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ABSTRACT 

FLOW-BASED P-HUB MEDIAN INTERDICTION 
PROBLEM 

 

Abdulkerim BENLİ 

MSc. in Industrial Engineering 

Supervisor: Assoc. Prof. Dr. İbrahim AKGÜN 

January 2017 

There are two players in a network interdiction problem: a network user who 

wishes to operate a system optimally, and an opponent/interdictor who tries to 

prevent the system from operating optimally. Interdiction problems can be 

modeled as a bi-level min-max or max-min problem in the Stackelberg Game 

logic. In this thesis, we handle the interdiction problem within the context of the 

p-hub median problem. The network user solves the problem of locating p hubs 

to minimize the cost associated with operating the network. In response to the 

network user, the interdictor tries to maximize network user’s cost by removing 

hub characteristics of effective hubs with its limited resources. The p-hub median 

problem of the network user is modeled on the flow-based networks. The model 

we develop in this study, unlike the previous literature, does not require the 

complete network and enables one to find the correct solution in cases that do not 

provide triangle inequality between nodes. Therefore, this new model provides 

significant advantages regarding the solution times and modeling capabilities 

compared to the facility interdiction models offered by the literature. 

Keywords: p-hub median interdiction problem, network interdiction, Stackelberg 

Game, hub disruption, bilevel binary program. 
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ÖZET 

AKIŞ TABANLI P-HUB (ANA DAĞITIM ÜSSÜ) 
ORTANCA ENGELLEME PROBLEMİ 

 

Abdulkerim BENLİ 

Endüstri Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi: Doç. Dr. İbrahim AKGÜN 

Ocak-2017 

Serim önleme/kesme problemlerinde, bir serim üzerinde tanımlı bir sistemi 

optimal şekilde işletmeye çalışan bir serim kullanıcısı ile sistemin optimal 

çalışmasını engellemeye çalışan bir rakip/saldırgan olmak üzere iki oyuncu 

vardır. Problem, Stackelberg Oyunu mantığı içerisinde, iki seviyeli minimaks 

veya maksimin problemi olarak modellenebilir. Bu çalışmada, serim kesme 

problemi, p-hub ortanca problemi kapsamında ele alınmıştır. Serim kullanıcısının, 

maliyeti minimize edecek şekilde ana dağıtım üssü yer seçimi problemi çözdüğü; 

rakibin ise, sınırlı kaynaklar ile ana dağıtım üslerini kullanılamaz hale getirerek 

minimum maliyeti maksimize etmeye çalıştığı kabul edilmiştir. Serim 

kullanıcısın p-hub ortanca problemi, gerçek serim yapıları üzerinde ve akış tabanlı 

olarak modellenmiştir. Geliştirilen model, daha önceki çalışmalardan farklı 

olarak, tam serim yapısı gerektirmemekte ve üçgen eşitsizliğini sağlamayan 

durumlarda da doğru çözüm vermektedir. Önerilen modelin, hem çözüm 

zamanları hem de modelleme yetenekleri açısından literatürdeki tesis yeri seçimi 

önleme modellerine göre önemli avantajlar sunduğu görülmüştür. 

Anahtar kelimeler: p-hub ortanca üzerinde engelleme, serim engelleme/kesme 

modeli, Stackelberg oyunu, hub (ana dağıtım üssü) işleyişini durdurma. 
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Chapter 1  
 

 

INTRODUCTION 
Point-to-point transportation transfers commodities and passengers directly 

to their destinations rather than transferring them via central locations. Point-to-

point transportation had been the only transport option in package delivery and 

airline industries until an international package delivery company, FedEx, 

changed usual transportation rules in the early 1970’s. The company created a 

new network system to carry parcels between the origin and the destination cities. 

This new system consolidates incoming packages from the origin cities and sorts 

them according to their destination areas in central facilities. Then, packages are 

sent to another central facility or delivered directly to the destination city. These 

central facilities and their connected destination locations are called as hubs and 

spokes respectively, and the system is called as the hub-and-spoke network. The 

success of the application of the system in the delivery industry led hub-and-spoke 

network approach to spreading over airline companies after the deregulation act 

in 1978 in USA airline industry. The deregulation allowed passengers to fly 

through central airports/hubs rather than to reach their destination airport directly. 

On the other hand, various industries also use hub-and-spoke network models. For 

example, telecommunication networks distribute data packages via big data 

centers which are interconnected by fiber optic cables that have high transmission 

capacity.  

The main reason behind the prevalence of hub-and-spoke network approach 

in transportation and telecommunication network systems is its operational 

efficiency compared to point-to-point approach. This is due to the fact that a point-

to-point network connects all origin and destination pair of nodes (locations) 
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without intermediate transfer points. Consider a network with n nodes. There must 

be 𝑛𝑛(𝑛𝑛 − 1) links to connect all the nodes to each other, and therefore 𝑛𝑛(𝑛𝑛 − 1)/2 

routes are required to create a point-to-point transport. For example, the point-to-

point network design depicted in Figure 1.1(a) requires 30 connections between 

origin and destination pairs, and 15 routes for 6 nodes. If we set one out of n nodes 

as hub facility, and connect the other nodes to this hub as spokes, the new hub-

and-spoke network design only requires 2(𝑛𝑛 − 1) connections to connect all 

origin and destination pairs. For instance, the 6-nodes network with one hub as in 

Figure 1.1(b) with 10 connections (instead 30 connections as in Figure 1.1(a)) can 

create 30 origin and destination pairs.  

 
Figure 1.1. Point-to-Point Transit and Hub-and-spoke Structure 

Hub-and-spoke network systems enable a cost-efficient transportation due 

to the small number of routes. Also, time-consuming and challenging operations, 

such as sorting and consolidation, are processed in the hubs rather than in each 

destination. This network system also generates a carbon efficiency by reducing 

fuel consumption in transportation. Moreover, a new destination can be attached 

to the system easily in hub-and-spoke networks rather than connect it to every 

destination as in point-to-point networks. Furthermore, the consolidated flow of 

passengers, commodities or packages generates economies of scale between hub 

facilities because of reduced setup and operating expenses per unit of transported 

flow.  

Since the network operators from different sectors facilitate hub-and-spoke 

systems because of their various advantages, the attention of many researchers 

(a) (b) 
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has moved towards the problem of finding optimal ways to design such systems. 

The design of a hub-and-spoke system requires finding the locations of hubs and 

allocating non-hub nodes to these optimal hubs. Various studies have developed 

mathematical models to design different types of hub-and-spoke systems.  

Even though hub-and-spoke systems provide many benefits, they may also 

have drawbacks if not properly managed. Shipment delays may occur because of 

the time spent at the hubs. For instance, airline passengers may have to wait for 

hours in the hub airports to transfer. Also, if the service flow through the hubs is 

not sufficient, economies of scale may not be achieved. Therefore, finding the 

optimal locations for hub facilities is a critical decision for network operators. 

On the other hand, hub-and-spoke systems may be disrupted due to adverse 

events, e.g., natural or human-made disasters and terrorist attacks. The disruption 

on any part of a hub-and-spoke network may affect the functioning of the whole 

system. Especially, hubs are vital because a disturbance on hubs may cause the 

system to fail if necessary precautions are not taken beforehand, or contingency 

plans are not ready. If a hub is disrupted for some reason, every origin and 

destination getting service from the disrupted hub are poorly affected. For 

example, FedEx, a USA package delivery company, lost $125 million in 2014 due 

to the operation delays over its hub airports with severe weather conditions [1].  

Intentional attackers may also disrupt hub-and-spoke systems. For example, 

USA economy lost about $10 billion (with indirect costs) due to Ronald Reagan 

hub airport was closed for one month after 9/11 terrorist attack. Furthermore, US 

Airways, a major USA airline company, had gone bankruptcy due to the canceled 

flights over this disrupted hub airport [2]. 

Although the analysis of disruptions is of great importance, only the recent 

studies have focused on this issue. In facility location studies, there are dozens of 

models to optimize the location of facilities in different types of environments and 

under various considerations. However, the studies on the reaction of facility 

location and hub location models to disruptive events are very new [3]. Except for 
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a few specific ones, most of the studies in the literature assume that hub-and-spoke 

network systems run in a perfect environment, and no external or internal threats 

exist for these systems. However, these assumptions do not hold in the real-world. 

Like every system, the hub-and-spoke networks are also open to numerous 

possibilities of disruptions. Therefore, the reliability of hubs against disruptions 

is a key criterion to design a successful network system.  

When disruptions are probabilistic as natural disasters are, they can be 

modeled using stochastic programs. Their effect can be incorporated into the 

models as exogenous factors. On the other hand, in intentional disruptions, there 

exist intelligent attackers and their goal is to give the extreme damage to the 

system. In this sense, malicious attacks are the worst-case disruptions for the hub-

and-spoke network systems. Intentional network disruption is an interdiction 

operation of an intentional attacker (or network interdictor). On the other hand, 

network operators/users have precautions against those attacks to minimize the 

damage. Network users are the decision makers guarding themselves against 

deliberate assaults. In this regard, there are two different agents in the network: 

the network interdictor and the network user. 

These decision makers compete on the same network system. The network 

user facilitates a hub-and-spoke approach to finding an efficient way to transport 

services such as commodities, information, and passengers. The network 

interdictor attacks the network to interrupt the activities of the network user. In 

other words, these decision makers play a game on the system. Herein, the game 

refers to following moves of decision makers.  

In this thesis, we introduce a two-stage hub interdiction game between two-

player; network user and the network interdictor. In this network interdiction 

game, following moves of the decision makers can be defined as a Stackelberg 

game in which the leader/intentional attacker moves first, and the follower/ 

network user acts against that move [4], [5]. The network interdictor firstly attacks 

the critical facilities of the network user. This is the worst-case scenario for the 
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network user. Therefore he creates a contingency plan to avoid the assault and 

locate the hub facilities in alternative locations and connects spokes to them in an 

efficient way. The network user wishes to design a hub-and-spoke system that 

will be operational even after the worst-case event occurs. 

Since game theoretical mathematical models consist of reciprocal actions of 

decision makers, they are modeled in multi-level mathematical formulations.  In 

this thesis, we formulate the hub-and-spoke network interdiction game with a bi-

level program consisting of lower and upper levels.  The lower problem of the 

model gives the network user’s problem which minimizes total transportation 

costs by installing hub facilities. This is simply a p-hub median problem. In the 

upper level, the network interdictor attempts to worsen the objective value of the 

network user by interdicting its facilities. Interdiction operations are done by 

putting penalty costs on critical hubs of the network user’s facilities. The penalty 

costs are sufficient incentives for a network user not to choose the interdicted 

facilities so that the network user is forced to choose alternative facilities as hub 

points. Our flow-based p-hub median interdiction problem is a max-min program 

in which upper and lower levels have maximization and minimization objectives, 

respectively. We finally apply an algorithm based on Benders decomposition 

algorithm to solve the model.  

Unlike the previous studies on the hub-and-spoke network interdiction, our 

model allows the network user to construct as many of hub facilities as he wants. 

For instance, assume that a network user wants to locate p hub facilities on a 

network and a network interdictor has just enough resources to disrupt r out of 

them. Previous studies solve this hub interdiction problem for p-r hub facilities. 

This is the worst-case scenario for the network user who operates a present hub 

network.  This is due to the fact that the network user has to sustain its operation 

with remaining hub facilities after the interdiction. However, if network system is 

not present and network user designs a new hub network, this scenario cannot be 

applicable. 
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This study considers the hub interdiction problem for the case in which a 

network user wishes to locate p hub facilities with the information of a presence 

of a network interdictor. The network interdictor finds out the most critical r 

facilities to attack. The network user generates an alternative hub location plan 

including p hubs again regardless interdicted facilities. Thus, the network user can 

mitigate the possible risks resulted from intentional attacks in initial network 

design.  

Moreover, the model can also be applied to the present hub-and-spoke 

network systems. In this case, the network user finds out the most critical hub 

facilities to be attacked by an interdictor and create a contingency plan in the case 

of a deliberate assault. This emergency plan shows the network user the facilities 

which are worth to move instead of interdicted facilities.  

Furthermore, another advantage of our model is that it can run on more 

realistic cases than literature due to the fact that the lower level structure of the 

model allows flexing some assumptions of general hub location problem studies. 

Further details on the issue can be found in Chapter 2.  

The remainder of this thesis is organized as follows: Chapter 2 introduces 

the hub location problems and the p-Hub Median problem that we consider. 

Chapter 3 discusses the general network interdiction and facility interdiction 

problems. Chapter 4 presents our flow-based p-hub median interdiction problem 

while the computations and the results of the tests run on the model are shown in 

Chapter 5, and finally, Chapter 6 concludes the thesis and discusses the future 

implications.   
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Chapter 2 

 

 

HUB LOCATION PROBLEM (HLP) 
2.1. Background 

In real-life networking systems, hub location is a long-term strategic 

decision. Replacing existing hub facilities with the new ones is both time 

consuming and costly due to the large setup and initial operation expenses [6]. 

Therefore, the optimal location of hubs in network design has a great importance 

for a network user. In general, Hub Location Problems (HLPs) attempt to find 

efficient locations for hub facilities and design the whole hub-and-spoke network 

to minimize a cost based objective. 

However, this is not an easy task. The difficulty with HLP is that there are 

two different assignments to be made. First, hubs are located in the network, and 

then non-hub nodes are assigned to these hubs with their flows. Nonetheless, 

researchers take that arduous task and analyze HLP considering various 

characteristics and the environment of network systems.  

HLPs are broadly applied in transportation and telecommunication 

networks. The application of HLP in transportation networks includes package 

delivery, surface transportation, air freight, passenger travel, and urban 

transportation systems. These networks use hub facilities as transshipment 

terminals for different modes of vehicles carrying flows from origins. Hubs 

consolidate flows coming from origins and sort them regarding their destinations. 

The consolidation functionality generates economies of scale on transportation 

costs of hub-to-hub connections (also origin-to-hub and hub-to-destination links 

in some HLPs) [7]. 
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In telecommunication systems, HLPs apply distributed data networks. 

These networks route electronic data over physical cables such as fiber optic and 

coaxial cables, or through the air with satellite channels and microwave links. 

Hubs are hardware equipment such as switches, concentrators, multiplexors, and 

routers. Economies of scale in data transmission and centralized network 

architecture motivate hub-and-spoke system to be used in telecommunication [7]. 

O’Kelly (1986a) was the first study [8] modeled HLP with a continuous 

mathematical formulation in 1986. Since then, researchers from different 

disciplines study the HLPs in the areas of location science, telecommunication 

and computer networks, network optimization, transportation, and geography. 

The study area expands with the work of [9],[10] for discrete models and 

Campbell (1994 and 1996)’s new problem definitions [11],[12] on the same 

objective structure of previous studies. Also, [13],[14] reduce the solution 

complexity for hub problems with their flow-based approach. Comprehensive 

survey and review studies on hub networks begin with [15]. Alumur and Kara 

(2008) classify discrete hub location models [16] until 2008. Campbell and 

O’Kelly (2012) start to survey with the first hub studies [17] and review recent 

models and perspectives. Recently, Farahani et al. (2013) review HLPs 

considering solution methods [18]. 

2.2. Characteristics of HLP 

2.2.1. Properties 

Broadly speaking, in facility location problems, service demand of a 

demand point is supplied from the nearest facility. There are no extra transfer 

facilities to route flow coming through a demand point or leaving a supply point. 

