) 

tests or experimental studies will be performed. I intend to continue my study on 

magnetic levitation based applications including maglev trains, electromagnetic 

robots, etc, in the future. 

            The magnetic levitation system is used to levitate a steel ball in air due to 

the electromagnetic force created by an electromagnet.  The system is made of 

an electromagnet, a steel ball and a position measurement sensor. A graphical 

representation of the magnetic levitation system for single-axis control used in 

the experimental studies is shown in Fig. 2.1. 
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Figure 2.1 Schematic diagram of a single-axis magnetic levitation system. 

 

            First of all, a computer is used to control the steel ball. 

MATLAB/Simulink can be used to design controllers for numerical and 

experimental results. Secondly, the data acquisition device is used to collect data 

from sensors and convert digital control data to analog form to drive power 

amplifier during the operation of the magnetic levitation plant. Another part, the 

power amplifier is used to amplify the signal to make it capable of proceeding in 

magnetic levitation plant. Final part is the magnetic levitation plant, which is 

covered in a rectangular enclosure containing three separate sections. The upper 

section has an electromagnet, made of a solenoid coil with a steel core. The 

middle section includes a chamber where the ball suspension takes place. One of 

the electromagnet poles faces the top of a black post upon which a one inch steel 

ball rests. A photo sensitive sensor embedded in the post measures the ball 

elevation from the post. The last section of the system houses the signal 

conditioning circuitry needed for light intensity position sensor. The ball is only 

controlled through vertical x-axis in Fig. 2.2. The attraction force is controlled 

by the computer controlled electromagnet mounted directly above the levitation 

ball. The photo detector consists of an NPN silicon photodarlington. The 

electromagnet is composed of a tightly wound solenoid coil made of 2450 turns 

of 20 AWG magnet wire. Electromagnet coil input supply is ±24V with a 

maximum 3A coil current. The data acquisition board is a successive 
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approximation type, 12-bit analog and digital conversion board capable of 4 kHz 

sampling. In this work, the controllers are implemented at a sampling rate of 1 

kHz. The other plant parameters used in numerical and experimental studies are 

given in Table 2.1. 

 

Symbol Description  Value 

Lc Coil inductance 412.5mH 

Rc Coil resistance 10Ω 

Rs Current sense resistance 1Ω 

Km Electromagnet force constant 6.53x10
-5

 Nm
2
/A

2
 

Mb Steel ball mass 0.068kg 

KB Position sensor sensitivity 2.83x10
-3

m/V 

Nc Number of turns in coil wire 2450 

µ0 Magnetic permeability constant 4π x 10
-7

H/m 

 

Table 2.1 Plant model parameters 

 

            The magnetic levitation system consists of two main systems, namely 

mechanical and electrical subsystems, as seen in Fig. 2.2. The electromagnet is 

modeled with the 𝑅𝑐-𝐿𝑐 circuit while the mechanical part is expressed in terms 

of acting forces. 

 

 

Figure 2.2 Dynamical modeling of the magnetic levitation plant. 

cR

cL

cV

sV

sR

bx

cF

bM g

bM

bV

0bx

cI
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            The ball position of the mechanical part of the system is controlled via 

the coil current, Ic, whereas the coil current of the electrical part of the system is 

regulated with the applied voltage. Therefore, the voltage applied to the 

electromagnet indirectly controls the ball position. In the following subsections, 

we can obtain the both mathematical model of the system by using Fig. 2.2. 

 

2.1 Modeling of the Electrical Part 

 

            The coil inductance value is dependent on the ball position, 𝑥𝑏, and we 

can assume it as a constant around the operation point (𝑥𝑏0, 𝐼𝑐0), but there exists 

a parameter uncertainty on the coil inductance with or without this assumption. 

Thus, we need to design a robust controller to eliminate the effects of this 

parameter uncertainty. 

            By applying Kirchhoff’s voltage law to the electromagnet modeled by 

the RL circuit as seen Fig. 2.2, we can get the model of the electrical part 

directly. On the other hand, the electrical model can be expressed in two 

different ways, i.e., one model for the constant coil inductance assumption and 

the other model for the ball-position dependent inductance. 

 

2.1.1 Electrical Model for Constant Coil Inductance 

 

            By assuming that the coil inductance is constant around the operation 

point (𝑥𝑏0, 𝐼𝑐0) and applying Kirchhoff’s voltage law to the electromagnet (RL 

circuit in Fig. 2.2.), the electrical model of the magnetic levitation plant can be 

written as 

                                         1c sc

c c

c c

R R
I V

L

dI

dt L


                                  (2.1.1.1) 
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where 𝐼𝑐 is the coil current, 𝐿𝑐 is the coil inductance(in Henry), 𝑅𝑐 is the coil 

resistance(in Ω), 𝑅𝑠 is the current sense resistance(in Ω) and 𝑉𝑐 is the supply 

voltage(in V). The transfer function of the electrical circuit can be obtained by 

Laplace transform to Equation (2.1.1.1) 

                         
( )

( )
( ) 1

c c
c

c c

I s K
G s

V s s
 


                                  (2.1.1.2) 

where 𝐾𝑐 =
1

𝑅𝑐+𝑅𝑠
 is the dc gain, and 𝜏𝑐 =

𝐿𝑐

𝑅𝑐+𝑅𝑠
 is the time constant of the 

electrical subsystem. Electrical part is linear and open loop system is stable due 

to location of pole on the left half of the s-plane. In nature, the electrical 

subsystem is much faster than the mechanical subsystem. This is good feature 

for the design of cascade control system (see Chapter 3). All system parameters 

are given in Table 2.1. 

 

2.1.2 Electrical Model for Position Dependent Coil Inductance 

 

            The coil inductance is dependent on the ball position, 𝑥𝑏, and is given by 

[6,22] 

         
1( ) m

c b

b

K
L x L

x
                                         (2.1.2.1) 

Thus, the inductance 𝐿𝑐 has its largest value when the ball is next to the coil, but 

decreases to a constant 𝐿1 as 𝑥𝑏 goes to infinity. 𝐿1 is the constant value, 

412.5mH. If the coil inductance is assumed as a constant, this causes parameter 

uncertainty, and thus we need a robust controller. Otherwise, we can use the 

dependent function to the ball position, 𝑥𝑏, in Equation (2.1.2.1). Hence, by 

applying Kirchhoff’s voltage law to the electromagnet (RL circuit in Fig. 2.2.), 

the electrical model of the magnetic levitation plant can be written as 

                                       
 ( )

( )
c b c

c s c c

d L x I
R R I V

dt
                                       (2.1.2.2) 

 where chain rule is 
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   ( ) ( )

( )
c b c c b c

c c b

d L x I d L x dI
I L x

dt dt dt
                        (2.1.2.3) 

By substituting Equation (2.1.2.1) into Equation (2.1.2.2) and applying chain 

rule, we get the open loop stable and nonlinear electrical model as 

                                        
2

1c c s m c b
c c

c c b c

dI R R K I x
I V

dt L L x L


                                  (2.1.2.4) 

where Ic is the coil current, Lc is the dependent coil inductance (in H), Rc is the 

coil resistance (in Ω), Rs is the current sense resistance (in Ω) and Vc is the 

supply voltage (in V). The ball position should satisfy 0bx   for validity of the 

electrical model (i.e., ball never touches the electromagnet during operations). 

 

2.2 Modeling of the Mechanical Part 

 

            Using the notation and conventions given in Fig. 2.2, the mechanical 

model of the magnetic levitation plant can be obtained. Attractive force 

generated by the electromagnet is given by [23] 

                       

2

2

m c
c

b

K I
F

x

 
  

 
                                           (2.2.1) 

where Km is the electromagnet force constant (in Nm
2
/A

2
) and Ic is the coil 

current (in A). 𝐹𝑐 is nonlinear function, we can linearize around equilibrium 

point (𝑥𝑏0, 𝐼𝑐0). By applying Newton’s second law of motion to the ball in Fig. 

2.2, the force balance equation of the ball is given with the following second-

order model: 

                     b b b cM x M g F                                           (2.2.2) 

where 𝑥𝑏 is the air gap (in m), m is the mass of the ball (in kg), g is the 

gravitational constant (in m/s
2
) and Fc is the force generated by the 

electromagnet (in N). At equilibrium point, all the time derivative terms are set 

to zero: 
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2

2

1
0

2

m c

b b

K I
g

M x
                                             (2.2.3) 

From Equation (2.2.3), the coil current at equilibrium position, Ic0, can be 

expressed as a function of xb0 and Km, namely, 

                         0 0

2 b

m

c b
K

M g
I x                                             (2.2.4) 

            The operating coil current, 𝐼𝑐0, for the electromagnet ball pair can be 

found at the system’s static equilibrium. The static equilibrium at a nominal 

operating point (xb0, Ic0) is characterized by the ball being suspended in air at a 

stationary point xb0 due to a constant attractive force created by Ic0. 

 

2.3 Linearization of Nonlinear Mechanical Part 

 

            In order to analyze the magnetic levitation, the system can be linearized 

around equilibrium point (𝑥𝑏0, 𝐼𝑐0) at which the system will converge to it as 

time tends to infinity. Applying Taylor series approximation about equilibrium 

point (𝑥𝑏0, 𝐼𝑐0) to Equation (2.2.2), we get 

      
2 2 2

0 0 0

2 2 3 2

0 0 0

1

2

b m c m c b m c c

b b b b b b

d x K I K I x K I I
g

dt M x M x M x
                           (2.3.1) 

Substituting Equation (2.2.4) into Equation (2.3.1), we get 

                          
2

2

0 0

2 2b b c

b c

d x gx

dt

gI

x I
                                         (2.3.2) 

Thus, applying Laplace transform in Equation (2.3.2), the transfer function of 

linearized system around the operation point is obtained as 

 
2

2 2

( )
( )

( )

b b b
b

c b

X s K w
G s

I s s w
  


                                   (2.3.3) 

where 𝐾𝑏 = 𝑥𝑏0/𝐼𝑐0 and 𝑤𝑏 = √2𝑔/𝑥𝑏0. In this thesis, it is assumed that the 

operating point of the system is about 𝑥𝑏0=6mm and then 𝐼𝑐0 can be found as 

𝐼𝑐00.86𝐴. The open-loop transfer function of the second-order system is type 
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zero system as it does not contain any pole at the origin. The two open loop 

poles of the system are located at 𝑠 = ±𝑤𝑏 which indicates that the open loop 

system is unstable due to location of poles on the right-half of the s-plane. Thus, 

a feedback controller must be designed to stabilize the system. 
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Chapter 3 

 

Controller Design 

 

            Recently, many works have been reported for controlling magnetic 

levitation in the literature. The designed control techniques include feedback 

linearization based controllers (including input-output and  input-state 

linearization techniques) [4], [6], [9–11], linear state feedback control design 

[6,12] the gain scheduling approach [13], observer-based  control [5], neural 

network techniques [14], sliding mode controllers [8,15,16], back-stepping 

control [17], model predictive control [18] and PID controllers [19]. All these 

methods have their own advantages and disadvantages. On the other hand, a 

cascade control system can often perform better than a traditional controller, and 

advanced control method designs can be included in the cascade control system 

to perform better than the above designs. Therefore, I focus on a cascade control 

for the magnetic levitation system for providing stability, robustness and a 

highly satisfactory position tracking performance. The cascade control approach 

is proposed to indirectly control ball position for magnetic levitation system as 

shown in Fig. 3.1 where 𝑥𝑟𝑒𝑓 is reference position, e is the position error, 𝐼𝑟 is 

the controlled reference current due to outer controller, s is the current error. The 

coil current, 𝐼𝑐, and the ball position, 𝑥𝑏, are to be controlled with the inner and 

outer controllers, respectively. 

 

Figure 3.1 A cascade control block diagram of the magnetic levitation system. 
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            The cascade control design consists of an inner controller and an outer 

controller. An outer loop controller generates a control effort that serves as the 

setpoint for an inner loop controller. That controller in turn uses the actuator to 

apply its control effort directly to the inner loop process. The inner loop process 

then generates a secondary process variable that serves as the control effort for 

the primary (outer loop) process. The inner loop functions like a traditional 

feedback control system with a setpoint, a process variable, and a controller 

acting on a process by means of an actuator. The outer loop does the same 

except that it uses the entire inner loop as its actuator. Naturally, a cascade 

control system can't solve every feedback control problem, but it can prove 

advantageous if under the right circumstances: (a) The inner loop is faster than 

the outer loop. The secondary process must react to the inner controller's efforts 

at least three or four times faster than the primary process reacts to the outer 

controller. This allows the inner controller enough time to compensate for inner 

loop disturbances before they can affect the primary process. (b) The inner loop 

has influence over the outer loop. The actions of the inner loop controller must 

affect the primary process variable in a predictable and repeatable way or else 

the outer loop controller will have no mechanism for influencing its own 

process. (c) The inner loop disturbances are less severe than the outer loop 

disturbances. Otherwise, the inner controller will be constantly correcting for 

disturbances to the inner loop process and unable to apply consistent corrective 

efforts to the primary process. 

            Since the magnetic levitation system fits well to the cascade control 

design requirements, in this thesis, the inner controller is designed to control the 

coil current, 𝐼𝑐, for the electrical part of magnetic levitation system and the outer 

controller is designed to control the ball position, 𝑥𝑏, for the mechanical part of 

magnetic levitation system. Thus, the ball position of the mechanical part the 

system is stabilized with the coil current, while the coil current of the electrical 

part of the system is controlled with the applied voltage. This means that the ball 

position is indirectly controlled by the electrical voltage source. Firstly, I want to 
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mention about the design of inner controllers to control the coil current, 𝐼𝑐. Next, 

I will explain the design of outer controllers to control the ball position, 𝑥𝑏. 

 

3.1 Design of the Inner Controllers 

 

            The inner controller is designed to control the coil current, 𝐼𝑐, for the 

electrical part of magnetic levitation system. Thus, the coil voltage is varied to 

control the coil current in an electrical system. In the cascade control design, the 

inner controller should give more fast response than the outer controller since 

the inner part firstly should control the coil current, 𝐼𝑐, and should not be late 

from the outer controller for the response. In this context, PI (Proportional and 

Integral), sliding mode based controllers are designed to control the coil current. 

In this thesis, PI, high-gain sliding mode, process sliding mode and sliding mode 

with time-varying inductance, which depends on the ball position, based 

controllers are designed to control the coil current for the electrical part of 

magnetic levitation system as shown in Fig. 3.1.1. A voltage limiter is used to 

limit the coil voltage value (±24𝑉)  in the inner controller due to the 

specification of magnetic levitation system. 

 

Figure 3.1.1 Block diagram of the inner current loop. 

 

            It is difficult to provide high control performance with standard 

controllers for the magnetic levitation systems because of their open-loop 

unstable mechanical part and highly nonlinear dynamics, and existence of 

parameter uncertainties due to the assumption of the coil inductance value as a 
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constant. Since the SMC has ability to render robustness in the presence of 

inductance uncertainties, a high-gain sliding mode controller (SMC) and process 

SMC (PSMC) are designed for ensuring high performance and robustness to 

current controller. The PSMC is especially designed to deal with chattering 

problem possibility. Furthermore, the equivalent controller is added to both 

SMCs to remove the effects of the time-varying coil inductance in an effective 

way. 

 

3.1.1 PI Controller 

 

            Prior to control the ball position, the current flowing through the 

electromagnet needs to be controlled. Proportional plus integral (PI) controller is 

designed to control the coil current, 𝐼𝑐, for the electrical part of magnetic 

levitation system. 