However, the most important characteristic of HLPs is to use transshipment points 

between (O/D) pairs. Service demand of a demand point (destination) from a 

supply point (origin) is carried out over transshipment facilities (hubs). Hub 

facilities lie in the O/D path. Origins and destinations are interchangeable, which 

means that a supply point can be a demand point and vice versa. Also, hub 
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facilities can have their service supply and demand. Setup and operational 

transportation expenses per unit of flow decrease because economies of scale on 

costs of moving consolidated flows between hubs.  

Another property of HLPs is that (O/D) pairs can be assigned only to single 

or multiple hub facilities. Single allocation HLPs assign particular hub facilities 

to each origin and destination point. However, multiple allocation HLPs allow 

(O/D) pairs getting service from various hub facilities. This feature distinguishes 

HLP from other facility location problems whose demand points can be served 

only by one supply facility.  

 Consider hub-and-spoke networks in Figure 2.2.1 which depict different 

network designs where i and j nodes represent the O/D pairs, and k and m nodes 

represent hub facilities in the path of pairs. i and j are interchangeable supply and 

demand points, respectively, and hub facilities also can be the origin and the 

destination points. Figure 2.2.1(a) shows a sample of single allocation HLP where 

i and j are served by only hub nodes, k and m, respectively. Figure 2.2.1(b) 

illustrates a sample multiple allocation HLP in which both k and m hub facilities 

are assigned to(i/j) pair. 

 

Dashed arrows between non-hub nodes i, j, and hub nodes k, m are called 

access arcs and bold straight arrows between hub nodes k and m are called as hub 

arcs in Figure 2.2.1(a) and 2.2.1(b). Red elbow arrow is a direct arc between non-

hub nodes i and j in Figure 2.2.1(c).  

Figure 2.2.1.  Hub Location Problems on representative networks 

k 

j i 

m k 

j i 

m

(a) (b) 
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2.2.2. Definition of HLP 

We can define a general HLP as follows: Consider a complete graph G= (N, 

A) where N is the set of origin and destination nodes, and A is the set of arcs 

between these nodes. Let the members of N be also potential hub facilities. For 

each O/D pair (i, j), let 𝑊𝑊𝑖𝑖𝑖𝑖 denote the amount of the flow and 𝑑𝑑𝑖𝑖𝑖𝑖 gives the 

distance from origin 𝑖𝑖 ∈ 𝑁𝑁 to destination 𝑗𝑗 ∈ 𝑁𝑁, respectively. A hub arc 𝑎𝑎 =

(𝑖𝑖, 𝑗𝑗)  ∈ 𝐴𝐴 connects the hub nodes (i and j) where transportation cost of one unit 

of flow is 𝛼𝛼𝑙𝑙𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖,𝑓𝑓𝑓𝑓𝑓𝑓 0 < 𝛼𝛼 < 1. 𝛼𝛼 is the discount factor for the consolidated 

flow between inter-hub transportation costs. HLPs achieve the economies of scale 

on transportation cost with this discount factor. On the other hand, for an access 

arc 𝑎𝑎 = (𝑖𝑖, 𝑗𝑗)  ∈ 𝐴𝐴, flow cost is calculated as 𝑑𝑑𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖. In this given network 

structure, a generic HLP searches the optimal hub facilities among 𝑛𝑛 ∈ 𝑁𝑁 and 

sets up hub arcs between them, then finally, transfers flows from origin to 

destination routing via these hubs with the objective of minimizing the setup and 

flow costs.  

2.2.3. Assumptions 

Researchers make six assumptions for HLPs:  

1. The underlying network is complete. 

2. The economies of scale on transportation costs over the hub-and-spoke 

network are achieved by the discount factor, 𝛼𝛼.  

3. The direct flows from origins to destinations are not allowed. 

4. The Access and Hub arcs have no setup costs. 

5. The discount factor is independent of the amount of flow and same for all 

hub arcs. 

6. Distances, 𝑑𝑑𝑖𝑖𝑖𝑖, satisfy the triangle inequality. 

Assumption 1 is a handicap for HLPs to work on more realistic problems 

because mostly, real-world networks are not complete. Assumption 3 guarantees 
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that (O/D) pairs must include at least one hub in their paths. Once hubs are located, 

they are fully interconnected because there is no additional setup cost for hub arcs 

by assumptions 4 and 6. When assumption 6 is not satisfied O/D paths can include 

more than two hubs, otherwise each O/D flow is routed over two hubs at most.  

Combining all these assumptions; each O/D path has a collection leg from 

the origin to the first hub, a transfer leg between the first and the last hub, and a 

distribution leg from the last hub to the destination provided by the third and the 

fourth assumptions. The flow of O/D pair can be transferred by one hub with no 

hub arcs or two hubs with one hub arc. Consequently, the flow cost of one O/D 

pair rises by a basic formula, 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 + 𝛼𝛼(𝑑𝑑𝑘𝑘𝑘𝑘𝑊𝑊𝑘𝑘𝑘𝑘) + 𝑑𝑑𝑗𝑗𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗. The 

first, the second, and the third terms of the formula are collection, transfer and 

distribution costs along the O/D path, respectively. The objective of HLP is 

generally the summation of this formula over all O/D pairs [7]. 

2.3. Classification 
Depending on characteristics of HLPs such as network topology, objective, 

and decision maker preference, HLP is classified into several categories in the 

literature. One classification is the objective of the problems: 

2.3.1. Objectives 

Broadly speaking, the objective of HLPs is minimizing the transportation 

costs or travel times in transportation applications. In telecommunication 

networks, HLPs focus on setup costs over the hub-and-spoke architecture [7]. 

Analogous to facility location problems such as p-median, p-center and covering 

problems, HLPs can be classified as follows. 

p-Hub Median Problems consider of locating (p-) number of hub facilities 

to minimize total flow cost overall O/D paths on hub-and-spoke networks.  

p-Hub Center Problems minimize the maximum flow cost of all the O/D 

pairs, all the arcs of the network or access arcs.  
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Hub Covering Problems minimize the hub setup costs to achieve at least a 

specified service level (travel distance). Service demand is satisfied only its origin 

and destination are in the range of a hub facility.  

2.3.2. Allocation Type and Capacity Limitation 

We can also classify HLPs according to the hub allocation type of O/D pairs 

as single and multiple allocations. In single allocation HLPs, one hub facility is 

assigned to each origin and destination. Multiple allocation HLPs allow multiple 

hub facilities to be assigned to origins and destinations.  

Moreover, the capacity limitation is another type of categorization for 

HLPs. Uncapacitated hub problems put no capacity limit to arcs of hub networks. 

Capacitated ones may restrict flow capacity of the hub and access arcs.   

2.4. Mathematical Models 
This thesis considers a flow-based p-hub median interdiction problem. 

Therefore, we will only focus on p-hub median hub location problems (pHLPs). 

For a broad review of hub models having different objectives, see [16], [18]. 

2.4.1. Single Allocation p-Hub Median Problem 

O’Kelly (1987) was the first study [10] developed a quadratic formulation 

for single allocation uncapacitated p-hub location model (USApHMP) as 

follows: 

Indices and Sets: 

𝑁𝑁 is the set of nodes in the hub-and-spoke network. 

𝑖𝑖 ∈ 𝑁𝑁 represents an origin node. 

𝑗𝑗 ∈ 𝑁𝑁 represents a destination node. 

𝑘𝑘 ∈ 𝑁𝑁 represents the hub node in the collection leg of a O/D path.  

𝑚𝑚 ∈ 𝑁𝑁 represents the hub node in the distribution leg of a O/D path. 
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Data:  

p denotes the number of hub facilities to be located. 

𝛼𝛼 is the discount factor on hub arcs. 

𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between node i and node j. 

Decision Variables: 

𝑊𝑊𝑖𝑖𝑖𝑖 is the amount of flow between node i and node j. 

𝑍𝑍𝑖𝑖𝑖𝑖 is equal to 1 if node i is allocated by hub node k, 0 otherwise. 

𝑍𝑍𝑘𝑘𝑘𝑘 is equal to 1 if node k is a hub, 0 otherwise. 

𝑂𝑂𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑗𝑗  total amount of flow going from node i. 

𝐷𝐷𝑖𝑖 = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗  total amount of flow coming from node i. 

USApHMP formulation [10]: 

min��(𝑂𝑂𝑖𝑖 + 𝐷𝐷𝑖𝑖)𝑍𝑍𝑖𝑖𝑖𝑖𝑑𝑑𝑖𝑖𝑖𝑖
𝑘𝑘𝑖𝑖

+����𝛼𝛼𝑑𝑑𝑘𝑘𝑘𝑘𝑊𝑊𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖𝑍𝑍𝑗𝑗𝑗𝑗
𝑚𝑚𝑘𝑘𝑗𝑗𝑖𝑖

 

 

(2.4.1) 

 𝑠𝑠. 𝑡𝑡.                  𝑍𝑍𝑖𝑖𝑖𝑖 ≤ 𝑍𝑍𝑘𝑘𝑘𝑘 𝑖𝑖,𝑘𝑘 ∈ 𝑁𝑁 (2.4.2) 

�𝑍𝑍𝑖𝑖𝑖𝑖
𝑘𝑘

= 1 𝑖𝑖 ∈ 𝑁𝑁 (2.4.3) 

�𝑍𝑍𝑘𝑘𝑘𝑘
𝑘𝑘

= 𝑝𝑝  (2.4.4) 

𝑍𝑍𝑖𝑖𝑖𝑖 ∈ {0,1};𝑊𝑊𝑖𝑖𝑖𝑖 ≥ 0 𝑖𝑖, 𝑗𝑗,𝑘𝑘 ∈ 𝑁𝑁 (2.4.5) 

where 𝑂𝑂𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑗𝑗   and  𝐷𝐷𝑖𝑖 = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗 . Objective (2.4.1) minimizes the total 

transportation cost over the network with reduced cost of hub flows by using 0 <

𝛼𝛼 < 1. The objective has quadratic terms due to the multiplication of integer hub 

variables, 𝑍𝑍. Constraints (2.4.2) enforce flows, once they are located, to route via 

hubs.  (2.4.3) ensure that each node is assigned to a single hub, and (2.4.4) locates 

the p-hubs in the network.  
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A different approach to p-hub median problems is tracing flows on each 

O/D path. Campbell (1996)’s path-based USApHMP [12] introduces a binary 

decision variable; 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is equal to 1 if the flow from origin i to destination j goes 

through hubs k and m, 0 otherwise. Due to four indices of the decision variable, 

the model leads to very large formulations to deal with. Therefore, Skorin-Kapov 

et al. (1996) relaxed the binary 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 and proposed a new mixed integer program 

[19]. 

Indices and Sets: 

𝑁𝑁 is the set of nodes in the hub-and-spoke network 

𝑖𝑖 ∈ 𝑁𝑁 represents an origin node. 

𝑗𝑗 ∈ 𝑁𝑁 represents a destination node. 

𝑘𝑘 ∈ 𝑁𝑁 represents the hub node in the collection leg of a O/D path.  

𝑚𝑚 ∈ 𝑁𝑁 represents the hub node in the distribution leg of a O/D path. 

Data:  

𝛼𝛼 is the discount factor on hub arcs. 

𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between node i and node j. 

Decision Variables: 

𝑊𝑊𝑖𝑖𝑖𝑖 is the amount of flow between node i and node j. 

𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 + 𝛼𝛼(𝑑𝑑𝑘𝑘𝑘𝑘𝑊𝑊𝑘𝑘𝑘𝑘) + 𝑑𝑑𝑗𝑗𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗 flow cost over a O/D path. 

𝑍𝑍𝑖𝑖𝑖𝑖 is equal to 1 if node i is allocated by hub node k, 0 otherwise. 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is demand service level from origin i to destination j goes through 

hubs k and m, and takes value between 0 and 1.  
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USApHMP Relaxation Formulation [19]: 

min����𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑘𝑘𝑗𝑗𝑖𝑖

  
(2.4.6) 

𝑠𝑠. 𝑡𝑡.        (2.4.2) – (2.4.5)   

�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚

= 𝑍𝑍𝑖𝑖𝑖𝑖 𝑖𝑖, 𝑗𝑗,𝑘𝑘 ∈ 𝑁𝑁 (2.4.7) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

= 𝑍𝑍𝑗𝑗𝑗𝑗 𝑖𝑖, 𝑗𝑗,𝑚𝑚 ∈ 𝑁𝑁 (2.4.8) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 0 𝑖𝑖, 𝑗𝑗,𝑘𝑘,𝑚𝑚 ∈ 𝑁𝑁 (2.4.9) 

where 𝐹𝐹𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖𝑊𝑊𝑖𝑖𝑖𝑖 + 𝛼𝛼(𝑑𝑑𝑘𝑘𝑘𝑘𝑊𝑊𝑘𝑘𝑘𝑘) + 𝑑𝑑𝑗𝑗𝑗𝑗𝑊𝑊𝑗𝑗𝑗𝑗. Constraints (2.4.7) require 

that if a collected flow from node i reaches hub k, then it should be transferred to 

another hub m and (2.4.8) ensure that a distribution from hub m to destination j be 

made if and only if it comes from another hub k. The key feature of the model is 

providing tight linear relaxation bounds although having 𝑂𝑂(𝑛𝑛4) decision variables 

𝑂𝑂(𝑛𝑛3) constraints. 

Flow-based formulations are also developed for USApHMP defining flows 

on hub arcs as multicommodity flows where each commodity represents origin’s 

identity. First flow-based model is proposed by Ernst and Krishnamoorthy (1996) 

and it is as follows [13]:  

Indices and Sets: 

𝑁𝑁 is the set of nodes in the hub-and-spoke network 
𝑖𝑖 ∈ 𝑁𝑁 represents an origin node. 
𝑗𝑗 ∈ 𝑁𝑁 represents a destination node. 
𝑘𝑘 ∈ 𝑁𝑁 represents the hub node in the collection leg of a O/D path.  
𝑚𝑚 ∈ 𝑁𝑁 represents the hub node in the distribution leg of a O/D path. 

Data: 

𝛼𝛼 is the discount factor on hub arcs. 

𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between node i and node j. 
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Decision Variables: 

𝑊𝑊𝑖𝑖𝑖𝑖 is the amount of flow between node i and node j. 

𝑍𝑍𝑖𝑖𝑖𝑖 is equal to 1 if node i is allocated by hub node k, 0 otherwise. 

𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖  as the total amount of flow originating from node i and travelling 

through hubs k and m.  

𝑂𝑂𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑗𝑗  be the total amount of flow originating from node i.  

𝐷𝐷𝑖𝑖 = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗  be the total amount of flow sinking at node i. 