            The desired performance requirements for the coil current control are as 

follows 

1) Percent overshoot (PO) ≤ 1.5%. 

2) Peak time (𝑡𝑝,𝑐) ≤ 0.05s. 

The amount of overshoot depends just on the damping ratio parameter, ζ, and it 

is described by 

            
21

100PO e





 
 
                                         (3.1.1.1) 

The peak time depends on both the damping ratio, ζ and natural frequency, 𝜔𝑛,𝑐 

of the system and it can be derived as 

                                   ,
2

, 1
p c

n c

t
w







                                              (3.1.1.2) 

Thus, the damping ratio and natural frequency can be found as 0.802 and 104.9 

rad/s, respectively, from Equation (3.1.1.1) and (3.1.1.2) by using the desired 

performance requirements. On the other hand, for a better system performance, 
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we can take the peak time as 𝑡𝑝,𝑐 = 0.015s, which leads to the damping ratio 

and natural frequency to be 0.80 and 350 rad/s, respectively. 

            To achieve the desired performance requirements, consider the 

characteristic equation of the second order transfer function 

                                      2 2( 2 ) 0n ns w s w                                       (3.1.1.3) 

Now, PI controller is designed by 

                         , ,( ( ))( ( ) ( )) ( )c p c r c i c r cV k I I t k I t I t dtt t                       (3.1.1.4) 

The Laplace transform of Equation (3.1.1.4) is 

 ,

,( ) () )(
i c

c p c r c

k
V s k I

s
sI s

 
   
 

                             (3.1.1.5) 

Substituting Equation (2.1.1.2) into Equation (3.1.1.5), we can obtain the closed-

loop transfer function for the electrical part as 

                  
 

, ,

2

, ,

( )( )

( ) 1

c p c i cc
c

r c c p c c i c

K k s kI s
T s

I s s K k s K k


 

  
                     (3.1.1.6) 

By using pole placement method, which compares the characteristic equation of 

closed-loop system (3.1.1.6) with the desired characteristic equation (3.1.1.3) to 

find the appropriate control gains, 𝑘𝑝,𝑐 and 𝑘𝑖,𝑐, as 

                                   
2

, ,

2 1
,n c n c

p c i c

c c

w w
k k

K K

  
                                  (3.1.1.7) 

 

3.1.2 High-Gain Sliding Mode Controller 

 

            The coil inductance value depends on the ball position, but it is taken as 

a constant to simplify analysis and designs. However, this assumption results in 

a parameter uncertainty in the electrical part. High-gain sliding mode controller 

(SMC) is designed for the inner electrical part of magnetic levitation system to 

control the coil current due to its fast response and robustness features. 
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            To design SMC, first a sliding surface, s, can be designed for the first 

order electrical part as 

                    
r cs I I                                              (3.1.2.1) 

Thus, the time-derivative of Equation (3.1.2.1), 𝑠̇, is obtained as 

1c s
r c r c c

c c

R R
s I I I I V

L L


                             (3.1.2.2) 

To achieve a sliding mode, i.e., 𝑠 = 𝑠̇ = 0, the equivalent coil voltage, 𝑉𝑒𝑞, can 

be found as 

      
1

[ ]c

eq r c

c c

V I I
K




                                            (3.1.2.3) 

The control input for the electrical part of the magnetic levitation system is 

0 sat( )c eqV V V s                                              (3.1.2.4) 

where 

   
sgn( / ), / 1

sat( / )
/ , / 1

s if s
s

s if s

 


 

 
 


                        (3.1.2.5) 

where 𝜀 > 0. 

            Because the electrical part has the first-order dynamics, it is also possible 

to design the controller as 

                        
0 sat( )cV V s                                                  (3.1.2.6) 

The saturation function, sat(.), is used to eliminate chattering on the system 

output. The stability of the SMC is given with the reachability condition, 𝑠𝑠̇ <

0, which is obtained from the Lyapunov stability theorem [20,21]. It is similar to 

the analysis given in Section 3.1.4, and the gain parameter, 𝑉0 can be found as 

bigger than zero (𝑉0 > 0) for satisfying the stability. 

 

3.1.3 Process Sliding Mode Controller 

 

            A process sliding mode controller (PSMC) is designed for the inner 

electrical part of the magnetic levitation system to control the coil current 
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because the SMC can supply fast response to the inner control current loop. 

Moreover, the coil inductance value depends on the ball position, but it is 

assumed as a constant to simplify analysis and designs, so there exists a 

parameter uncertainty. Similar to the high-gain SMC, the PSMC can also 

eliminate this parameter uncertainty. In addition, since the effects of inductance 

related uncertainties can cause chattering, the PSMC can be designed to 

minimize possibility of the chattering. 

            To design PSMC, first a sliding surface, s, can be designed for the first 

order inner electrical part as 

                                                 
r cs I I                                             (3.1.3.1) 

The voltage Vc as the control input of the magnetic levitation can be designed as 

[24,25] 

                  
0.5 0.5

sat( ) sat( )cV s s s s dt                                   (3.1.3.2) 

The saturation function, sat(.), is defined in Equation (3.1.2.5) and is used to 

eliminate chattering on the system output. The stability of the controller is 

similar to the analysis given in Section 3.1.4. For stability, the appropriate gains, 

𝛼 and 𝛽, must be positive. Since a boundary layer approach (sat(.) function) is 

used in the controller design, the trajectory reaches a small ultimate bound set in 

finite time. This means that the tracking error also stays around the origin, but 

usually not in the origin. 

 

3.1.4 Sliding Mode Control Designs under Varying Coil 

Inductance 

 

            The coil inductance is dependent on the ball position, 𝑥𝑏, can be again 

written as 

        
1( ) m

c b

b

K
L x L

x
                                          (3.1.4.1) 
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Thus, by substituting Equation (3.1.4.1) into Equation (2.1.2.2) and applying 

chain rule, we can write the stable and nonlinear electrical model again as 

2

1c c s m c b
c c

c c b c

dI R R K I x
I V

dt L L x L


                                (3.1.4.2) 

            The sliding surface is again defined by 

                                         
r cs I I                                                (3.1.4.3) 

Thus, the time-derivative of Equation (3.1.4.3), 𝑠̇, is obtained as 

                  
2

1c s m c b
r c r c c

c c b c

R R K I x
s I I I I V

L L x L


                       (3.1.4.4) 

During the sliding mode, i.e., 𝑠 = 𝑠̇ = 0, the equivalent coil voltage, 𝑉𝑒𝑞, can be 

found as 

        
2

(
(

])
)

[ c s m c
eq c r c b

c c b

t
R R K I t

V L I I x
L L x


                             (3.1.4.5) 

By using this equivalent value, the SMC controller can be designed as  

                               
0 sat( )c eqV V V s                                               (3.1.4.6) 

Or we can also design high-gain SMC (Equation (3.1.2.6)) and PSMC (Equation 

(3.1.3.2)) controllers to get desirable results. 

            For stability analysis of the SMC controllers, we must show that the 

controllers satisfy the reachability condition 0.ss   If we consider the PSMC 

controller under varying coil inductance, the stability of the PSMC must be 

satisfied for selected appropriate gains, α and β. By considering the electrical 

model given in Equation (3.1.4.2), sliding surface given in Equation (3.1.4.3), 

and controller given in Equation (3.1.3.2), stability analysis of the proposed 

SMC can be carried out as follows. First, if a positive definite Lyapunov 

function is defined by 

                          
2 2

1

1 1

2 2
V s u                                      (3.1.4.7) 

where 
0.5

1 sat( )u s s . Then its derivative must be negative definite for 

stability,  
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1 1

1
( , , )c s

r c b b c c

c c

R R
V s I I h x x I V u u

L L

 
     

 
           (3.1.4.8) 

where 
2

( , , ) m c b

b b c

c b

K I x
h x x I

L x
 . From Equation (3.1.2.5), it is clear that the 

controller consists of outer and inner parts. For the outer part of the controller, 

i.e. for s  , we have 

                 
1/2

0( , , ) sgn( )c s

r c b b c

c c

R R
V s I I h x x I s s

L L




 
     

 
    (3.1.4.9) 

where the function 
0  can be written as 
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 

 

                  (3.1.4.10) 

where 0 1   and it is assumed that 1/ cL   for simplicity. Now the 

derivative of the Lyapunov function given in Equation (3.1.4.9) satisfies the 

inequality 
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r c b b c

c c

c
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V I I h x x I u s s
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s s
L







 
     
 

 
   

 

    (3.1.4.11) 

where 
1( ) / ( , , )r c c s c b b cI I R R L h x x I u      . Since s  , if we 

choose /cL   , then 0V  .  That is to say, whenever s  ,  ( )s t  will 

strictly decrease until it reaches the set s   in finite time and remains inside 

the set subsequently. For the inner part of the controller, i.e. inside the set s   

the derivative of the Lyapunov function can similarly be written as 

                 
1/2

1( , , ) /c s

r c b b c

c c

R R
V s I I h x x I s s

L L


 

 
     

 
     (3.1.4.12) 

with 
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                  
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1 1 1

1/2

1

1 1

/ /
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cu s L u s s

u s s

u s

  

 

 

  

  

 

                       (3.1.4.13) 

where 
10 1   and again it is assumed that 1/ cL   for simplicity. Finally 

we get 

                    

 

5/2

5/2
1

c

c

V s s
L

s
L











 

  

                               (3.1.4.14) 

where 0 1   and 
1 1( ) / ( , , )r c c s c b b cI I R R L h x x I u       . The 

inequality Equation (3.1.4.14) is satisfied for all 

                           

2/3

cL
s

 



 
  
 

                                      (3.1.4.15) 

Hence, the trajectory reaches the ultimate bound set 

  2/3
/ ( ) ,cs K s       in finite time. This means that the tracking 

error also stays around the origin, but not in the origin in general. Consequently 

the practical stability of the proposed controller Equation (3.1.3.2) is guaranteed 

for the given ultimate bound. It is clear that the stability condition is obtained as 

/cL   . However, the stability analysis does not provide a 

straightforward condition for the control gain  , and thus it may be selected 

arbitrarily to get a satisfying steady-state response. 

            Robustness of the Sliding Mode Current Controller: From Equation 

(3.1.4.4), the differential equation of the sliding surface including uncertainties 

can be written as 

           
0 1 ( , , )r c c b b cs I I V h x x I                              (3.1.4.16) 

where h(·) represents the nonlinear part of the model Equation (3.1.4.2), 

considered as a bounded disturbance, 0( , , )b b ch x x I  ,  
0 0 0,c s

c

R R

L



    
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and 1 1

1
0

cL
      with bounded inductance related uncertainties 

0  and 
1 . 

By using Lyapunov stability theorem as described above, one can found similar 

stability conditions,  

2/3

1

1

ˆ
/ (1 ) ,

(1 )

c

c c

c

L
L L s

L

 
  



 
      

  
           (3.1.4.17) 

where    and ̂   due to the bounds of uncertainties and disturbance.  

Consequently, the practical stability of the system can be guaranteed under 

bounded uncertainties. 

 

3.2 Design of the Outer Controllers 

 

            The outer controller is designed to control the ball position, 𝑥𝑏, for the 

mechanical part of magnetic levitation system. The coil current is varied 

appropriately to control the position of the ball of the mechanical part of the 

system. The nonlinear mechanical part has much slower response than the 

electrical part of the system. In this context, sliding mode and PID (Proportional, 

Integral and Derivative) based controllers are considered for controlling the ball 

position. For controlling the outer loop, the PI plus velocity (PIV) controller, 

sliding mode controller (SMC) and integral sliding mode controller (ISMC) will 

be designed to control the ball position of the magnetic levitation system as 

shown in Fig. 3.2.1. The coil current limiter is used to limit 0-3A the coil current 

value due to the specification of magnetic levitation system. Maximum current 

value is 3A and minimum current value is 0A because of the steel ball resting at 

the post. 
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Figure 3.2.1 Block diagram of the outer position loop. 

 

            The magnetic levitation system consists of the open-loop unstable 

mechanical part and highly nonlinear dynamics, and existence of parameter 

uncertainties due to the assumption of the coil inductance value as a constant in 

addition to dynamic disturbances around the linear operating point (𝑥𝑏0, 𝐼𝑐0). So, 

PI-V controller with set point weighting, sliding mode controller and integral 

sliding mode controller are designed to control the ball position for the 

mechanical part of magnetic levitation system to deal with these problems. I 

primarily designed the SMC to control the ball position for the outer mechanical 

part to track the reference position precisely. 

 

3.2.1 PI plus Velocity Controller 

 

            The proportional plus integral plus velocity (PI-V) controller is designed 

and tuned with pole placement by using convenient specifications to control the 

ball position of the outer mechanical part of the magnetic levitation system. The 

magnetic levitation system consists of highly nonlinear dynamics, so includes 

very noises. In the controller design, the velocity (V) controller which does not 

consist of derivative of the reference position is designed to eliminate noise by 

filtering the ball position. A second-order derivative filter is designed as 
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2

2 2
( )

2

d
d

d d d

s
G s

s s



  


 
                                       (3.2.1.1) 

where the filter parameters 
d  and 

d  should be selected appropriately in order 

not to eliminate system dynamics (e.g., 30 times faster than the plant dynamics). 

In addition, feed-forward is attached to the controller to track the reference 

position due to having capable of elimination disturbances around operating 

point. Thus, the PI-V controller with feed forward is designed as 

     
, , , ,

( )
( ) ( ( ) ( )) ( ( ) ( )) ( )b

r p b ref b i b ref b v b ff b ref

dx t
I t k x t x t k x t x t dt k K x t

dt
          (3.2.1.2) 

where 𝐾𝑓𝑓,𝑏 is the feed forward gain parameter. At equilibrium, 𝑥𝑟𝑒𝑓 = 𝑥𝑏 =

𝑥𝑏0, thus the ball position control presented in Equation (3.2.1.2) is obtained as 

                              
, 0ff b brI K x                                                      (3.2.1.3) 

At the equilibrium current, 𝐼𝑟 = 𝐼𝑐0, so the feed forward gain is obtained as 

                         0
,

0

c
ff b

b

I
K

x
                                                       (3.2.1.4) 

The operating point of the system is assumed to be 𝑥𝑏0=6mm and 𝐼𝑐0=0.86A and 

so 𝐾𝑓𝑓,𝑏 can be found as 138.6 A/m. 

            The feed forward gain (𝐾𝑓𝑓,𝑏) can be converted to the set point weighting 

(𝑏𝑠𝑝) as follows 

   , ,,sp ref b p b ref ff p bb ref bb x x k x K x x k                       (3.2.1.5) 

Hence, 

                                 
,

,

1
ff b

sp

p b

K
b

k
                                                   (3.2.1.6) 

The objective of set point weighting is to compensate for the gravitational bias. 

When the PI-V controller compensates for dynamic disturbances around the 

linear operating point (𝑥𝑏0, 𝐼𝑐0) the set point weighting eliminates the changes in 

the force created due to gravitational bias. Hence, the set point weighting is 

applied to the proportional controller to have a good steady-state response. 