Flow-based USApHMP Formulation [13]: 

min��(𝑂𝑂𝑖𝑖 + 𝐷𝐷𝑖𝑖)𝑑𝑑𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖 + ���𝛼𝛼𝑑𝑑𝑘𝑘𝑘𝑘𝑌𝑌𝑘𝑘𝑚𝑚𝑖𝑖

𝑚𝑚𝑘𝑘𝑖𝑖𝑘𝑘𝑖𝑖

  
(2.4.10) 

𝑠𝑠. 𝑡𝑡.        (2.4.2) – (2.4.5)   

         �𝑊𝑊𝑖𝑖𝑖𝑖𝑍𝑍𝑗𝑗𝑗𝑗
𝑗𝑗

+ �𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖

𝑚𝑚

=  �𝑌𝑌𝑚𝑚𝑚𝑚𝑖𝑖

𝑚𝑚

+ 𝑂𝑂𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖 𝑖𝑖,𝑘𝑘 ∈ 𝑁𝑁 (2.4.11) 

𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖 ≥ 0 𝑖𝑖,𝑘𝑘,𝑚𝑚 ∈ 𝑁𝑁 (2.4.12) 

Constraints (2.4.11) are the flow balance constraints for commodity i at 

node k where the allocation pattern determines the demand and supply at each 

node. This formulation provides tracking every flow regarding the origins rather 

than each origin-destination pair. Instead of four-subscripted approach in the 

previous models, three-subscripted variables are used. Their formulations require 

𝑂𝑂(𝑛𝑛3) decision variables. The drawback of the formulations is weak LP 

relaxations. However, large scale problems (in number of nodes) can be solved 

with the model because of the simplicity of the solution approach and 

computational advantage with fewer variables [20]. Furthermore, Contreras et al. 

(2010) derived a family of valid inequalities which can be used to tighten 

formulation of the model [21]. 

2.4.2. Multiple Allocation p-Hub Median Problem 

Multiple allocation pHLP allows nodes to be allocated to multiple hubs to 

satisfy their demand and exhaust their supply. Campbell (1992) introduces the 
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first Uncapacitated Multiple Allocation p-Hub Median Problem (UMApHMP) 

model [22].  

Indices and Sets: 

𝑁𝑁 is the set of nodes in the hub-and-spoke network. 

𝑖𝑖 ∈ 𝑁𝑁 represents an origin node. 

𝑗𝑗 ∈ 𝑁𝑁 represents a destination node. 

𝑘𝑘 ∈ 𝑁𝑁 represents the hub node in the collection leg of a O/D path.  

𝑚𝑚 ∈ 𝑁𝑁 represents the hub node in the distribution leg of a O/D path. 

Decision Variables 

𝑍𝑍𝑘𝑘𝑘𝑘 is equal to 1 if node k is a hub, 0 otherwise. 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is demand service level from origin i to destination j goes through 

hubs k and m, and takes value between 0 and 1. 

UMApHMP Formulation [22]: 

min        (2.4.6)   

𝑠𝑠. 𝑡𝑡.        (2.4.4), (2.4.5) and (2.4.9)   

��𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑘𝑘

= 1  (2.4.13) 

         𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑍𝑍𝑘𝑘𝑘𝑘 𝑖𝑖, 𝑗𝑗,𝑘𝑘,𝑚𝑚 ∈ 𝑁𝑁 (2.4.14) 

         𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 𝑍𝑍𝑚𝑚𝑚𝑚 𝑖𝑖, 𝑗𝑗,𝑘𝑘,𝑚𝑚 ∈ 𝑁𝑁 (2.4.15) 

Constraints (2.4.13) ensure that the flow of every (O/D) pair is routed over 

the hub facilities. Constraints (2.4.14 and 2.4.15) allow only the flows go through 

node k and node m if they are chosen as hubs. Even though the decision variable, 

X, is continuous, it only takes the value of 1 and 0, so that provides tight bounds 

to the objective. This model does not restrict origins and destinations to be 

allocated by a single hub.  

Moreover, Ernst and Krishnamoorthy (1998) [14] introduce flow-based 

Uncapacitated Multiple Allocation p-Hub Median Problem as follows: 
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Indices and Sets: 

𝑁𝑁 is the set of nodes in the hub-and-spoke network. 

𝑖𝑖 ∈ 𝑁𝑁 represents an origin node. 

𝑗𝑗 ∈ 𝑁𝑁 represents a destination node. 

𝑘𝑘 ∈ 𝑁𝑁 represents the hub node in the collection leg of a O/D path.  

𝑚𝑚 ∈ 𝑁𝑁 represents the hub node in the distribution leg of a O/D path. 

Data: 

𝛼𝛼 is the discount factor on hub arcs. 

𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between node i and node j. 

Decision Variables: 

𝑂𝑂𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑗𝑗  be the total amount of flow originating from node i.  

𝐷𝐷𝑖𝑖 = ∑ 𝑊𝑊𝑗𝑗𝑗𝑗𝑗𝑗  be the total amount of flow sinking at node i.  

𝑊𝑊𝑖𝑖𝑖𝑖 is the amount of flow between node i and node j. 

𝑍𝑍𝑖𝑖𝑖𝑖 is the amount of flow i to hub k.  

𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖  as the total amount of flow originating from node i and travelling 

through hubs k and m.  

𝐻𝐻𝑘𝑘 is 1 if node k is a hub, 0 otherwise.  

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 be the amount of flow originating from i and sinking at j going through 

hub m. 

Flow-based UMApHMP Formulation [14]: 

min��𝑑𝑑𝑖𝑖𝑖𝑖𝑍𝑍𝑖𝑖𝑖𝑖 + ���𝛼𝛼𝑑𝑑𝑘𝑘𝑘𝑘𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖

𝑚𝑚𝑘𝑘𝑖𝑖𝑘𝑘𝑖𝑖

+ ���𝑑𝑑𝑗𝑗𝑗𝑗𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑗𝑗𝑖𝑖

 

 

(2.4.16) 

𝑠𝑠. 𝑡𝑡.         �𝐻𝐻𝑘𝑘
𝑘𝑘

= 𝑝𝑝  
(2.4.17) 

�𝑍𝑍𝑖𝑖𝑖𝑖
𝑘𝑘

= 𝑂𝑂𝑖𝑖  𝑖𝑖 ∈ 𝑁𝑁 (2.4.18) 
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�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚

= 𝑊𝑊𝑖𝑖𝑖𝑖 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁 (2.4.19) 

𝑍𝑍𝑖𝑖𝑖𝑖 + �𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖

𝑚𝑚

= �𝑌𝑌𝑚𝑚𝑚𝑚𝑖𝑖

𝑚𝑚

+ �𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗

 𝑖𝑖,𝑘𝑘 ∈ 𝑁𝑁 (2.4.20) 

𝑍𝑍𝑖𝑖𝑖𝑖 ≤ 𝑂𝑂𝑖𝑖𝐻𝐻𝑘𝑘 𝑖𝑖,𝑘𝑘 ∈ 𝑁𝑁 (2.4.21) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖
𝑗𝑗

≤ 𝐷𝐷𝑗𝑗𝐻𝐻𝑚𝑚 𝑖𝑖, 𝑗𝑗,𝑚𝑚 ∈ 𝑁𝑁 (2.4.22) 

𝑍𝑍𝑖𝑖𝑖𝑖,𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖,𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖 ≥ 0 𝑖𝑖, 𝑗𝑗,𝑘𝑘,𝑚𝑚
∈ 𝑁𝑁 (2.4.23) 

Constraints (2.4.18) ensure that all flows from origin i is sent to a subset of 

hubs. (2.4.19) satisfy the demand of destination nodes. (2.4.20) is the well-known 

flow conservation constraint. Constraints (2.4.21) and (2.4.22) force (O/D) pairs 

to include at least one hub in their path. The formulation has 𝑂𝑂(𝑛𝑛3) variables and 

𝑂𝑂(𝑛𝑛2) linear constraints however weak bounds. Marin et al. tighten bounds and 

improve a new formulation [20], as follows, for the cases which do not satisfy 

triangle inequality:  

Indices and Sets: 

𝑁𝑁 is the set of nodes in the hub-and-spoke network. 

𝑖𝑖 ∈ 𝑁𝑁 represents an origin node. 

𝑗𝑗 ∈ 𝑁𝑁 represents a destination node. 

𝑘𝑘 ∈ 𝑁𝑁 represents the hub node in the collection leg of a O/D path.  

𝑚𝑚 ∈ 𝑁𝑁 represents the hub node in the distribution leg of a O/D path. 

Decision Variables: 

𝑊𝑊𝑖𝑖𝑖𝑖 is the amount of flow between node i and node j. 

𝑍𝑍𝑖𝑖𝑖𝑖 is the amount of flow i to hub k.  

𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖  as the total amount of flow originating from node i and travelling 

through hubs k and m.  
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𝐻𝐻𝑘𝑘 is 1 if node k is a hub, 0 otherwise.  

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 be the amount of flow originating from i and sinking at j going through 

hub m.  

𝑂𝑂𝑖𝑖 = ∑ 𝑊𝑊𝑖𝑖𝑖𝑖𝑗𝑗  be the total amount of flow originating from node i.  

Flow-based UMApHMP Tightened Formulation [20]: 

min         (2.4.16)   

𝑠𝑠. 𝑡𝑡.         (2.4.19) − (2.4.23)   

�𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖

𝑚𝑚

= 𝑂𝑂𝑖𝑖𝐻𝐻𝑘𝑘 𝑖𝑖,𝑘𝑘 ∈ 𝑁𝑁 (2.4.24) 

�𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖

𝑘𝑘

= 𝑂𝑂𝑖𝑖𝐻𝐻𝑚𝑚 𝑖𝑖,𝑚𝑚 ∈ 𝑁𝑁 (2.4.25) 

�𝑌𝑌𝑘𝑘𝑘𝑘𝑖𝑖

𝑚𝑚

= 𝑍𝑍𝑖𝑖𝑖𝑖 𝑖𝑖,𝑘𝑘 ∈ 𝑁𝑁 (2.4.26) 

𝑍𝑍𝑖𝑖𝑖𝑖 ≥ 𝑂𝑂𝑖𝑖𝐻𝐻𝑖𝑖 𝑖𝑖 ∈ 𝑁𝑁 (2.4.27) 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑊𝑊𝑖𝑖𝑖𝑖𝐻𝐻𝑗𝑗 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁 (2.4.28) 

Constraints (2.4.24) and (2.4.25) force flows to go from one hub to another. 

Constraints (2.4.27) and (2.4.28) allow hubs to satisfy their demand and exhaust 

their supply. Constraints (2.4.26) limit the number of nodes traversed by a flow, 

using the flow which directly comes from the origin as a bound on the outcoming 

flow. 
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2.5. A New Model Development 

2.5.1. Generalized Uncapacitated Multiple-Allocation p-Hub 
Median Problem  

Pioneering pHLP models work with assumptions listed in Section 2.2.3. 

Even these are invalid for most real-world hub networks. Therefore, Akgün et al. 

(2017) introduce Generalized Uncapacitated Multiple-Allocation p-Hub Median 

Problem, G-MApHMP [23], to add more realism to pHLPs with a new problem 

setting and modeling approach allow several basic assumptions about PHLPs to 

be relaxed and provide flexibility in modeling several characteristics of real-life 

hub networks. G-MApHMP can be used with any network and work correctly 

whether the costs satisfy the triangle inequality or not. It does not impose any 

structure, e.g., the number of hubs on any route between an origin-destination pair 

is not limited, and allow several extensions such as direct arcs between non-hub 

nodes. G-MApHMP is explained in detail as follows [23]. 

2.5.1.1. Problem Definition 

Consider a surface transportation network 𝐺𝐺 = (𝑁𝑁,𝐸𝐸) with node set 𝑁𝑁 =

{1, . . . ,𝑛𝑛} and edge set E. We assume that each edge is undirected and that the 

network is connected. A subset S of the node set is distinguished as the demand-

generating node set. If node i is in S, then it generates a positive annual flow 𝑤𝑤𝑖𝑖𝑖𝑖 

for at least one node 𝑗𝑗 ∈ 𝑁𝑁 − {𝑖𝑖}. Let 𝐷𝐷𝑖𝑖 be the set of nodes j for which 𝑤𝑤𝑖𝑖𝑖𝑖 ≥ 0. 

This set is defined and nonempty for each node 𝑖𝑖 ∈ 𝑆𝑆. Define the demand set D to 

be the union of 𝐷𝐷𝑖𝑖, 𝑖𝑖 ∈ 𝑆𝑆. Note that many nodes can be both in S and D at the same 

time. The objective is to deliver the flows 𝑤𝑤𝑖𝑖𝑖𝑖 from nodes in S to nodes in D via 

hubs whose locations are to be determined. 

Potential hubs are determined considering not only the nodes but also the 

edges of the network. The hub-to-hub portions of journeys from sources to sinks 

are done by more specific, large vehicles to achieve economies of scale and hence 

the costs for these parts of the network are discounted. However, for surface 

transportation networks, all parts of the network may not be appropriate for all 
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types of vehicles. For example, there may be bridges on some roads that restrict 

the passage of oversize vehicles (e.g., 18-wheelers) or some sea lines of 

communication may not be appropriate for large vessels. In this regard, the edges 

of the network are differentiated depending on their suitability for hub-to-hub 

transportation and for discounting. Let 𝐸𝐸∗ be a subset of the edge set that is 

distinguished as the set of edges that are suitable for specialized vehicles and 

hence for discounting. Let 𝑁𝑁∗ be the set of nodes that are incident to at least one 

edge in 𝐸𝐸∗. We restrict the set of potential hubs to 𝑁𝑁∗or to a subset H of 𝑁𝑁∗ if 

other physical, administrative, or legal considerations lead to the elimination of 

certain nodes in 𝑁𝑁∗from being hubs. Let 𝐺𝐺∗ = (𝑁𝑁∗,𝐸𝐸∗) be the subnetwork of G    
consisting of edges that are available for hub-to-hub transportation. Then, if hub-

to-hub movement occurs in 𝐺𝐺∗ = (𝑁𝑁∗,𝐸𝐸∗), then transportation costs of the edges 

{𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸∗ are discounted. If these edges are used for the transportation between 

non-hub and hub nodes, then no discounting occurs. It is also possible that hub-

to-hub transportation occurs on the edges {𝑖𝑖, 𝑗𝑗} ∉ 𝐸𝐸∗ if it is cheaper to use those 

arcs and specialized vehicles can use them. For these edges, it is assumed that no 

discounting is allowed. (However, if necessary, the adopted modeling approach 

allows discounting.) 

Figure 2.5.1 shows a sample network where dashed lines represent roads in 

𝐸𝐸∗ and numbered points represent the nodes in N. The nodes at the borders of the 

rectangular map can (will) be dropped from further consideration. The set of 

potential hub nodes 𝑁𝑁∗ = 𝐻𝐻 is {1, 2, 3, 20, 21,11,12}  ∪ {5,19, 21,18,13}  ∪

{15,14,13,12,10,8} . The special vehicles are to use the dashed roads. 
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Figure 2.5.1. A network where the dashed lines are highways 

 

Let 𝑙𝑙𝑖𝑖𝑖𝑖 be the length of edge {i, j} and 𝑐𝑐𝑖𝑖𝑖𝑖 be the cost of moving one unit of 

flow per unit length along the edge {i, j}. If the volume of units between nodes i 

and j is 𝑊𝑊𝑖𝑖𝑖𝑖, the cost of transportation on the edge {i, j} is 𝑐𝑐𝑖𝑖𝑖𝑖  𝑙𝑙𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖. For an edge 

{i, j}  ∈ 𝐸𝐸∗, the transportation cost is assumed to be discounted by a factor of 𝛼𝛼𝑖𝑖𝑖𝑖. 

Transportation cost over an edge, {i, j}  ∈ 𝐸𝐸∗, is 𝛼𝛼𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖 𝑙𝑙𝑖𝑖𝑖𝑖 𝑊𝑊𝑖𝑖𝑖𝑖. Total transportation 

cost on the network is obtained by summing costs over all edges. The problem is 

to choose p nodes from a predefined set 𝐻𝐻 ⊆ 𝑁𝑁∗ and find routes from sources in 

S to demands in D that visit at least one node in the selected hub set so that the 

total transportation cost is minimized.  

2.5.1.2. Model Development 

G-MApHMP is modeled as a multi-commodity flow problem with side 

constraints. Let 𝐺𝐺 = (𝑁𝑁,𝐴𝐴) be the directed version of 𝐺𝐺 = (𝑁𝑁,𝐸𝐸) where each 
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undirected edge {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸 is replaced by a pair of directed arcs (𝑖𝑖, 𝑗𝑗) and (𝑗𝑗, 𝑖𝑖) 

with each arc having the same length, 𝑙𝑙𝑖𝑖𝑖𝑖 = 𝑙𝑙𝑗𝑗𝑗𝑗. We create two copies of 𝐺𝐺 =

(𝑁𝑁,𝐴𝐴), designated as 𝐺𝐺1 = (𝑁𝑁1,𝐴𝐴1) and 𝐺𝐺3 = (𝑁𝑁3,𝐴𝐴3) with 𝑁𝑁1 =

{11,12, … ,1𝑛𝑛},𝑁𝑁3 = {31,32, … ,3𝑛𝑛},𝐴𝐴1 = {(1𝑖𝑖, 1𝑗𝑗) ∶ (𝑖𝑖, 𝑗𝑗) ∊ 𝐴𝐴} and 𝐴𝐴3 =

{(3𝑖𝑖, 3𝑗𝑗) ∶ (𝑖𝑖, 𝑗𝑗) ∊ 𝐴𝐴}. The lengths of arcs (1𝑖𝑖, 1𝑗𝑗) and (3𝑖𝑖, 3𝑗𝑗) are each 𝑙𝑙𝑖𝑖𝑖𝑖. 

Distinguish |𝑆𝑆| commodities each being associated with a supply node 𝑖𝑖 ∈

𝑆𝑆. The nodes in 𝐺𝐺1 = (𝑁𝑁1,𝐴𝐴1) are supply nodes and the nodes in 𝐺𝐺3 = (𝑁𝑁3,𝐴𝐴3) 

are demand nodes. A node i is a supply node (1i) in G1, and also a demand node 

(3i) in G3. 

Define 𝑊𝑊𝑖𝑖 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗∈𝐷𝐷𝑖𝑖  as the total outbound flow at supply node 𝑖𝑖 ∈ 𝑆𝑆, i.e., 

1𝑖𝑖 ∈ 𝑁𝑁1. Define also, for each 𝑖𝑖 ∈ 𝑆𝑆, a supply of 𝑊𝑊𝑖𝑖 units for commodity i at node 

1𝑖𝑖 ∈ 𝑁𝑁1. For all other commodities 𝑖𝑖′ ∈ 𝑆𝑆, 𝑖𝑖′ ≠ 𝑖𝑖, the supply of commodity 𝑖𝑖′ at 

node 1i is zero (not defined). For each demand node 𝑗𝑗 ∈ 𝐷𝐷, define a demand of 

𝑤𝑤𝑖𝑖𝑖𝑖 units at node 3𝑗𝑗 ∈ 𝑁𝑁3 for each commodity i for which 𝑗𝑗 ∈ 𝐷𝐷𝑖𝑖 (i.e., for each 

𝑖𝑖 ∈ 𝑆𝑆 for which 𝑤𝑤𝑖𝑖𝑖𝑖 > 0). 

Now two layers of the final network are formed, the first layer being 𝐺𝐺1 and 

the third layer being 𝐺𝐺3 with nodes in 𝐺𝐺1 taken as sources and nodes in 𝐺𝐺3 taken 

as sinks. The middle layer 𝐺𝐺2 = (𝑁𝑁2,𝐴𝐴2) is defined by the edges in 𝐸𝐸∗ that are 

edges available for hub-to-hub transportation. Define 𝑁𝑁2 = 𝑁𝑁∗ and 𝐴𝐴2 = 𝐴𝐴∗ 

where 𝐴𝐴∗ = {(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 ∶ (𝑖𝑖, 𝑗𝑗)  ∈  𝐸𝐸∗}. That is, each undirected edge {𝑖𝑖, 𝑗𝑗} ∈ 𝐸𝐸∗ is 

replaced by a directed pair of arcs (𝑖𝑖, 𝑗𝑗) and (𝑗𝑗, 𝑖𝑖) and such arcs form the new arc 

set 𝐴𝐴∗ = 𝐴𝐴2. 

The three layers, 𝐺𝐺1,𝐺𝐺2,𝑎𝑎𝑎𝑎𝑎𝑎 𝐺𝐺3 are connected to each other by arcs of the 

form (1𝑖𝑖, 2𝑖𝑖)  and (2𝑖𝑖, 3𝑖𝑖)  for every 𝑖𝑖 ∊ 𝐻𝐻. That is, the nodes available for locating 

2|𝐻𝐻| arcs running from the first copy of i to the second copy and from the second 

copy to the third copy. Let 𝐴𝐴12 = {(1𝑖𝑖, 2𝑖𝑖) ∶ 𝑖𝑖 ∊ 𝐻𝐻}  and 𝐴𝐴23 = {(2𝑖𝑖, 3𝑖𝑖) ∶ 𝑖𝑖 ∊ 𝐻𝐻}. 

Finally, the network in the model is 𝐺𝐺0 = (𝑁𝑁0,𝐴𝐴0) where  𝑁𝑁0 = 𝑁𝑁1 ∪ 𝑁𝑁2 ∪ 𝑁𝑁3, 

𝐴𝐴0 = 𝐴𝐴1 ∪ 𝐴𝐴2 ∪ 𝐴𝐴3 ∪ 𝐴𝐴12 ∪ 𝐴𝐴23. 
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Figure 2.5.2 shows how the new network is constructed from a 5-node 

undirected network G. In figure 2.5.1.2, 𝐸𝐸∗ = �{4,5}, {3,4}, {2,4}�, 𝑁𝑁∗ =

{2,3,4,5}, and 𝐻𝐻 = {3,4,5}. Note that 𝐺𝐺2 may be disconnected. The graph 

structure and the flows in the final graph are not sensitive to that. 

Figure 2.5.2. A schematic representation of the transformed network. Dashed lines in the original 
network G represent the arcs assumed to be appropriate for hub-to-hub transportation 

 



 26   
 
 
 

Define a flow variable 𝑋𝑋𝑎𝑎𝑎𝑎 for each arc 𝑎𝑎 ∈ 𝐴𝐴0 and each commodity 𝑘𝑘 ∈ 𝑆𝑆. 

Define a node variable 𝑌𝑌𝑖𝑖 ∈ {0,1} for each 𝑖𝑖 ∈ 𝐻𝐻 where 𝑌𝑌𝑖𝑖 = 1 if node i is a hub, 

0 otherwise. The flow-based formulation of this problem has a flow conservation 

equation for each node in 𝑁𝑁0 and each commodity k. We choose p hubs via 

∑ 𝑌𝑌𝑖𝑖 = 𝑝𝑝𝑖𝑖∈𝐻𝐻 . Controlling the flows in arcs by permitting flows in vertical arcs 

(those in 𝐴𝐴12 𝑎𝑎𝑎𝑎𝑎𝑎 𝐴𝐴23) only if their end nodes are selected as hubs (i.e., arcs (1i,2i) 

and (2i,3i) allow the passage of flows only if 𝑌𝑌𝑖𝑖 = 1). 

Parameters of the model: 𝑙𝑙𝑎𝑎, the total cost of moving one unit flow on the 

arc a, a refers to 𝑖𝑖 → 𝑗𝑗. 𝑙𝑙𝑎𝑎 takes different values for different types of arcs as in 

Eq. (2.5.1). In arcs of G1 and G3, 𝑙𝑙𝑎𝑎 𝑖𝑖𝑖𝑖 𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖. However, in hub arcs of G2, 

transportation cost is discounted by 𝛼𝛼𝑖𝑖𝑖𝑖. 

𝑙𝑙𝑎𝑎 = �
𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖        𝑖𝑖𝑖𝑖 𝑎𝑎 = (1𝑖𝑖, 1𝑗𝑗)𝑜𝑜𝑜𝑜 𝑎𝑎 = (3𝑖𝑖, 3𝑗𝑗), (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴  
𝛼𝛼𝑖𝑖𝑖𝑖𝑐𝑐𝑖𝑖𝑖𝑖𝑙𝑙𝑖𝑖𝑖𝑖                                𝑖𝑖𝑖𝑖 𝑎𝑎 = (2𝑖𝑖, 2𝑗𝑗), (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴∗

0                    𝑖𝑖𝑖𝑖 𝑎𝑎 = (1𝑖𝑖, 2𝑖𝑖)𝑜𝑜𝑜𝑜 𝑎𝑎 = (2𝑖𝑖, 3𝑖𝑖), 𝑖𝑖 ∈ 𝐻𝐻
 (2.5.1) 

Let 𝛽𝛽 be any node of 𝑁𝑁0. With abuse of notation, we write 𝛽𝛽 ∈ 𝑆𝑆 if 𝛽𝛽 = 1𝑖𝑖 

for some 𝑖𝑖 ∈ 𝑆𝑆 and 𝛽𝛽 ∈ 𝐷𝐷 if 𝛽𝛽 = 3𝑖𝑖 with 𝑖𝑖 ∈ 𝐷𝐷. Similarly, we write 𝛽𝛽 ∈ 𝐻𝐻 if 𝛽𝛽 =

2𝑖𝑖 with 𝑖𝑖 ∈ 𝐻𝐻 and 𝛽𝛽 ∈ 𝑁𝑁2 if 𝛽𝛽 = 2𝑖𝑖 with 𝑖𝑖 ∈ 𝑁𝑁∗. The requirement 𝑏𝑏𝛽𝛽𝛽𝛽 at node 𝛽𝛽 

for commodity k is defined to be 𝑊𝑊𝛽𝛽 = ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑗𝑗;𝑤𝑤𝑖𝑖𝑖𝑖≥0  if 𝛽𝛽 = 1𝑖𝑖 with 𝑖𝑖 ∈ 𝑆𝑆 and 

−𝑤𝑤𝑘𝑘𝑘𝑘 = −𝑤𝑤𝑘𝑘𝑗𝑗 if 𝛽𝛽 = 3𝑗𝑗 with 𝑖𝑖 ∈ 𝐷𝐷. Define 𝑏𝑏𝛽𝛽𝛽𝛽 = 0 for all other nodes and 𝑘𝑘 ∈

𝑆𝑆. 

 𝐹𝐹𝛽𝛽
𝑜𝑜𝑜𝑜𝑜𝑜 is the forward star of a node 𝛽𝛽 ∈ 𝑁𝑁0 consisting of arcs whose tail is 𝛽𝛽 

and 𝐹𝐹𝛽𝛽
𝑖𝑖𝑖𝑖  be the inward star of node 𝛽𝛽 ∈ 𝑁𝑁0 consisting of arcs whose heads are 𝛽𝛽. 
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G-MApHMP Formulation, [23]: 

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍∗ = � � 𝑙𝑙𝑎𝑎𝑋𝑋𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝐴𝐴0𝑘𝑘𝑘𝑘𝑘𝑘

  (2.5.2) 

𝑠𝑠. 𝑡𝑡.     � 𝑋𝑋𝑎𝑎𝑎𝑎
𝑎𝑎∈𝐹𝐹𝛽𝛽

𝑜𝑜𝑜𝑜𝑜𝑜

− � 𝑋𝑋𝑎𝑎𝑎𝑎
𝑎𝑎∈𝐹𝐹𝛽𝛽

𝑖𝑖𝑖𝑖

= 𝑏𝑏𝛽𝛽𝛽𝛽 𝛽𝛽 ∈ (𝑁𝑁1 ∪ 𝑁𝑁2 ∪ 𝑁𝑁3),𝑘𝑘 ∈ 𝑆𝑆 (2.5.3) 

�𝑌𝑌𝑖𝑖
𝑖𝑖∈𝐻𝐻

= 𝑝𝑝  (2.5.4) 

𝑋𝑋(1𝑖𝑖,2𝑖𝑖)𝑘𝑘 ≤ 𝑊𝑊𝑘𝑘𝑌𝑌𝑖𝑖 𝑖𝑖 ∈ 𝐻𝐻, 𝑘𝑘 ∈ 𝑆𝑆 (2.5.5) 

𝑋𝑋(2𝑖𝑖,3𝑖𝑖)𝑘𝑘 ≤ 𝑊𝑊𝑘𝑘𝑌𝑌𝑖𝑖 𝑖𝑖 ∈ 𝐻𝐻, 𝑘𝑘 ∈ 𝑆𝑆 (2.5.6) 

𝑋𝑋𝑎𝑎𝑎𝑎 ≥ 0 𝑎𝑎𝑎𝑎𝐴𝐴0,𝑘𝑘 ∈ 𝑆𝑆 (2.5.7) 

𝑌𝑌𝑖𝑖𝜖𝜖{0,1} 𝑖𝑖 ∈ 𝐻𝐻 (2.5.8) 

The objective function (2.5.2) minimizes the total transportation cost. 

Constraints (2.5.3) are the flow conservation constraints for all nodes in the 

network, (2.5.4) ensure that the number of hubs is p. Constraints (2.5.5) ensure 

that a node in the first layer is connected to its corresponding node in the second 

layer, if the node in the second layer is chosen as a hub. Constraints (2.5.6) require 

that a node in the second layer be connected to its corresponding node in the third 

layer if the node in the second layer is chosen as a hub. This formulation has 

𝑂𝑂(𝑛𝑛3) variables and 𝑂𝑂(𝑛𝑛2) constraints. 

In chapter 3, we discuss network interdiction models in which nodes (e.g. 

facilities) and arcs (e.g., roads) are assumed to be disrupted.  In Chapter 4, we 

build an p-hub median interdiction model based on G-MApHMP [23]. 
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Chapter 3  

 

 

NETWORK SYSTEMS UNDER 

INTENTIONAL ATTACKS 

Network systems do not always run in the perfect environment. Disruption 

events may inflict heavy damages on networks.  These disruptions may come from 

nature itself such as natural disasters and environmental disturbances. For 

instance, Great East Japan earthquake in March 2011 crippled Japanese economy. 

Automobile manufacturers could not sustain their supply chains for months, and 

they lost billions of USD in addition to more direct financial casualties [24]. In 

the second half of 2011, severe floods caused heavy economic losses in Thailand 

by USD 40 billion and reduced the country’s manufacturing capacity [25]. 

Unfortunate experiences like these examples increase awareness in the business 

world. A recent study shows that 80 percent of the firms around the world 

considers the protection of supply chain networks as a top priority [26].  

In addition to natural threats, disruptions may be set up intentionally. For 

example, a wooden made trestle in Sacramento railroad in the USA is burned 

down by an arsonist in 2007. Even though the trestle was just 300 feet long, it 

required rebuilding the structure in a timely fashion. While the trestle was 

inoperable, trains had to reroute over another railroad. This detour added extra 

125 miles on impacted routes [27]. In 2013; crime groups coordinated attack on 

electricity grid of Mexico’s southern state Michoacán that left 420.000 residents 

without power [28]. USA economy lost 10 billion dollars due to the shutdown of 

Ronald Raegan hub airport after 9/11 terrorist attacks [2]. Cyber-attacks to 
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Ukraine’s power grid left more than 200.000 people in darkness for 6 hours in 

2015 [29].  