            Now, the PI-V with set point weighting can be designed by 
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( )

( ) ( ( ) ( )) ( ( ) ( )) b
r p sp ref b i ref b v

dx t
I t k b x t x t k x t x t dt k

dt
                 (3.2.1.7) 

The Laplace transform of Equation (3.2.1.7) is 

             ( ) ( ) ( ) ( ) ( ) ( )i
r p sp ref p b ref b v b

k
I s k b X s k X s X s X s k sX s

s
            (3.2.1.8) 

Thus, the closed-loop transfer function can be written as 

  
( ) ( ) ( ) ( ) ( )( ) ( )

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( ) ( )

b c c b cr r
b c b

ref ref r c c ref r

X s V s I s X s V sI s I s
T s G s G s

X s X s I s V s I s X s I s
   (3.2.1.9) 

With the assumption ( ) ( )r cI s I s  as the inner control loop controls the coil 

current, namely, 

                                                       
( )

( ) 1
( )

c
c

r

V s
G s

I s
                                             (3.2.1.10) 

Thus, the closed loop position transfer function is  

                                  
( ) ( )

( ) ( )
( ) ( )

b r
b b

ref ref

T
X s I s

s G s
X s X s

                                 (3.2.1.11) 

Substituting Equation (3.2.1.8) into Equation (3.2.1.11), we can obtain  

                
0

3 2

0 0 0 0 0 0

2 ( ( 1))
( )

2 2 ( ) 2

b p i p sp

b

c b b v b p c b i

gx k s k k s b
T s

I x s gx k s g x k I s gx k

  

    

         (3.2.1.12) 

            Now, if we define desired performance requirements for the ball position 

control as 

1) Percent overshoot (PO) ≤ 5%, 

2) Settling time (𝑡𝑠) ≤ 0.3s, 

then these performance requirements can be used to get desired characteristic 

equation of the system, that is to say, 

                                            
2 2

0( 2 )( ) 0n ns w s w s p                                      (3.2.1.13) 

The damping ratio is found as  ζ=0.69 from Equation (3.1.1.1) and the settling 

time is given by 

 
4

s

n

t
w

                                           (3.2.1.14) 

Thus, the natural frequency can be found as 𝜔𝑛=19.3 rad/s from Equation 

(3.2.1.14) by providing the desired settling time. The third pole (𝑝0) location is 
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selected as -40 by taking into account the feature [𝑝0<dominant pole]. 

Moreover, the third pole should not be taken as very small. Otherwise, the 

control gains can increase a lot. The pole 𝑝0 is usually selected as 2-5 times the 

dominant pole in order to obtain good feedback responses. 

            Consequently, by comparing the characteristic equation of closed-loop 

system (3.2.1.12) with the desired characteristic equation (3.2.1.13), the 

controller gains used in PIV controller design are found as  
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0 0 0 0 0 0
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 
   


   

           (3.2.1.15) 

 

3.2.2 Integral Sliding Mode Controller 

 

            The sliding mode based controller is designed as the outer controller to 

control the ball position of the magnetic levitation system. Here, in the outer 

controller design for the magnetic levitation system, 𝐼𝑟 = 𝐼𝑐 is assumed to 

decrease the complexity due to the inner current control loop. Thus, we focus on 

the mechanical part of the system to control the ball position. 

            Both SMC and integral SMC as the outer controller are separately 

designed to control the ball position for the mechanical part of magnetic 

levitation system. For the second-order mechanical system, a sliding surface, 𝑠1, 

can be designed as 

                                       1    s e e                                                      (3.2.2.1) 

where 𝑒 = 𝑥𝑟 − 𝑥𝑏 and 𝜆 > 0. However, under this sliding surface, I have found 

that the ball position does not truly track the reference position and includes 

high error (position error) and unsatisfactory settling time in numerical and 

experimental results. Thus, an integral part is added to the sliding surface for a 

precise reference tracking. Integral SMC (ISMC) design for the outer controller 
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the new sliding surface, 𝑠1, can be designed for the second-order mechanical 

system as 

                       1 0     s e e edt                                                 (3.2.2.2) 

where 𝑒 = 𝑥𝑟 − 𝑥𝑏, 𝜆 > 0 and 𝜆0 > 0. In addition, the second-order system 

from Equation (2.3.3) is obtained as 

                      
2 2 0b b b b b cx w x K w i                                          (3.2.2.3)             

Thus, the time-derivative of Equation (3.2.2.2), 𝑠̇1, is obtained as 

                
2 2

1 0( ) ( )cr b b b b r b r bs x w x K w i x x x x                       (3.2.2.4) 

During sliding mode, i.e., 𝑠1 = 𝑠̇1 = 0, the equivalent current, 𝑖𝑒𝑞, can be 

obtained as follows 

           2

02

1
( ) ( )eq r b b r b r b

b b

i x w x x x x x
K w

                      (3.2.2.5) 

            The equivalent current controller is necessary to keep the system 

trajectory on the sliding surface and to reduce chattering on the system output. 

Therefore, the control input to the mechanical part of the magnetic levitation 

system can be designed in ISMC design as 

                         
0 1sat( )c eqi i i s                                                 (3.2.2.6) 

where 

    
1 1

1

1 1

sgn( / ), / 1
sat( / )

/ , / 1

s if s
s

s if s

 


 

 
 


                       (3.2.2.7) 

where 0.   The saturation function (sat(.)) is used to eliminate chattering on 

the system output. 

            The stability of the integral SMC must be satisfied for selected 

appropriate gain, 𝑖0, (i.e., satisfying reachability condition 1 1 0s s  ). By 

considering sliding surface given in Equation (3.2.2.2), the second-order 

linearized mechanical system given in Equation (3.2.2.3), the equivalent 

controller given in Equation (3.2.2.5), and the controller given in Equation 
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(3.2.2.6), stability analysis of the proposed SMC can be carried out as follows. 

First, if a positive definite Lyapunov function is defined by 

                                                    2

1

1

2
V s                                            (3.2.2.8) 

then its derivative must be negative definite for stability,  
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         (3.2.2.9) 

From Equation (3.2.2.7), it is clear that the controller consists of outer and inner 

parts. For the outer part of the controller, i.e. for 
1 / 1s   , we have 
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                              (3.2.2.10) 

Thus, the gain parameter, 𝑖0 < 0, then 0.V   That is to say, whenever 1s  ,  

1( )s t  will strictly decrease until it reaches the set 1s   in finite time and 

remains inside the set subsequently. For the inner part of the controller, i.e. 

inside the set 
1 / 1s   , the derivative of the Lyapunov function can similarly 

be written as 

                                                

2 1
0 1

2
2 1

0

b b

b b

s
V K w i s

s
K w i









                                   (3.2.2.11) 

Thus, the gain parameter is similarly obtained as 𝑖0 < 0, then 0.V 

Consequently the practical stability of the proposed controller Equation (3.2.2.6) 

is guaranteed with 𝑖0 < 0 condition. In addition, if we design only sliding mode 

controller for the linearized mechanical part, the integral part can be eliminated 

from the control input, 𝑖𝑐, in other word, 𝜆0 = 0. Note that it is possible to 
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increase system performance when we use 𝑒̈ instead of 𝑥𝑟̈ in the equivalent 

current controller. 

           Robustness of the Integral Sliding Mode Position Controller: From 

Equation (3.2.2.3), the second order linearized mechanical system including 

uncertainties can be written as 

                      
2 2

1 0 1 0( ( )) ( ( )) 0b b b b b b b cx w d x x K w d x i                    (3.2.2.12) 

where it is assumed that  2

1 0( ) 0b b bK w d x   and d1 is the operating position 

variations as a function of 𝑥𝑏0. From Equation (3.2.2.4), the differential equation 

of the sliding surface including uncertainties can be written as 

 
2 2

1 1 1 0( ) ( ) ( ) ( )r b b b b r b r bcs x w d x K w d i x x x x            (3.2.2.13) 

For the Lyapunov function 2

1 / 2V s , the time-derivative of the Lyapunov 

function is 
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(3.2.2.14) 

For the outer part of the controller, i.e. for 
1s  , by applying Cauchy-

Schwarz inequality, we have 

 
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                (3.2.2.15) 

Therefore, if   2

0 1 1 1/ ( )b eq b bi d x d i K w d    , then it is guaranteed that the 

system trajectory will enter the inner boundary layer,  
1s  , and stay there. 