A deliberate attack aims maximum damage on a network system. Therefore, 

interdiction operations are considered as worst-case scenarios. For example, USA 

electricity grid has 55.000 substations to sustain power in the country. However, 

interdicting nine out of those stations may cause a complete blackout due to 

interdependency structure of the grid. An intentional attacker who wishes to 

damage to USA’s power system most likely strikes these nine critical subsystems. 

This example is the worst-case scenario for USA electricity system. Broadly 

speaking out of this example, intentional attackers attempt to interdict critical 

infrastructure of a network system that is essential to sustain operations of the 

network. Because when critical infrastructure is under attack, the whole system is 

in danger.  

Determining a risk policy against natural and human-made threats helps to 

reduce catastrophic consequences of failed systems. Resilient and robust network 

systems can be achieved by proactive precautions [30]. Ex-ante countermeasures 

such as contingency plan and risk mitigation strategies are proactive management 

applications that are based on stochastic approach considering what-can-go-

wrong scenarios.  

Researchers consider disruption/interdiction of network systems under 

network interdiction problem. This problem analyses worst-case scenarios that 

are most pessimistic events may occur in the network.  

3.1. Network Interdiction Problem 

3.1.1. Background 
We interpret network interdiction problem in the context of a two-player 

game. One player is the network operator/user (NU) who wishes to operate a 

network with some objectives such as transporting services via the shortest path 

or achieving the maximum amount of flow across the network. Another player, 
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called network interdictor (NI), tries to worsen NU’s objectives with its 

capabilities which can change the structure of the network. Disconnecting vertices 

or edges, delay NU’s operations by disrupting facilities, increasing detection 

probability of NU’s activities are a few examples of NI’s capabilities. NI has 

limited resources to implement its plan against NU. 

Network interdiction problem is a two-stage game. NI makes the first move 

by attacking components of the network. NU makes following move on the 

resulted network after interdiction. Hence, network interdiction problem is a truly 

Stackelberg game in which the leader/interdictor moves first and the 

follower/operator acts against that move [4], [5]. If there is no human interdictor, 

natural threats take the role of NI in worst-case analyses. That is, “Murphy’s 

Law”, the pessimistic approach that the worst event will occur, change the 

network structure [31].  

Network Interdiction problems are formulated by usually bi-level structures 

where each level reflects the problem of the decision maker, e.g., NU and NI. Bi-

level models in contrast to single-level models are often integer or mixed integer 

programs that model the decision-making of players sequentially in the same 

formulation. The interaction between the interdictor and the defender is modeled 

simultaneously. The objective function in multi-level models is one that typically 

reflects pure competition, with the interdictor seeking to minimize an overall 

network metric (such as flow or satisfied demand) and the follower looking for 

maximizing this minimum metric. In other words, the follower’s job is to 

minimize the effect of interdiction on their network operations [32].  

On a side note, fortification problems are three-stage games with two 

players, e.g. NU and NI that also take into account of protective actions of NU 

against NI. In this game, NU acts first and fortify some network components with 

limited resources anticipation of a possible attack plan of NI. After that, NI assault 

network to hurt NU’s objective. Then, NU put its decision on the resulted 
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network. Fortification problems are modeled with three-level mathematical 

formulations because of the three-stage game structure. 

3.1.2. Generic Interdiction Models 

Since the pioneering work [33] of Wollmer (1964) which analyzed the 

sensitivity of a network when prescribed arcs are removed from a transportation 

system to minimize the flow, network interdiction problem has been studied in 

various settings and for network applications such as military, homeland security, 

and computer networks. However, we will focus on three generic interdiction 

problems where network user’s problem is the shortest path, maximum flow or 

minimum cost of flow problems. For comprehensive literature reviews on different 

network interdiction problems; see [31], [34].   

3.1.2.1. Maximum Flow Interdiction 

Wood (1993) defines the maximum flow network interdiction problem 

(MFNIP)[35] in which enemy strikes with limited resources to minimize the 

maximum flow through a capacitated network and proves that the problem is NP-

complete. In the problem, NU attempts to traverse from a source to a sink node 

while NI tries to disrupt those arcs in the path lies between the source and the sink 

nodes. NI must expense a necessary resource to break one arc that is limited with 

an interdiction budget. 

Before proceeding with model development of MFNIP, note that we do not 

give every detail of the problem here. See [35] for further details. 

Consider a directed graph 𝐺𝐺 = (𝑁𝑁,𝐴𝐴) with a node set and an arc set, 𝑁𝑁 and 

A, respectively. MFNIP minimizes the maximum flow between source and sink 

nodes, 𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ∈ 𝑁𝑁, respectively. MFNIP is modeled as following bi-level 

formulation. 
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Indices: 

𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ∈ 𝑁𝑁 represent nodes of the network G.  

𝑠𝑠 𝑎𝑎𝑎𝑎𝑎𝑎 𝑡𝑡 ∈ 𝑁𝑁 are source and sink nodes, respectively. 

(𝑖𝑖 , 𝑗𝑗) represents the arc between nodes i and j. 

Data: 

𝑢𝑢𝑖𝑖𝑖𝑖 is the capacity level of arc (i, j). 

𝑢𝑢𝑡𝑡𝑡𝑡 is the dummy arc between source and sink nodes, s and t. 

Γ is the budget set of the interdictor. 

𝑟𝑟𝑖𝑖𝑖𝑖 is the amount of resource to interdict arc (i, j) 

𝑅𝑅 is the total interdiction budget 

NI’s Decision Variable: 

𝛾𝛾𝑖𝑖𝑖𝑖 ∈ Γ is the NI’s binary decision variable. 𝛾𝛾𝑖𝑖𝑖𝑖 is equal to 1, if arc (i, j) is 

interdicted, otherwise it is 0. 

NU’s Decision Variable: 

𝑥𝑥𝑖𝑖𝑖𝑖 is the NU’s decision variable and shows the amount of flow to be routed 

source node  𝑠𝑠 to sink node 𝑡𝑡.    

MFNIP Bi-level Formulation [35]: 

min
𝛾𝛾𝑖𝑖𝑖𝑖𝜖𝜖Γ

 

max
𝑥𝑥

𝑥𝑥𝑡𝑡𝑡𝑡 
 (3.1.2.1) 

𝑠𝑠. 𝑡𝑡. 
�𝑥𝑥𝑠𝑠𝑠𝑠
𝑗𝑗

−�𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗

−�𝑥𝑥𝑡𝑡𝑡𝑡
𝑗𝑗

= 0, 

 (3.1.2.2) 

�𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗

−�𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗

= 0, 𝑖𝑖 ∈ 𝑁𝑁\{𝑠𝑠, 𝑡𝑡} (3.1.2.3) 

�𝑥𝑥𝑡𝑡𝑡𝑡
𝑗𝑗

−�𝑥𝑥𝑗𝑗𝑗𝑗
𝑗𝑗

+ 𝑥𝑥𝑡𝑡𝑡𝑡 = 0,  (3.1.2.4) 

𝑥𝑥𝑖𝑖𝑖𝑖 − 𝑢𝑢𝑖𝑖𝑖𝑖�1 − 𝛾𝛾𝑖𝑖𝑖𝑖� ≤ 0, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (3.1.2.5) 

𝑥𝑥𝑖𝑖𝑖𝑖 ≥ 0, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 ∪ {(𝑡𝑡, 𝑠𝑠)} (3.1.2.6) 
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𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 Γ ≡ �𝛾𝛾𝑖𝑖𝑖𝑖|𝛾𝛾𝑖𝑖𝑖𝑖 ∈ {0,1},∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,� 𝑟𝑟𝑖𝑖𝑖𝑖𝛾𝛾𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

≤ 𝑅𝑅� 

Objective (3.1.2.1) minimizes the maximum flow. The inner maximization 

problem is a capacitated maximum flow problem with usual flow conservation 

constraints (3.1.2.2) - (3.1.2.4). Constraints (3.1.2.5) are arc capacity constraints 

under the control of interdictor’s variable on the right-hand side. Interdicting an 

arc (i, j), is simply reducing its capacity, 𝑢𝑢𝑖𝑖𝑖𝑖, to zero. Interdictor spends 𝑟𝑟𝑖𝑖𝑖𝑖 of 

resources to make this operation.  

Assuming inner maximization problem’s feasible region is not empty, we 

can use the following reformulation to cast bilevel MFNIP into single level 

minimization linear program. Let 𝛼𝛼 and 𝛽𝛽 denote dual variables associated with 

the flow conservation and arc capacity constraints, respectively. Note that dual 

program of a maximum flow problem finds minimum cut set of the network. Then 

MFNIP’s final reformulation is as follows. 

MFNIP-D Single Level Formulation [35]: 

min��𝑢𝑢𝑖𝑖𝑖𝑖(1 − 𝛾𝛾𝑖𝑖𝑖𝑖)𝛽𝛽𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐴𝐴𝑖𝑖∈𝐴𝐴

   (3.1.2.7) 

𝑠𝑠. 𝑡𝑡. 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑖𝑖𝑖𝑖 + 𝛽𝛽𝑘𝑘 ≥ 0 𝑘𝑘 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴\{(𝑡𝑡, 𝑠𝑠)} (3.1.2.8) 
𝛼𝛼𝑡𝑡 − 𝛼𝛼𝑠𝑠 ≥ 1,  (3.1.2.9) 

𝛽𝛽 ≥ 0  (3.1.2.10) 
𝛾𝛾 ∈ Γ  (3.1.2.11) 

This problem is not linear due to the bilinear terms 𝛾𝛾𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 in (3.1.2.7). 

However, the dual variables 𝛼𝛼 and 𝛽𝛽 can be restricted to be binary values. Because 

changing the right-hand side of the associated constraints to dual variables in the 

primal problem of MFNIP leads to the change at most one unit of the maximum 

flow.  

At optimality; 

𝛼𝛼𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛 𝑖𝑖 ∈ 𝑁𝑁 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐,
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  
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𝛽𝛽𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 𝑐𝑐𝑐𝑐𝑐𝑐,
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

Therefore, this bilinear model can be converted to a linear mixed integer 

program by substituting  𝛾𝛾𝑖𝑖𝑖𝑖𝛽𝛽𝑖𝑖𝑖𝑖 with a single variable 𝜃𝜃𝑖𝑖𝑖𝑖 and adding extra 

constraints 𝜃𝜃𝑖𝑖𝑖𝑖 ≤ 𝛾𝛾𝑖𝑖𝑖𝑖, 𝜃𝜃𝑖𝑖𝑖𝑖 ≤ 𝛽𝛽𝑖𝑖𝑖𝑖, 𝜃𝜃𝑖𝑖𝑖𝑖 + (1 − 𝛽𝛽𝑖𝑖𝑖𝑖) ≥ 𝛾𝛾𝑖𝑖𝑖𝑖, and 𝛾𝛾𝑖𝑖𝑖𝑖 ≥ 0. In fact, last 

two constraints are useless because bilinear terms appear only in the objective 

(3.1.2.7) with negative signs [31]. 

A Basic Example for the MFNIP [36]. 

Consider the network in Figure 3.1.2.1 where capacity levels of arcs written on 

top of them. NU wishes to maximize flow on this network and NI attempts to 

minimize the maximized flow. Assume that interdiction budget is just enough to 

disrupt one arc. 

 
Figure 3.1.2.1. Example Network for the MFNIP Example 

Capacity levels of arcs: 

𝑢𝑢𝑠𝑠𝑠𝑠 = 10, 𝑢𝑢𝑠𝑠𝑠𝑠 = 70, 𝑢𝑢𝐴𝐴𝐴𝐴 = 100, 𝑢𝑢𝐵𝐵𝐵𝐵 = 30, 𝑢𝑢𝐵𝐵𝐵𝐵 = 40 𝑎𝑎𝑎𝑎𝑎𝑎 𝑢𝑢𝐶𝐶𝐶𝐶 = 50. 

For no interdiction case; the example is a simple Maximum Flow Problem. The 

solution in this case is given by same notation to the MFNIP: 

xsA = 10, xsB = 70, xAt = 40, xBA = 30, xBC = 40 and xCt = 40 (in units). 

Moreover, NU’s maximum amount of flow is 80 units (can also be found as the 

minimum capacity cut which is 𝑢𝑢𝑠𝑠𝑠𝑠 + 𝑢𝑢𝑠𝑠𝑠𝑠 = 80) 
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10 

50 100 

70 

40 30 
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Now, assume that a network interdictor wishes to attack to the network depicted 

in Figure 3.1.1. to minimize the maximum flow of NU. Moreover, he has a budget 

for only one arc interdiction.  

After NI’s move, solution network is shown in Figure 3.1.2.2. NI interdicts arc(s, 

B) by decreasing capacity of the arc to zero 𝑢𝑢𝑠𝑠𝑠𝑠 = 0 with its decision variable, 

𝛾𝛾𝑠𝑠𝑠𝑠 = 1. 

In this resulted network, NU can move its flow only arcs arc(s, A) and arc(A,t) 

with amount units, 𝑥𝑥𝑠𝑠𝑠𝑠 = 10, 𝑥𝑥𝐴𝐴𝐴𝐴 = 10. Because, arc(s,B) can  not carry anymore. 

 

Figure 3.1.2.2. Solution Network for the MFNIP Example 

NU’s maximum amount of flow is 10 units after interdiction. NI cuts off 

the maximized flow with one arc interdiction by 87.5%.  

A stochastic version of MFNIP [37] is studied by Cormican et al. (1998) 

with a two-stage Stochastic program. In stochastic maximum-flow interdiction, 

both arc capacities and success rate of NI can be random. Therefore, NI’s goal is 

to minimize the expected value of the maximum flow. The model has real-world 

applications such as interdicting illegal drug transportation and reducing the 

effectiveness of a military force while it is moving materiel, troops, and 

information, through a network in wartime. 
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Akgün et al. (2011) develop a model for multi-terminal maximum-flow 

network interdiction problem (MTNIP) [38]. MTNIP is a generalized version of 

the MFNIP. The problem context in MFNIP is the same as the one in MTNIP 

except that the interdictor tries to minimize the maximum flow from a source node 

s to a sink node t instead of among three or more groups of nodes. That is, MFNIP 

is a special case of MTNIP with two groups of nodes.  

3.1.2.2. Shortest Path Interdiction 

Consider a directed graph 𝐺𝐺 = (𝑁𝑁,𝐴𝐴) with a node set and an arc set, 𝑁𝑁 and 

A, respectively. In shortest path interdiction problem, network user wishes to 

traverse from source node 𝑠𝑠 ∈ 𝑁𝑁 to terminus node 𝑡𝑡 ∈ 𝑁𝑁 by using the shortest 

path. NI interdicts some subset of A to maximize the minimum/shortest path of 

NU. Interdiction is done by increasing the length of arc (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 from 𝑐𝑐𝑖𝑖𝑖𝑖 to 𝑐𝑐𝑖𝑖𝑖𝑖 +

𝑑𝑑𝑖𝑖𝑖𝑖. This is so called penalty cost in interdiction literature. Because NI penalizes 

NU if those interdicted arcs are used. Therefore, 𝑑𝑑𝑖𝑖𝑖𝑖 values must be enough 

incentive for NU not to traverse them in case of interdiction. Israeli and Wood 

(2012) is firstly studied the shortest path interdiction problem (MXSP) [39]. 

MXSP is modeled as follows. 

Indices and Sets: 

𝑖𝑖 ∈ 𝑁𝑁 and 𝑗𝑗 ∈ 𝑁𝑁 represent nodes of the network G. 

(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 defines an arc between node i and node j. 

𝐹𝐹𝐹𝐹(𝑖𝑖) is set of arcs leaving node i. 

𝑅𝑅𝑅𝑅(𝑖𝑖) is set of arcs entering node i. 

Data: 

𝑅𝑅 interdiction budget 

𝑟𝑟𝑖𝑖𝑖𝑖 required resource to NI interdicting one arc 

𝑐𝑐𝑖𝑖𝑖𝑖 original length of arc (i,j); 𝑐𝑐𝑖𝑖𝑖𝑖 ≥ 0 

𝑑𝑑𝑖𝑖𝑖𝑖 additional length (penalty cost) if arc (i,j) is interdicted; 𝑑𝑑𝑖𝑖𝑖𝑖 ≥ 0 
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NI’s Decision Variables 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1 if arc (i,j) is interdicted and 0 otherwise. 

NU’s Decision Variables: 

𝑦𝑦𝑖𝑖𝑖𝑖 = 1 if arc (i,j) is traversed in the shortest path and 0 otherwise. 

MXSP Formulation, [39]: 

max
𝑥𝑥∈𝑋𝑋

 

min
𝑦𝑦

� (𝑐𝑐𝑖𝑖𝑖𝑖 + 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖)𝑦𝑦𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

  (3.1.2.12) 

𝑠𝑠. 𝑡𝑡. � 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐹𝐹𝐹𝐹(𝑖𝑖)

− � 𝑦𝑦𝑗𝑗𝑗𝑗
(𝑖𝑖,𝑗𝑗)∈𝑅𝑅𝑅𝑅(𝑖𝑖)

= �
1, 𝑖𝑖 = 𝑠𝑠

0, 𝑖𝑖 ∈ 𝑁𝑁\{𝑠𝑠, 𝑡𝑡} 
−1, 𝑖𝑖 = 𝑡𝑡

  (3.1.2.13) 

𝑦𝑦𝑖𝑖𝑖𝑖 ≥ 0, (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (3.1.2.14) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 X ≡ �𝑥𝑥𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,� 𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

≤ 𝑅𝑅� 

Objective (3.1.2.12) increases the length of arc (i,j) when it is interdicted 

(𝑦𝑦𝑖𝑖𝑖𝑖) = 1. Constraints (3.1.2.13) are NU’s flow conservation restrictions. Note 

that NI’s variables, 𝑥𝑥𝑖𝑖𝑖𝑖 appear only in the objective function. This time, right-hand 

side of the problem is free from NI. 

General-purpose solvers for MIPs can not solve MXSP. However, inner 

minimization problem is an LP and therefore we can fix interdictor’s variable 𝑥𝑥 ∈

𝑋𝑋, then take the dual of the inner LP and release x. Letting 𝜋𝜋 denote the dual 

variables corresponding to flow conservation constraints, MXSP can be cast into 

a single maximization linear program as follows. 

Dual variables: 

𝜋𝜋𝑡𝑡 denotes the length from source node s to node i. 
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MXSP-D Single Level Formulation, [39]: 

max�𝜋𝜋𝑡𝑡 − 𝜋𝜋𝑠𝑠
𝑥𝑥,𝜋𝜋

   (3.1.2.15) 

𝑠𝑠. 𝑡𝑡. 𝜋𝜋𝑗𝑗 − 𝜋𝜋𝑖𝑖 − 𝑑𝑑𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖 ≤ 𝑐𝑐𝑖𝑖𝑖𝑖 (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (3.1.2.16) 

𝜋𝜋𝑠𝑠 = 0  (3.1.2.17) 

𝑥𝑥 ∈ 𝑋𝑋  (3.1.2.18) 

The resulting MXSP-D program is a linear program. It can be solved by 

branch and bound algorithm theoretically. However, this approach may fail 

because LP relaxation of the program can be weak due to penalty cost 𝑑𝑑𝑖𝑖𝑖𝑖 

variables are large relatively to the original lengths, 𝑐𝑐𝑖𝑖𝑖𝑖. Therefore, an algorithm 

based on Benders decomposition [39] is proposed to solve MXSP and tighter 

formulations so called super valid inequalities are generated. In the same study, 

researchers also consider a three-stage fortification game with two players, NU 

and NI. Also, they study stochastic interdiction on shortest path problem in which 

NI monitors the network by controlling some arcs which are chosen by 

probabilistic methods, while NU tries to traverse from s to t without being 

detected by NI. In this case, NU searches for a reliable path rather than the 

shortest path. 

3.1.2.3. Minimum Cost Flow Interdiction 

Consider a directed graph 𝐺𝐺 = (𝑁𝑁,𝐴𝐴) with a node set and an arc set, 𝑁𝑁 and 

A, respectively. In the minimum cost flow interdiction, NU creates flows to 

minimize costs while NI makes interdiction plans to maximize the NU’s minimum 

value. A generic minimum cost flow interdiction problem is as follows [31]:  

Indices: 

𝑖𝑖 𝑎𝑎𝑎𝑎𝑎𝑎 𝑗𝑗 ∈ 𝑁𝑁 represent nodes of the network G.  

(𝑖𝑖 , 𝑗𝑗) represents the arc between nodes i and j. 

𝐹𝐹𝐹𝐹(𝑖𝑖) is set of arcs leaving node i. 

𝑅𝑅𝑅𝑅(𝑖𝑖) is set of arcs entering node i. 
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Data: 

𝑅𝑅 interdiction budget 

𝑟𝑟𝑖𝑖𝑖𝑖 required resource to NI interdicting one arc 

𝑐𝑐𝑖𝑖𝑖𝑖 is the cost of moving one unit of flow on the arc (i, j). 

𝑑𝑑𝑖𝑖 is the supply (if positive) or the demand (if negative) present at node i. 

𝑢𝑢𝑖𝑖𝑖𝑖 is the capacity level of arc (i, j). 

NU’s Decision Variables: 

𝑦𝑦𝑖𝑖𝑖𝑖 is the amount of flow leaving from node i and entering to node j 

NI’s Decision Variables: 

𝑥𝑥𝑖𝑖𝑖𝑖 = 1 if arc (i, j) is interdicted, 0 otherwise. 

Minimum Cost Flow Interdiction Formulation: 

max
𝑥𝑥∈𝑋𝑋

 

𝑚𝑚𝑚𝑚𝑚𝑚 � 𝑐𝑐𝑖𝑖𝑖𝑖𝑦𝑦𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

  (3.1.2.19) 

𝑠𝑠. 𝑡𝑡. � 𝑦𝑦𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐹𝐹𝐹𝐹(𝑖𝑖)

− � 𝑦𝑦𝑗𝑗𝑗𝑗
(𝑖𝑖,𝑗𝑗)∈𝑅𝑅𝑅𝑅(𝑖𝑖)

= 𝑑𝑑𝑖𝑖 𝑖𝑖 ∈ 𝑁𝑁 (3.1.2.20) 

𝑦𝑦𝑖𝑖𝑖𝑖 ≤ 𝑢𝑢𝑖𝑖𝑖𝑖(1 − 𝑥𝑥𝑖𝑖𝑖𝑖) (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (3.1.2.21) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒 X ≡ �𝑥𝑥𝑖𝑖𝑖𝑖|𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1},∀(𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴,� 𝑟𝑟𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴

≤ 𝑅𝑅� 

 Note that the formulation is similar to MFNIP except that the interdictor’s 

variable is in the objective function (3.1.2.12). Let 𝛼𝛼 and 𝛽𝛽 denote dual variables 

associated with the flow conservation and arc capacity constraints, respectively. 

Minimum Cost Flow Interdiction-Dual Single Level Formulation: 

max�𝑑𝑑𝑖𝑖𝛼𝛼𝑖𝑖 − � 𝑢𝑢𝑖𝑖𝑖𝑖(1 − 𝑥𝑥𝑗𝑗)𝛽𝛽𝑖𝑖𝑖𝑖
(𝑖𝑖,𝑗𝑗)∈𝐴𝐴𝑖𝑖∈𝑁𝑁

   (3.1.2.22) 

𝑠𝑠. 𝑡𝑡. 𝛼𝛼𝑖𝑖 − 𝛼𝛼𝑗𝑗 − 𝛽𝛽𝑘𝑘 ≤ 𝑐𝑐𝑘𝑘 𝑘𝑘 = (𝑖𝑖, 𝑗𝑗) ∈ 𝐴𝐴 (3.1.2.23) 
𝛽𝛽 ≥ 0  (3.1.2.24) 
𝑥𝑥 ∈ 𝑋𝑋  (3.1.2.25) 
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In MFNIP, we could restrict dual variables to be binary values. However, 

the same rule does not apply for minimum cost flow interdiction problem. Since 

change in the objective function value per unit flow change is dependent on the 

cost vector c. See [40] for exact algorithms for multicommodity flow network 

interdiction problem which is similar to minimum cost flow interdiction. 

Various optimization algorithms can solve network interdiction models. 

However, usually, there are two solution approaches are common in the literature. 

One is casting bilevel program into the single level structure, then facilitate well-

known algorithms as in MFNIP [35]. Other is Benders decomposition that 

separate two level program into master and subproblems and solve them 

sequentially as in MXSP [39]. See [41], [42] for reviewing different solution 

approaches. 

3.2. Facility Interdiction Problem 
Network interdiction models reflect disruption effects via arcs of the 

network.  Furthermore, node disruption so called facility interdiction is another 

aspect of network interdiction problems. Scaparra and Church (2015) address 

three main questions for facility interdiction problem [3].  

(1) To search for the critical parts of a system; which facilities 

cause the most severe damage when they are removed from the 

network?  

(2) To protect the network from a disturbance risk; which facilities 

would be fortified against a disaster?  

(3) As to settling facilities in the occurrence of disturbance; how 

can the system be resilient when disrupted? The optimization 

models, regarding these 3 questions, are classified into three 

categories:  
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1) Interdiction models identify the critical facilities to a system.  

2) Protection models choose the necessary facilities that should be fortified 

against disruption.  

3) Design models are used to create resilient networks considering of 

possible future disruptions.  

Here, we do not review the whole facility interdiction literature. Instead, we 

consider the generic type of interdiction formulations. See Scaparra and Church 

(2015)’s review of facility location problems under disruption [3].  

3.2.1. Interdiction Models 

Church et al. (2004) interpret interdiction game [43] in which NI can disrupt 

r out of p facilities. Interdicted facilities are removed from the network and NU 

assigns free nodes to its closest facility. Researchers consider interdiction on p-

median and maximal covering problems. Here, we only review interdiction on the 

p-median problem so called r-interdiction p-median problem (r-IMP). r-IMP is 

modeled as follows. 

Indices and Sets: 

𝐼𝐼 = Set of potential locations for the facilities, indexed by 𝑖𝑖. 

𝐽𝐽 = Set of customers, indexed by 𝑗𝑗. 

𝐹𝐹 = Set of facilities in an existing system. 

Data: 
𝑑𝑑𝑗𝑗 = Demand of customer 𝑗𝑗. 

𝑐𝑐𝑖𝑖𝑖𝑖 = Unitary cost for serving customer 𝑗𝑗 from facility 𝑖𝑖. 

𝑝𝑝 = Number of facilities to be located. 

𝑟𝑟 = Number of facilities to be interdicted. 

Decision Variables: 

𝑦𝑦𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  



 42   
 
 
 

𝑠𝑠𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

𝑥𝑥𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

Letting 𝑇𝑇𝑖𝑖𝑖𝑖 = �𝑘𝑘 ∈ 𝐹𝐹|  𝑑𝑑𝑘𝑘𝑘𝑘 > 𝑑𝑑𝑖𝑖𝑗𝑗� is the set of existing sites (not including 

j) that are at least farther than i to the demand j. We call demand points which lost 

their supplier facility due to interdiction as free demand points.  

r-IMP Formulation [43]:  

max��𝑑𝑑𝑗𝑗𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐹𝐹𝑖𝑖∈𝑁𝑁

  (3.2.1) 

𝑠𝑠. 𝑡𝑡. �𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗∈𝐹𝐹

= 1 𝑗𝑗 ∈ 𝐹𝐹 (3.2.2) 

�𝑠𝑠𝑗𝑗
𝑗𝑗∈𝐹𝐹

= 𝑟𝑟  (3.2.3) 

� 𝑥𝑥𝑘𝑘𝑘𝑘
𝑘𝑘∈𝑇𝑇𝑖𝑖𝑖𝑖

≤ 𝑠𝑠𝑖𝑖 𝑖𝑖 ∈ 𝐹𝐹, 𝑗𝑗 ∈ 𝐽𝐽 (3.2.4) 

𝑥𝑥𝑖𝑖𝑖𝑖 ∈ {0,1} 𝑖𝑖 ∈ 𝐹𝐹, 𝑗𝑗 ∈ 𝐽𝐽 (3.2.5) 

𝑠𝑠𝑖𝑖 ∈ {0,1}  𝑖𝑖 ∈ 𝐹𝐹 (3.2.6) 

The objective (3.2.1) maximizes demand-weighted distance under the 

impact of interdiction of r facilities. Constraints (3.2.2) ensure that demand points 

are assigned to a facility. Constraint (3.2.3) interdicts r facilities out of optimal p 

facilities. (3.2.4) constraints ensure that if a demand point loses its facility, it is 

assigned to a non-interdicted facility. Constraints (3.2.5) and (3.2.6) define binary 

decision variables. 
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For example, Figure 3.2.1 shows a simple solution for a p-median problem 

of NU with three facilities. Assume that NI attacks up to 1 out of 3 facilities and 

interdicts third facility. Then free demand points previously assigned to the 

interdicted hub are assigned to first and second hubs regarding closest facility 

criteria as shown in Figure 3.2.2. 

 

 

Note that unlike traditional network interdiction problems, r-IMP has a 

single level formulation. Therefore, the problem can be solved by general-purpose 

optimization solver software. 

1 2 

3 

Figure 3.2.1 Facility - Demand Point Assignment 
 

1 2 

3 

Figure 3.2.2. Facility - Demand Point Assignment after Interdiction 
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r-IMP do not limit the capacity of facilities that means survivor facilities 

can supply free demand points even after interdiction. However, this may not be 

applied to real-world problems. Therefore, Scaparra and Church (2012) develop 

capacitated version of r-IMP [44]. Moreover, Losda et al. (2012) assume that 

success of interdiction is probabilistic and this probability depends on the 

magnitude of the disruption, therefore, they introduced a two-stage stochastic 

program for r-IMP [45].  

3.2.1.1. Hub Interdiction Models 

Lei (2013) develops an r-interdiction problem on hub-and-spoke network 

structure so-called Hub Interdiction Model (HIM) [46]. HIM uses the same 

interdiction concept as in r-IMP, only differs at considering p-hub median 

interdiction problem. NI interdicts r hub facilities out of existing p hubs. O/D 

flows which previously allocated by interdicted hubs reroute over least-cost paths 

including survivor hubs. That is, residual hubs allocate free O/D flows after 

interdiction regarding least-cost route criteria. HIM is modeled as follows. 

Indices and Sets: 

𝐺𝐺 = (𝑁𝑁,𝐴𝐴) is a complete graph 

𝐴𝐴 is the set of edges in the hub-and-spoke network 

𝑁𝑁 is the set of nodes in the hub-and-spoke network 

𝑖𝑖 ∈ 𝑁𝑁 represents an origin node. 