            Note that for the maglev system under study, since the coil current works 

in the range of 0 3cI  , the extreme values of d1 can be  

2

1 1

0

2
6.54b b

c

g
d K w d

I
    .                      (3.2.2.16) 
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Chapter 4 

 

Results 

 

            The cascade control design consists of an inner controller and an outer 

controller. The inner controller should give much fast response than the outer 

controller because the inner loop firstly controls the coil current, 𝐼𝑐. In this 

context, the selected convenient cascaded controls for numerical and 

experimental hardware in the loop (HIL) test studies are given as 

1) The cascade PI-V with set point weighting (see Section 3.2.1) for the 

outer position loop plus PI (see Section 3.1.1) for the inner current loop 

controller. 

2) The cascade PI-V with set point weighting for the outer position loop 

plus high-gain SMC (see Section 3.1.2) for the inner current loop 

controller. 

3) The cascade PI-V with set point weighting for the outer position loop 

plus process SMC (PSMC) (see Section 3.1.3) for the inner current loop 

controller. 

4) The cascade PI-V with set point weighting for the outer position loop 

plus equivalent SMC (eSMC) with varying inductance (see Section 

3.1.4) for the inner current loop controller. 

5) The cascade PI-V with set point weighting for the outer position loop 

plus process SMC (PSMC) with varying inductance (see Section 3.1.4) 

for the inner current loop controller. 

6) The SMC (see Section 3.2.2) for the outer position loop plus PSMC for 

inner current loop controller. 
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7) The integral SMC (ISMC) (see Section 3.2.2) for the outer position loop 

plus PSMC for the inner current loop controller. 

8) The ISMC for the outer position loop plus high-gain SMC for the inner 

current loop controller. 

9) The ISMC for the outer position loop plus eSMC with varying 

inductance (see Section 3.1.4) for the inner current loop controller. 

10) The ISMC for the outer position loop plus PSMC with varying 

inductance (see Section 3.1.4) for the inner current loop controller. 

            MATLAB/Simulink programs are used for all numerical and 

experimental results. It is assumed that the ball position varies between 8 to 10 

mm ramp signals with a frequency of 0.25Hz. From the desired performance 

requirements (see Section 3.2.1), the controller should accomplish a desired 

±1mm square wave position set point. For some control designs, the sinusoidal 

reference tracking is also illustrated. The control parameter gains are obtained 

based on desired performance requirements and verified with numerical 

simulations. Moreover, the gains of SMC can be arranged with trial-error 

method via simulations in order to achieve design specifications. As the outer 

controllers, 𝑘𝑝,𝑏 = −199.7, 𝑘𝑖,𝑏 = −633.2, 𝑘𝑣,𝑏 = −2.82 and 𝑏𝑠𝑝 = 0.35 for 

PI-V controller with set-point weighting, 𝜆 = 60, 𝑖0 = −100 and ε=100 for  

SMC, 𝜆 = 60, 𝜆0 = 2000, 𝑖0 = −50 and ε=100 for ISMC. As the inner 

controllers and 𝑘𝑝,𝑐 = 220 and 𝑘𝑖,𝑐 = 50430 for PI controller, 𝑉0 = 50 and 

𝜀 = 0.1 for the inner high-gain SMC, 𝛼 = 150, 𝛽 = 50 and 𝜀 = 0.03 for the 

inner PSMC, 𝑉0 = 500 and 𝜀 = 0.1 for the inner equivalent SMC with varying 

inductance, 𝛼 = 150, 𝛽 = 50 and 𝜀 = 0.03 for the inner PSMC with varying 

inductance. 

            For the selected some cascade controllers which are PI-V plus PI, PI-V 

plus PSMC, ISMC plus PSMC and ISMC plus eSMC with varying inductance, 

numerical and experimental results for 10 seconds are shown in this section. In 

addition, for all cascaded controllers, numerical and experimental results are 

given in tables for comparison. 
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4.1 PI-V plus PI Cascade Control 

 

            The PI-V controller with set point weighting for the mechanical part and 

PI controller for the electrical part are cascaded appropriately. The experimental 

hardware-in-the-loop (HIL) test and numerical simulation results of this cascade 

control for the magnetic levitation are provided in this section. 

 

4.1.1 Numerical Simulations 

 

            The numerical simulation results of the cascade PI-V plus PI controller 

for 10 seconds are illustrated in Figs. 4.1.1.1-5. It is shown in Fig. 4.1.1.1 that 

the controller provides a desired tracking performance with a percent overshoot 

(around 2.3%). Figure 4.1.1.2 shows the coil current trajectory due to PI current 

controller. The coil current perfectly tracks the desired current, which makes the 

ball to follow the desired position. The coil voltage is shown in Fig. 4.1.1.3. The 

tracking error shown in Fig. 4.1.1.4 is the difference between actual trajectory 

and reference trajectory. The tracking error has little short transient response 

which satisfies the required settling time, and about 0.22mm (2.2% overshoot) in 

the simulations. Fig. 4.1.1.5 shows that the current error goes to almost zero in a 

short time and stays around zero for all subsequent times. 
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Figure 4.1.1.1 Ball position trajectory for PI-V plus PI. 
 

 

Figure 4.1.1.2 Coil current response for PI-V plus PI. 
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Figure 4.1.1.3 Coil voltage response for PI-V plus PI. 

 

 

Figure 4.1.1.4 Position tracking error for PI-V plus PI. 
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Figure 4.1.1.5 Current tracking error for PI-V plus PI. 

 

 

4.1.2 Experimental Results 

 

            The experimental results of the cascade PI-V plus PI controller for 10 

seconds are shown in Figs. 4.1.2.1-5. Figure 4.1.2.1 shows that the controller 

holds the ball during startup and follows the reference position trajectory 

thereafter. The small oscillations around the reference point are due to the 

effects of sampling time, measurement error and noise. In addition, the ball 

sways right and left rather than staying vertically as the photo detector does not 

exactly measure the ball position because of circularly ball. 
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Figure 4.1.2.1 Experimental ball position trajectory for PI-V plus PI. 

 

 

Figure 4.1.2.2 Experimental coil current response for PI-V plus PI. 

 

0 1 2 3 4 5 6 7 8 9 10
7

8

9

10

11

12

13

14

Time (s)

B
a
ll 

P
o
s
it
io

n
 (

m
m

)

 

 

x
ref

x
b

0 1 2 3 4 5 6 7 8 9 10
-0.5

0

0.5

1

1.5

2

2.5

3

Time (s)

C
o
il 

C
u
rr

e
n
t 

(A
)

 

 

I
r

I
c



~ 41 ~ 
 

 

Figure 4.1.2.3 Experimental coil voltage response for PI-V plus PI. 

 

 

Figure 4.1.2.4 Experimental position tracking error for PI-V plus PI. 
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Figure 4.1.2.5 Experimental current tracking error for PI-V plus PI. 

 

            Figure 4.1.2.2 shows the coil current trajectory. PI current controller 

provides a satisfactory tracking performance. The response of the coil voltage is 

shown in Fig. 4.1.2.3. The average voltage supply is around 14V during steady-

state. The position tracking error is shown in Fig. 4.1.2.4. It is clear that the 

position error is limited about 0.23mm during steady-state which satisfies 

desired requirements. Figure 4.1.2.5 shows the current tracking error. It is seen 

that the current error reaches almost zero with 0.03A error in a short time and 

stays around zero thereafter. 

 

4.2 PI-V plus Process SMC Cascade Control 

 

            The PI-V controller with set point weighting for the mechanical part and 

the process SMC for the electrical part are cascaded appropriately. The 

experimental hardware-in-the-loop (HIL) test and numerical simulation results 

of this cascade control for the magnetic levitation are provided in this section. 
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4.2.1 Numerical Simulations 

 

            The numerical simulation results of the cascade PI-V plus process SMC 

controller are shown in Figs. 4.2.1.1-5. It is illustrated in Fig. 4 that the 

controller provides a desired tracking performance with a little overshoot 

(around 2%). Figure 4.2.1.2 shows the coil current trajectory of the SMC current 

controller in which the coil current perfectly tracks the desired current, which 

makes the ball to follow the reference trajectory. The control signal, i.e., coil 

voltage, is shown in Fig. 4.2.1.3. Smooth voltage and current signals are 

observed in the simulations. The tracking error, which is the difference between 

actual trajectory and reference trajectory, is shown in Fig. 4.2.1.4. The tracking 

error has little short transient response which satisfies the required settling time, 

and about 0.2mm (2% overshoot) in the simulations. Fig. 4.2.1.5 shows that the 

sliding surface, s, (or current error) goes to almost zero in a short time and stays 

around zero for all subsequent times. 

 

 

Figure 4.2.1.1 Ball position trajectory for PI-V plus PSMC. 
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Figure 4.2.1.2 Coil current response for PI-V plus PSMC. 

 

 

Figure 4.2.1.3 Coil voltage response for PI-V plus PSMC. 

 

 

Figure 4.2.1.4 Position tracking error for PI-V plus PSMC. 
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Figure 4.2.1.5 Current tracking error for PI-V plus PSMC. 
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results are improved.  
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Figure 4.2.2.1 Experimental ball position trajectory for PI-V plus PSMC. 

 

 

Figure 4.2.2.2 Experimental coil current response for PI-V plus PSMC. 

 

            Figure 4.2.2.2 shows the coil current response. Process SMC current 
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position tracking error is shown in Fig. 4.2.2.4. The position error is clearly 
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The position error is decreased to 0.1mm after the light touch to the ball by 
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seen that the sliding surface reaches zero in a short time and stays around zero 

thereafter. 
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Figure 4.2.2.3 Experimental coil voltage response for PI-V plus PSMC. 

 

 

Figure 4.2.2.4 Experimental position tracking error for PI-V plus PSMC. 

 

 

Figure 4.2.2.5 Experimental current tracking error for PI-V plus PSMC. 
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oscillates between ±0.1 mm as in pulse reference tracking case. It is also seen 

that the sliding surface (current error) reaches zero in a short time and stays 

around zero thereafter. We are able to achieve any kind of tracking with the 

process SMC based cascade control law. 

 

 

Figure 4.2.2.6 Experimental ball position trajectory for a sinusoidal reference of PI-V plus 

PSMC. 

 

 

Figure 4.2.2.7 Experimental coil current response for a sinusoidal reference of PI-V plus 

PSMC. 

 

  

Figure 4.2.2.8 Experimental coil voltage response for a sinusoidal reference of PI-V plus 
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Figure 4.2.2.9 Experimental position tracking error for a sinusoidal reference of PI-V plus 

PSMC. 

 

 

Figure 4.2.2.10 Experimental current tracking error for a sinusoidal reference of PI-V plus 

PSMC. 
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4.3.1 Numerical Simulations 

 

            The tracking performances of the cascade integral SMC plus process 

SMC controller are shown in Figs. 4.3.1.1-5. It is seen in Fig. 4.3.1.1 that the 

controller provides a desired tracking performance with a little overshoot 

(almost 0.6%) and a little settling time (almost 0.26s. with 1% error). Thus, the 

ball position perfectly tracks the desired position. Figure 4.3.1.2 shows the 

response of the process SMC current controller in which the coil current 

perfectly tracks the desired current with around 0.008A error, which makes the 

ball to follow the reference trajectory. The tracking error, which is the difference 

between actual trajectory and reference trajectory, is shown in Fig. 4.3.1.3. The 

tracking error has little short transient response which satisfies the required 

settling time, and about 0.067mm (0.067% overshoot) in the simulations. Fig. 

4.3.1.4 show that the sliding surface, s, (or current error) and, goes to zero in a 

short time and stays around zero for all subsequent times and 4.3.1.5 show that 

the sliding surface, 𝑠1, for outer controller goes to zero in a short time and stays 

around zero with around 1% error for all subsequent times. 

 

 

Figure 4.3.1.1 Ball position trajectory for ISMC plus PSMC. 
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Figure 4.3.1.2 Coil current response for ISMC plus PSMC. 

 

 

Figure 4.3.1.3 Position tracking error for ISMC plus PSMC. 

 

 

Figure 4.3.1.4 Current tracking error for ISMC plus PSMC. 

 

0 1 2 3 4 5 6 7 8 9 10
1

1.5

2

2.5

3

Time (s)

C
o
il 

C
u
rr

e
n
t 

(A
)

 

 

I
r

I
c

0 1 2 3 4 5 6 7 8 9 10
-1

0

1

2

3

Time (s)

P
o
s
it
io

n
 E

rr
o
r 

(m
m

)

0 1 2 3 4 5 6 7 8 9 10
-0.2

0

0.2

0.4

0.6

0.8

1

Time (s)

S
li
d
in

g
 S

u
rf

a
c
e

(C
u
rr

e
n
t 

E
rr

o
r)

 (
A

)



~ 52 ~ 
 

 

Figure 4.3.1.5 Sliding surface of outer ISMC for ISMC plus PSMC. 
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Figure 4.3.2.1 Experimental ball position trajectory for ISMC plus PSMC. 

 

 

Figure 4.3.2.2 Experimental coil current response for ISMC plus PSMC. 

 

 

Figure 4.3.2.3 Experimental position tracking error for ISMC plus PSMC. 
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Figure 4.3.2.4 Experimental current tracking error for ISMC plus PSMC. 

 

 

Figure 4.3.2.5 Experimental sliding surface of outer ISMC for ISMC plus PSMC. 
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of the system is illustrated from 40 to 50 seconds. In Figure 4.3.2.7, the position 
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Figure 4.3.2.6 Experimental ball position trajectory in the steady-state for ISMC plus 

PSMC. 
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Figure 4.3.2.7 Experimental position tracking error in the steady-state for ISMC plus 

PSMC. 

 

4.4 Integral SMC plus Equivalent SMC Cascade 

Control with Varying Inductance 

 

            The integral SMC for the mechanical system and equivalent SMC with 
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numerical simulation results of this cascade control for the magnetic levitation 

are provided in this section. 
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which satisfies the required settling time, and about 0.05mm (0.5% overshoot) in 

the simulations. Fig. 4.4.1.4 show that the sliding surface, s, (or current error) 

and, goes to zero in a short time and stays around zero for all subsequent times 

and 4.4.1.5 show that the sliding surface, 𝑠1, for outer controller goes to zero in 

a short time and stays around zero with around 0.01% error for all subsequent 

times. 

 

Figure 4.4.1.1 Ball position trajectory for ISMC plus eSMC with varying inductance. 

 

 

Figure 4.4.1.2 Coil current response for ISMC plus eSMC with varying inductance. 
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Figure 4.4.1.3 Ball position tracking error for ISMC plus eSMC with varying inductance. 

 

 

Figure 4.4.1.4 Current tracking error for ISMC plus eSMC with varying inductance. 
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Figure 4.4.1.5 Sliding surface of outer ISMC for ISMC plus eSMC with varying 

inductance. 
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Figure 4.4.2.1 Experimental ball position trajectory for ISMC plus eSMC with varying 

inductance. 

 

            Figure 4.4.2.2 shows the response of the coil current. The equivalent 

SMC current controller eliminates the effects of inductance uncertainty and 
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around 0.7% (0.07mm) in steady-state is shown in Figure 4.4.2.3. Figure 4.4.2.4 

shows the sliding surface, s, (or current tracking error). It is seen that the sliding 

surface reaches zero in a short time and stays around zero. Figure 4.4.2.5 shows 

the sliding surface, 𝑠1, for the ball position controller. It is seen that the sliding 

surface reaches zero in a short time and stays around zero with average 0.5% 

error thereafter. 
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Figure 4.4.2.2 Experimental coil current response for ISMC plus eSMC with varying 

inductance. 