𝑗𝑗 ∈ 𝑁𝑁 represents a destination node. 

𝑘𝑘 ∈ 𝑁𝑁 represents the hub node in the collection leg of a O/D path.  

𝑚𝑚 ∈ 𝑁𝑁 represents the hub node in the distribution leg of a O/D path. 

Data:  

𝛼𝛼 is the discount factor on hub arcs. 

𝑑𝑑𝑖𝑖𝑖𝑖 is the distance between node i and node j.  

𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛼𝛼(𝑑𝑑𝑘𝑘𝑘𝑘) + 𝑑𝑑𝑗𝑗𝑗𝑗 is flow cost over a O/D path. 
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Decision Variables: 

𝑊𝑊𝑖𝑖𝑖𝑖 is the amount of flow between node i and node j. 

𝑍𝑍𝑖𝑖𝑖𝑖 is equal to 1 if node i is allocated by hub node k, 0 otherwise. 

𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 is demand service level from origin i to destination j goes through 

hubs k and m, and takes value between 0 and 1.  

𝑦𝑦𝑖𝑖 if hub k is not interdicted, and 0 otherwise. 

The following set describes the relative order of costs for different routes 

for any given O/D pair: 

𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = �
(𝑞𝑞, 𝑠𝑠)| 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑞𝑞𝑞𝑞 < 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑚𝑚𝑚𝑚  𝑜𝑜𝑜𝑜 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑞𝑞𝑞𝑞 + 𝑑𝑑𝑠𝑠𝑠𝑠 = 𝑑𝑑𝑖𝑖𝑖𝑖 + 𝛼𝛼𝑑𝑑𝑘𝑘𝑘𝑘 + 𝑑𝑑𝑚𝑚𝑚𝑚  𝑎𝑎𝑛𝑛𝑛𝑛 

(𝑞𝑞 < 𝑘𝑘 𝑜𝑜𝑜𝑜 𝑞𝑞 = 𝑘𝑘 𝑎𝑎𝑎𝑎𝑎𝑎 𝑠𝑠 < 𝑚𝑚) � 

This set involves pairs of hub facilities that generate routes with strictly 

lower costs than route i-k-m-j.  

HIM Formulation [46]: 

max����𝑊𝑊𝑖𝑖𝑖𝑖𝐶𝐶𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚𝑘𝑘𝑗𝑗𝑖𝑖

 (3.2.7) 

𝑠𝑠. 𝑡𝑡.           ��𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚

= 1
𝑘𝑘

 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁 (3.2.8) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑘𝑘

= 𝑦𝑦𝑚𝑚  𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁;  𝑚𝑚 ∈ 𝐹𝐹 (3.2.9) 

�𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
𝑚𝑚

= 𝑦𝑦𝑘𝑘 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁;  𝑘𝑘 ∈ 𝐹𝐹 (3.2.10) 

�𝑦𝑦𝑘𝑘 = 𝑝𝑝 − 𝑟𝑟
𝑘𝑘

  (3.2.11) 

� 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖
(𝑞𝑞,𝑠𝑠)∈𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖

+ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≥ 𝑦𝑦𝑘𝑘 + 𝑦𝑦𝑚𝑚 − 1 𝑖𝑖, 𝑗𝑗 ∈ 𝑁𝑁;  𝑘𝑘,𝑚𝑚 ∈ 𝐹𝐹 (3.2.12) 

𝑦𝑦𝑘𝑘 ∈ {0,1}  (3.2.13) 

0 ≤ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 ≤ 1  (3.2.14) 
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The objective function (3.2.7) maximizes total flow cost after interdiction. 

Constraints (3.2.8) ensure that each O/D flow can only be assigned to one pair of 

hubs. Constraints (3.2.9) and (3.2.10) maintain that O/D flows can be routed only 

via survivor hubs after interdiction. Constraint (3.2.11) interdicts r hub facilities 

out of existing p hubs that also means p-r hubs be kept after interdiction. 

Constraints (3.2.12) ensure that if both hub k and hub m are kept open and if no 

route has a lower cost than route i-k-m-j (i.e. ∑ 𝑋𝑋𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖(𝑞𝑞,𝑠𝑠)∈𝐸𝐸𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 = 0), then route i-k-

m-j must be assigned to the flow between origin i and destination j. Without this 

type of costraint, the model assigns all O/D flows to the greatest cost routes.  

Unlike classic interdiction games as in Sect. 3.1. HIM has a single-level 

formulation which is solved by Branch and Bound algorithm. NI attacks up to r 

hubs out of existing p hub facilities of NU. NI wishes to maximize flow costs with 

the objective function (3.2.7), while NU assign O/D flows to least cost routes with 

constraints (3.2.12). That is, the objective of HIM identifies most critical hubs and 

interdict them to maximize of NU’s flow cost. Resulted network after interdiction 

will have p-r hub facilities. NU will assign all O/D flows to least routes including 

those survivor facilities.  

3.2.2. Protection Models 

Protection problems attempt to find hubs that need fortification to avoid the 

worst-case scenario. Protecting only most critical facilities determined by a r-IMP 

solution may lead to the wrong solution. Therefore, Scaparra and Church (2008) 

expands r-IMP to a two-stage game [47] to include a fortification stage, where the 

network user moves first to protect a subset of hub facilities from the network 

interdictor. The interdictor must then work on all attacks to those unprotected hub 

facilities.  

Indices and Sets: 

𝐼𝐼 = Set of potential locations for the facilities, indexed by 𝑖𝑖. 

𝐽𝐽 = Set of customers, indexed by 𝑗𝑗. 

𝐹𝐹 = Set of facilities in an existing system. 
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Data: 
𝑑𝑑𝑗𝑗 = Demand of customer 𝑗𝑗. 

𝑐𝑐𝑖𝑖𝑖𝑖 = Unitary cost for serving customer 𝑗𝑗 from facility 𝑖𝑖. 

𝑝𝑝 = Number of facilities to be located. 

𝑏𝑏 = Number of facilities to be protected. 

Decision Variables: 

𝑠𝑠𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 𝑎𝑎𝑎𝑎 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

𝑧𝑧𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖𝑖𝑖 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙 𝑎𝑎𝑎𝑎 𝑖𝑖 𝑖𝑖𝑖𝑖 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

𝑥𝑥𝑖𝑖𝑖𝑖 = �1, 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 𝑜𝑜𝑜𝑜 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑗𝑗 𝑖𝑖𝑖𝑖 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓 𝑖𝑖
0, 𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒  

r-IMPF Formulation [48]: 

𝑚𝑚𝑚𝑚𝑚𝑚𝐻𝐻(𝑧𝑧) (3.2.15) 

𝑠𝑠. 𝑡𝑡.          �𝑧𝑧𝑖𝑖
𝑖𝑖

= 𝑏𝑏   (3.2.16) 

𝑧𝑧𝑖𝑖 ∈ {0,1} 𝑖𝑖 ∈ 𝐹𝐹 (3.2.17) 

where   

𝐻𝐻(𝑧𝑧) = 𝑚𝑚𝑚𝑚𝑚𝑚��𝑑𝑑𝑗𝑗𝑐𝑐𝑖𝑖𝑖𝑖𝑥𝑥𝑖𝑖𝑖𝑖
𝑗𝑗𝑖𝑖

  
(3.2.18) 

𝑠𝑠. 𝑡𝑡.            𝑠𝑠𝑖𝑖 ≤ 1 − 𝑧𝑧𝑖𝑖 𝑖𝑖 ∈ 𝐹𝐹 (3.2.19) 

(3.2.2) - (3.2.6)   

The objective function (3.2.15) minimizes the maximum flow cost 

generated by NI in the (3.2.18). Constraint (3.2.16) protects b hubs from the 

following interdiction in the inner level which is simply the r-IMP formulation 

with additional constraints. NI cannot interdict protected facilities due to 

restrictions by constraints (3.2.19) which link interdiction variables of NI and 

protection variables of NU.  
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Scaparra and Church (2008) observe that at least one of the protected 

facilities must also be a critical hub [47]. Therefore, they suggest implicit 

enumeration for r-IMPF rather than total enumeration. 

Based on r-IMPF; a stochastic version is modeled by Liberatore et al. 

assuming the exact value of r is not known [49]. Moreover, Bricha and Nourelfath 

(2013) expands the problem for a realistic environment that success of protection 

of a facility is probabilistic [50].   

3.2.3. Design Models 

Interdiction and protection models are useful to identify critical and must-

protected facilities in existing network structures. Design models attempt to build 

robust network systems by considering potential disruptions at network design 

process. These models identify alternative plans for network designers in the case 

of future disruption.  

O’Hanley and Church (2011), and Parvaresh (2012) develop bi-level 

interdiction games [51], [52]  on maximal covering problems considering a risk-

averse network designer so that interdictor’s attack is reflected in the worst-case.  

Snyder and Daskin (2006) work on the reliability of p-median and fixed 

charge facility location networks [53] considering facility failures. They model 

reliability problems in the perspective of a risk-neutral network designer that 

assumes facilities to fail at random.  

Next Chapter 4 introduces Flow-based p-Hub Median Interdiction Problem 

which is considered to be in design interdiction models. 
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Chapter 4 

 

 

FLOW-BASED p-HUB MEDIAN 

INTERDICTION PROBLEM 

We examine the interdiction of an uncapacitated hub-and-spoke network. 

The node set of the network represent origins and destinations, and some nodes 

can serve as hub facilities to transfer service flows between origin and destination 

(O/D) pairs (see Chapter 2 for a detailed explanation of the hub-and-spoke 

network structure).  On that network, the problem we consider takes the 

perspectives of two decision makers, e.g. a network user (NU) and a network 

interdictor (NI).  The NU wishes to minimize transportation cost of service flows 

across the network by facilitating p hub facilities, and the NI attempts to worsen 

the NU’s objective by disrupting NU’s facilities. NI has limited resources to 

implement an attack plan against NU. NI’s attack locations are restricted to the 

node set of the network. Damage is inflicted on each node by removing its hub 

functionality that means an interdicted node can be both origin and destination 

point, however, cannot be a hub facility. We refer to this problem as the Multi-

Commodity Flow-based p-hub Median Interdiction Problem (MCFPIP).  

MCFPIP can be modeled with a game theoretical approach since it is a 

genuinely two-stage and two-player game. NI makes the first move by attacking 

nodes of the network. NU makes the following move on the resulted network after 

interdiction. Hence, hub interdiction problem is a truly Stackelberg game in which 

the leader/interdictor moves first and the follower/operator acts against that move 

[4], [5]. If there is no human interdictor, natural threats take the role of NI in 
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worst-case analyses. That is, “Murphy’s Law”, the pessimistic approach that the 

worst event will occur, change the network structure [31].  

4.1. Background 
The motivation of studying of MCFPIP is due to the extensity of disruption 

events on hub-and-spoke transportation and telecommunication networks. Like 

every system, hub-and-spoke networks are also open to numerous possibilities of 

disruptions (For real-world disruption examples; see Chapter 1 and Chapter 3). 

Hubs location designs are essential because a disturbance on hubs may cause the 

network system to fail. Therefore, the reliability of hubs against disruptions is a 

key criterion to design a successful network system. MCFPIP provides valuable 

insights into identifying critical hub facilities.  

Although the analysis of disruptions on hub facilities is of great importance, 

only a few studies have focused on this issue. In previous studies on hub 

interdiction problem; existing facilities of hub network systems are considered as 

explained in Sect. 3.2.1. These problems assume that NI interdicts r out of 

predetermined p hub facilities and then NU sustains its operations with remaining 

p-r facilities.  

MCFPIP incorporates the risks of possible interdiction operations in the 

initial design of a hub-and-spoke network system by identifying alternative hub 

location strategies which are both cost-efficient and robust to external disruptions. 

Unlike previous hub interdiction studies, MCFPIP assumes that NI interdicts most 

critical facilities of the network and NU can continue its activities on the resulted 

network after interdiction with p hub facilities. Note that these p hub facilities are 

not the optimal solution set of NU in the initial network.  

Let’s explain the difference between facility interdiction problems 

examined in Sect. 3.2. MCFPIP with the Example 4.1.  
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Example 4.1. (with arbitrary values) 

 Consider a complete network with 9 nodes. Suppose NU wishes to locate 

4 hubs optimally such transportation cost between all node pairs is minimized. 

We assume that NU finds out that nodes 1, 4, 5 and 7 are optimal hubs. 

 

Figure 4. 1. No interdiction case for Example 4.1. 

In this case, we assume that NU’s objective value to be K units. This 

solution is shown in Figure 4.1. 

Now, suppose that an NI attacks the network depicted in Figure 4.1. with its 

two-node interdiction resources. HIM [46] solves this problem by interdicting two 

existing optimal hubs out of three hubs which are nodes 1, 4, 5, and 7 and assign 

free origin and destinations to survivor hub facilities. Assuming HIM interdicted 

nodes 4 and 5, free nodes 3 and 6 are allocated to closest remaining hub facilities 

1 and 5, respectively as shown in Figure 4.2. Note that a hub facility can have its 

own supply and demand. Interdiction of a hub facility is not removing it from the 

network. So, interdicted facilities 4 and 5 can be allocated by hub node 1 and 7, 

respectively as in Figure 4.2.  
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Figure 4. 2. HIM Solution to Example 4.1. with 2-node interdiction case 

Let MCFPIP solve the example 4.1. for the same NU and NI with the same 

objectives and resources. Assume that MCFPIP interdicts two nodes 6 and 7. 

Node 7 was already a hub facility in the initial solution. Note that node 6 was not 

a hub facility, but it was a candidate hub. However, after interdiction, node 6 

cannot be a hub anymore since it has lost hub functionality property. Therefore, 

NU locates 4 hubs at nodes 1, 3, 4 and 5 in the resulted network after interdiction 

as shown in Figure 4.3.  

 

Figure 4. 3. MCFPIP Solution to Example 4.1. with 2-node interdiction case 
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Lei (2013)’s HIM [46] and studies based on r-IMP given in Sect. 3.2. 

analyzes the worst-case scenario in which NI attacks most critical facilities and 

cripples NU’s network at the worst level. NU must leave r facilities and continue 

with p-r facilities. This scenario can apply to existing network systems assuming 

the system cannot recover itself in a short time. However, if NU designs a new 

network structure, then it needs a new tool to evaluate critical infrastructure of the 

network system and should prepare an alternative plan to create a robust network.  

4.2. Model Development 
Interdiction problems are associated with bilevel programming (also known 

as a two-level and hierarchical optimization) if leader’s and follower’s objectives 

are different. MCFPIP is a two-stage game between two players who have 

different objectives. Therefore, we model MCFPIP in a bilevel program which is 

appropriate to model two-stage Stackelberg game [5]. In this interdiction game, 

NI and NU sequentially make decisions in a noncooperative manner. The bilevel 

program includes of decision variable sets of NU and NI. Inner level constraints 

NU’s decision set to be a solution of optimization problem of given NI’s decision 

variable from the upper level. The upper level is an integer program due to 

interdictor’s variables, and the inner level is a mixed integer program of the flow-

based p-hub median problem of [23]. Therefore, flow-based p-hub median 

interdiction bilevel integer program we propose is strongly NP-hard [31].  

Multicommodity flow-based p-hub median interdiction problem (MCFPIP) 

is modeled as a bilevel program as follows: 

Indices and Sets: 

𝐺𝐺 = (𝑁𝑁,𝐴𝐴) is the underlying hub-and-spoke network (see Sect. 2.5 for 

detailed explanation) 

𝐻𝐻 is the set of potential hub facilities indexed by i. 