 

Figure 4.4.2.3 Experimental position tracking error for ISMC plus eSMC with varying 

inductance. 
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Figure 4.4.2.4 Experimental current tracking error for ISMC plus eSMC with varying 

inductance. 

 

 

Figure 4.4.2.5 Experimental sliding surface of outer ISMC for ISMC plus eSMC with 

varying inductance. 
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4.5 Comparison of Cascade Controllers 

 

4.5.1 Numerical Simulations 

 

            According to the percent overshoot, settling time with 2% error, the 

position error, the current error and the sliding surface (𝑠1) of sliding mode 

based controllers designed for the mechanical part as the outer controller, 

comparisons of numerical simulation results of all cascade controllers are shown 

in Table 4.5.1.1. Here, PI-V controller for the outer loop does not have sliding 

surface of the outer controller. Numerical simulation clearly presents the 

differences between controllers. According to Table 4.5.1.1, when PI-V is 

designed as an outer controller, the results of the ball position tracking 

performance are almost same with little errors. The position error is almost 

0.22mm and the settling time is 0.3 second 2% with error. Moreover, when the 

traditional sliding mode controller is designed as an outer controller, the results 

are almost same as a percent overshoot or a position error, but settling time is 

0.5 second with 6% error and does not achieve the desired performance 

requirement (the maximum settling time ≤ 0.3s.). On the other hand, when the 

integral sliding mode controller is designed as an outer controller, the position 

error is almost 0.6mm and settling time is 0.19 second with 2% error or 0.26 

second with 1% error. Therefore, the cascade controllers provide wonderful 

performances for the ball position of the magnetic levitation system in the 

numerical simulations. 

 

 

 

 

 



~ 63 ~ 
 

Controller Percent 

Overshoot 

(PO) 

Settling 

Time (s) 

Position 

Error 

(mm) 

Current 

Error(s) 

(A) 

Sliding 

Surface(𝑠1) 

(m) 

PI-V plus PI 2.3% 0.3 0.22 0.0005 - 

PI-V plus high-

gain SMC 
2.3% 0.3 0.22 0.006 - 

PI-V plus PSMC 2.2% 0.3 0.22 0.005 - 

PI-V plus eSMC 

with varying 

inductance 

2.2% 0.3 0.21 0.00002 - 

PI-V plus PSMC 

with varying 

inductance 

2.2% 0.3 0.21 0.004 - 

SMC plus high- 

gain SMC 
2% 0.5 0.13 0.03 0.01 

ISMC plus high-

gain SMC 
0.6% 0.19 0.06 0.008 0.012 

ISMC plus 

PSMC 
0.6% 0.19 0.06 0.008 0.015 

ISMC plus 

eSMC with 

varying 

inductance 

0.5% 0.19 0.05 0.0007 0.01 

ISMC plus 

PSMC with 

varying 

inductance 

0.55% 0.19 0.05 0.007 0.012 

 

Table 4.5.1.1 Position tracking performance of numerical studies for all cascaded 

controllers. 
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4.5.2 Experimental Results 

 

            In experimental studies, the small oscillations around the reference point 

are due to the effects of sampling time, measurement error and noise. In 

addition, the ball sways right and left rather than staying vertically as the photo 

detector does not exactly measure the ball position because of the circularity of 

the ball. This can be solved with touching lightly to the ball by hand. 

            For experimental studies, the comparisons of the ball position tracking 

performance of all cascade controllers are shown in Table 4.5.2.1. The 

performance comparisons are done according to the percent overshoot, the 

position error, the current error and the sliding surface (𝑠1) of sliding mode 

based controllers designed for the mechanical part as the outer controller, Here, 

PI-V controller for the outer loop does not have sliding surface. The settling 

time may not be measured for the experimental results due to the oscillations. 

According to Table 4.5.2.1, when PI-V is designed as an outer controller, the 

results of the ball position tracking performance are almost same with little 

error. Moreover, when the traditional sliding mode controller is designed as an 

outer controller, the controller does not satisfy the desired settling time and it 

has a large maximum percent overshoot. On the other hand, when the integral 

sliding mode controller is designed as an outer controller, the cascade controllers 

provide wonderful performance for the ball position of the magnetic levitation 

system in the experimental results. ISMC plus eSMC with varying inductance 

cascade controller provides the best performance for the tracking ball position 

for the magnetic levitation system. 
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Controller Percent 

Overshoot 

(PO) 

Settling 

Time (s) 

Position 

Error 

(mm) 

Current 

Error(s) 

(A) 

Sliding 

Surface 

(𝑠1) (m) 

PI-V plus PI 2.3% - 0.23 0.03 - 

PI-V plus high-

gain SMC 
2% - 0.2 0.03 - 

PI-V plus PSMC 2% - 0.2 0.02 - 

PI-V plus eSMC 

with varying 

inductance 

2.1% - 0.2 0.01 - 

PI-V plus PSMC 

with varying 

inductance 

2% - 0.2 0.02 - 

SMC plus high- 

gain SMC 
6.5% - 0.6 0.03 0.05 

ISMC plus high-

gain SMC 
1.8% - 0.18 0.02 0.05 

ISMC plus 

PSMC 
1.5% - 0.15 0.01 0.05 

ISMC plus 

eSMC with 

varying 

inductance 

1% - 0.07 0.02 0.05 

ISMC plus 

PSMC with 

varying 

inductance 

1% - 0.08 0.03 0.05 

 

Table 4.5.2.1 Position tracking performance of experimental studies for all cascaded 

controllers. 
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Chapter 5 

 

Conclusions 

 

 

            Magnetic levitation systems are used to provide frictionless movement, 

reliable and economical operations in many industrial applications. On the other 

hand, the magnetic levitation system is a highly nonlinear system, and has the 

electromagnet inductance originated parameter uncertainty and open-loop 

unstable dynamics. All these challenges need the design of precise feedback 

control systems. To deal with the issues of the magnetic levitation technology, 

sliding mode control which is a robust nonlinear control method is designed to 

provide a stable and robust magnetic levitation operations.  

A cascade controller with sliding mode and PID controllers is designed 

for feedback control of the magnetic levitation to increase the position tracking 

performance in this thesis. The cascade controller consists of an inner current 

loop and an outer position loop. For the inner loop, SMC based cascade 

controllers are designed to eliminate the coil parameter uncertainty and to give 

fast response. For the outer position loop, both SMC and PIV based controllers 

are designed to decrease the effects of disturbances around the operating point. 

The nonlinear system model and its linearization are taken into account in the 

control designs. Both numerical simulation and experimental results are 

provided and it is shown that the SMC based cascade controller provides a 

highly precise position tracking performance. The SMC controllers keeps the 

current error around zero and provides ±0.1 mm position error in the steady-

state, which is very small compared to the literature.  
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APPENDIX 

 

Appendix A: Simulink Programs 

 

 

The following Simulink programs are used in the numerical and experimental 

studies. 

 

 

Figure A.1 Block diagram of the inner current control with PI, high-gain SMC, PSMC and 

SMC with varying inductance. 
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Figure A.2 Block diagram of the outer ball position control with PI-V controller, SMC and 

integral SMC. 

 

 

Figure A.3 Block diagram of the PI controller. 
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Figure A.4 Block diagram of the high-gain SMC. 

 

 

Figure A.5 Block diagram of the process SMC. 
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Figure A.6 Block diagram of the SMC with varying inductance. 

 

 

Figure A.7 Block diagram of the PI-V controller. 
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Figure A.8 Block diagram of the SMC controller. 

 

 

 

Figure A.9 Block diagram of the integral SMC controller. 
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Appendix B: Taylor Series Approximation 

 

 

The Taylor series approximation is used to linearize the nonlinear systems and, 

for a nonlinear function 𝑓(𝑧), described by 
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  (B1) 

where 𝑧0 is the operating point. 