𝑆𝑆 is the demand generating node set indexed by k. 

𝐴𝐴0 is the set of arcs of three layered network explained in Sect. 2.5.1 and 

this set indexed by a. 
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𝛽𝛽 is the set of nodes explained in detail in Sect. 2.5.1 

𝐹𝐹𝛽𝛽
𝑜𝑜𝑜𝑜𝑜𝑜 is the forward star of a node 𝛽𝛽 consisting of arcs whose tail is 𝛽𝛽. 

𝐹𝐹𝛽𝛽
𝑖𝑖𝑖𝑖  is the inward star of node 𝛽𝛽 ∈ 𝑁𝑁0 consisting of arcs whose heads are 𝛽𝛽. 

C denotes total interdiction budget for interdiction. 

Data: 

𝑙𝑙𝑎𝑎 is the length of the arc a. (see Sect. 2.5.1 for detailed formulation) 

𝑐𝑐𝑖𝑖 is the amount of resource to interdict hub i.  

𝑀𝑀𝑖𝑖, penalty cost (in length) added to site i. 

𝑊𝑊𝑘𝑘 is the amount of supply for commodity k  

Network Interdictor’s Decision Variables: 

𝑡𝑡𝑖𝑖 is equal to 1, if a hub facility is interdicted at i, 0 otherwise.  

Network User’s Decision Variables: 

𝑦𝑦𝑖𝑖 is equal to 1, if a hub facility is located at site i, 0 otherwise.  

𝑋𝑋𝑎𝑎𝑎𝑎 is the amount of flow on arc a for commodity k. 

MCFPIP Formulation:  

𝑚𝑚𝑚𝑚𝑚𝑚 𝑡𝑡𝑡𝑡𝑇𝑇𝐼𝐼   

min𝑍𝑍∗ = � � 𝑙𝑙𝑎𝑎𝑋𝑋𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝐴𝐴0𝑘𝑘𝑘𝑘𝑘𝑘

+ �(𝑡𝑡𝑖𝑖𝑀𝑀𝑖𝑖)𝑦𝑦𝑖𝑖
𝑖𝑖∈𝐻𝐻

 (4.1) 

𝑤𝑤ℎ𝑒𝑒𝑒𝑒𝑒𝑒    𝑇𝑇𝐼𝐼 = �𝑡𝑡: �𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖
𝑖𝑖∈𝐻𝐻

≤ 𝐶𝐶, 𝑡𝑡𝑖𝑖 ∈ {0,1},∀𝑖𝑖 ∈ 𝐻𝐻�  

𝑠𝑠. 𝑡𝑡.           � 𝑋𝑋𝑎𝑎𝑎𝑎
𝑎𝑎∈𝐹𝐹𝛽𝛽

𝑜𝑜𝑜𝑜𝑜𝑜

− � 𝑋𝑋𝑎𝑎𝑎𝑎
𝑎𝑎∈𝐹𝐹𝛽𝛽

𝑖𝑖𝑖𝑖

= 𝑏𝑏𝛽𝛽𝛽𝛽 𝛽𝛽 ∈ (𝑁𝑁1 ∪ 𝑁𝑁2 ∪ 𝑁𝑁3),  

𝑘𝑘 ∈ 𝑆𝑆  
(4.2) 

�𝑦𝑦𝑖𝑖
𝑖𝑖∈𝐻𝐻

= 𝑝𝑝  
(4.3) 

𝑋𝑋(1𝑖𝑖,2𝑖𝑖)𝑘𝑘 ≤ 𝑊𝑊𝑘𝑘𝑦𝑦𝑖𝑖 𝑖𝑖 ∈ 𝐻𝐻, 𝑘𝑘 ∈ 𝑆𝑆 (4.4) 

𝑋𝑋(2𝑖𝑖,3𝑖𝑖)𝑘𝑘 ≤ 𝑊𝑊𝑘𝑘𝑦𝑦𝑖𝑖 𝑖𝑖 ∈ 𝐻𝐻, 𝑘𝑘 ∈ 𝑆𝑆 (4.5) 

𝑋𝑋𝑎𝑎𝑎𝑎 ≥ 0 𝑎𝑎𝑎𝑎𝐴𝐴0,𝑘𝑘 ∈ 𝑆𝑆 (4.6) 

𝑦𝑦𝑖𝑖𝜖𝜖{0,1} 𝑖𝑖 ∈ 𝐻𝐻 (4.7) 
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Objective (4.1) maximizes the minimum flow cost. For fixed 𝑡𝑡𝑖𝑖 values, the 

remaining model is the NU’s model. When a located hub i is interdicted, the 

second term in the objective function adds a high penalty for hub i to the objective 

function. This prevents NU from using this interdicted hub. The inner 

minimization problem is uncapacitated flow-based multiple allocation p-hub 

median problem (G-MApHMP) with the constraint set (4.2 – 4.7) (see the details 

in Sect. 2.5). Constraints (4.2) are well-known flow conservation restrictions. 

Constraint (4.3) locates p hub facilities over the network. Constraints (4.4) and 

(4.5) link first graph layer to second layer and second layer to third level, 

respectively. 𝑇𝑇𝐼𝐼 is the interdiction resource budget set that restricts interdiction 

operations.   

Another way to model this problem is to disconnect hubs from level 1 and 

level 3 of the three-layered structure of G-MApHMP. By this method, we need to 

add interdiction variables into constraints (4.4) and (4.5). However, [54] states 

that the NI’s (upper-level) decision variables on the right-hand side of the 

constraint set of the NU’s (inner – level) make the problem harder to solve due to 

non-convexity of the inner level. The NI’s decision variable can transform the 

original one into non-convex. Hence, maximizing (upper-level objective) a non-

convex function is a very hard problem to solve. Therefore, the researcher 

suggests for a shortest path interdiction problem adding penalty cost in the 

objective function. Our problem also has a similar hierarchical structure with the 

shortest path interdiction problem, MXSP. Hence, we have been using penalty 

cost formulation. 

4.3. A Decomposition Based Solution Procedure 
MCFPIP is a bi-level model, and therefore we cannot directly solve it by 

usually mixed integer programming (MIP) solving techniques. A common 

solution approach for a multi-level interdiction model is casting to single level 

formulation [35], [40] so that it can be solved by a MIP solution method, i.e. 

branch and bound algorithm. However, casting to the single level formulation is 
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not reasonable for MCFPIP due to binary integer variables in the constraints (4.4) 

and (4.5). Another approach is total or implicit enumeration [47]. 

The other common approach is decomposition method. It was used in 

various network interdiction models [40], [54] Moreover, Wood et al. (2010) state 

that most algorithms that have been developed for bi-level MIP assume a strong 

relation between upper- and inner- level part of the original problem [55]. 

Therefore, the researcher points out the effectiveness of Benders decomposition 

[56] which divides decision variable set into subsets and creates two stages. The 

first stage is called master problem, and it is solved for a subset of variables. A 

remaining subset of decision variables is solved by a second stage so-called 

subproblem. 

In our solution procedure, we adopt a decomposition approach similar to 

Benders decomposition. Decomposed MCFPIP is as follows: 

Decomposed MCFPIP: 

Master Problem (𝒀𝒀�)   

𝑧𝑧𝑇𝑇� = 𝑚𝑚𝑚𝑚𝑚𝑚𝑡𝑡∈𝑇𝑇 𝑧𝑧  (4.8) 

s.t.        𝑧𝑧 ≤ 𝑙𝑙𝑎𝑎𝑋𝑋𝑎𝑎𝑎𝑎 + ∑ (𝑡𝑡𝑖𝑖𝑀𝑀𝑖𝑖)𝑦𝑦İ�𝑖𝑖∈𝐻𝐻   (4.9) 

where    𝑇𝑇𝐼𝐼 = {𝑡𝑡: ∑ 𝑐𝑐𝑖𝑖𝑡𝑡𝑖𝑖𝑖𝑖∈𝐻𝐻 ≤ 𝐶𝐶, 𝑡𝑡𝑖𝑖 ∈ {0,1},∀𝑖𝑖 ∈ 𝐻𝐻}  

Subproblem (𝒕𝒕�)    

𝑚𝑚𝑚𝑚𝑚𝑚 𝑍𝑍𝑌𝑌� = � � 𝑙𝑙𝑎𝑎𝑋𝑋𝑎𝑎𝑎𝑎
𝑎𝑎𝑎𝑎𝐴𝐴0𝑘𝑘𝑘𝑘𝑘𝑘

+ �(𝑡𝑡İ�𝑀𝑀𝑖𝑖)𝑦𝑦𝑖𝑖
𝑖𝑖∈𝐻𝐻

  (4.10) 

𝑠𝑠. 𝑡𝑡. � 𝑋𝑋𝑎𝑎𝑎𝑎
𝑎𝑎∈𝐹𝐹𝛽𝛽

𝑜𝑜𝑜𝑜𝑜𝑜

− � 𝑋𝑋𝑎𝑎𝑎𝑎
𝑎𝑎∈𝐹𝐹𝛽𝛽

𝑖𝑖𝑖𝑖

= 𝑏𝑏𝛽𝛽𝛽𝛽 𝛽𝛽 ∈ (𝑁𝑁1 ∪ 𝑁𝑁2 ∪ 𝑁𝑁3), 

 𝑘𝑘 ∈ 𝑆𝑆 
(4.11) 

�𝑦𝑦𝑖𝑖
𝑖𝑖𝑖𝑖𝑖𝑖

= 𝑝𝑝  (4.12) 

𝑋𝑋(1𝑖𝑖,2𝑖𝑖)𝑘𝑘 ≤ 𝑊𝑊𝑘𝑘𝑦𝑦𝑖𝑖 𝑖𝑖 ∈ 𝐻𝐻, 𝑘𝑘 ∈ 𝑆𝑆 (4.13) 

𝑋𝑋(2𝑖𝑖,3𝑖𝑖)𝑘𝑘 ≤ 𝑊𝑊𝑘𝑘𝑦𝑦𝑖𝑖 𝑖𝑖 ∈ 𝐻𝐻, 𝑘𝑘 ∈ 𝑆𝑆 (4.14) 
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𝑋𝑋𝑎𝑎𝑎𝑎 ≥ 0 𝑎𝑎𝑎𝑎𝐴𝐴0,𝑘𝑘 ∈ 𝑆𝑆 (4.15) 

𝑦𝑦𝑖𝑖𝜖𝜖{0,1} 𝑖𝑖 ∈ 𝐻𝐻 (4.16) 

For the master problem: 

Objective (4.8) maximizes a function which is constrained by (4.9). 

Constraints (4.9) are optimality cut added in each solution iteration to the master 

problem. These cuts identify hub facilities to be interdicted for each iteration 

regarding penalty cost. In this setting, the hub variable, 𝑌𝑌İ� , is constant since its 

values are determined by NU in the sub problem. Here, 𝑇𝑇𝐼𝐼 restricts NI by an 

interdiction budget. 

For the subproblem: 

The subproblem is truly G-MApHMP.  Objective (4.1) minimizes 

weighted-flow cost over the network with penalization on interdicted hubs. The 

penalty cost here is an enough incentive for NU not to route flows via hubs that 

are interdicted in the master problem.  

To solve for MCFPIP, we develop Algorithm 1 which is precisely a simple 

version of the Benders Decomposition algorithm: 

Algorithm 1: Benders Decomposition to MCFPIP 

Input: An instance of MCFPIP and allowable optimality gap 𝜀𝜀. 

Output: An Interdiction plan 𝑡𝑡∗ that solves MCFPIP to within 𝜀𝜀 units of 

optimality. 

Step 0: 𝑋𝑋� ← ∅, 𝑧𝑧 ← −∞, 𝑧𝑧̅ ← ∞, 𝑡̂𝑡 ← 0. 

Step 1: Solve subproblem for solution 𝑡̂𝑡 with objective 𝑧𝑧𝑇𝑇� . 

  𝑌𝑌� ←  𝑌𝑌� ∪ 𝑦𝑦�. 

  If 𝑧𝑧 < 𝑧𝑧𝑇𝑇� , 𝑡𝑡′ ← 𝑡̂𝑡 and 𝑧𝑧 ← 𝑧𝑧𝑇𝑇�  
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Step 2: Solve Master Problem for solution 𝑡̂𝑡 with objective 𝑧𝑧𝑌𝑌�  

  𝑧𝑧 ← 𝑧𝑧𝑌𝑌�  

Step 3: If 𝑧𝑧̅ − 𝑧𝑧 >∈ then go to Step 1. 

Step 4: 𝑡𝑡∗ ← 𝑡𝑡′, display 𝑡𝑡∗and stop. 

The accuracy of the algorithm, as in any Benders Decomposition algorithm, 

is based on the following observations [54]. 

1. The subproblem finds an optimal solution against interdictor’s 

decision variable 𝑡̂𝑡. Therefore, 𝑧𝑧𝑡̂𝑡 gives a lower bound for interdictor’s 

objective. The bound is finite because of the budget constraint of the 

interdictor.  
 

2. If the subproblem cannot improve the bounds and lower and upper 

bounds converge to the desired gap, then the algorithm terminates.  
 

3. The satisfied optimality should occur in finite iterations.  
 

4. When 𝑌𝑌�  includes effective hubs, Master problem is equal to MCFPIP. 

Otherwise, when 𝑌𝑌� ⊆ 𝑌𝑌 Master problem is a relaxation of the 

MCFPIP and thus, 𝑧𝑧𝑌𝑌�  is an upper bound on the interdictor’s optimal 

objective value. 

For each iteration of the algorithm, the subproblem finds optimal hubs and 

gives these hubs to the master problem. Penalty costs are added to the cost on the 

hubs to be interdicted in the master problem. Then, subproblem determines new 

hubs from the resulted network after interdiction. These iterations continue until 

upper and lower bounds of master problem match. This final point is the solution 

of NU and NI that is the end of the game. Both players find the balance. At the 

end of the game, NU creates an alternative location plan for hub facilities. 
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If NU implements this alternative plan on the hub-and-spoke network, NI 

may not attack because NU can turn to optimal hub locations to reduce its flow 

cost. However, if NU apply the optimal plan instead of the alternative plan, then 

the network is open to possible attacks because NI may attack this time to increase 

NU’s flow cost.    

Next, Chapter 5 discusses the computations and results of the problem and 

Chapter 6 concludes the thesis.  
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Chapter 5 

 

 

COMPUTATIONS AND RESULTS 
5.1. Penalty Cost Calculation 

Penalty cost calculation is necessary to run MCFPIP correctly. Because the 

master problem will interdict the hubs according to penalty cost and subproblem 

must find this punishment as an incentive not to go through interdicted hubs. In 

the case of miscalculation, the model may give the wrong solution.  

When NI interdicts a hub if NU insists on using the location of this 

interdicted hub, it must build a new hub next to interdicted one and must accept 

as much as twice of the demand weighted cost until flows reach both new and 

interdicted hubs. Therefore, the penalty cost for hub i, (𝑀𝑀𝑖𝑖 , 𝑖𝑖 ∈ 𝐻𝐻), is equal to at 

least transportation cost of all flows coming through hub i from beginning node.  

Take the example network in Figure 5.1. Penalty cost for hub 3 is:  

𝑀𝑀3 = 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ123𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓123 + 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ13𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓13 + 𝛼𝛼(𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ53𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓53 +

𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙ℎ73𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓73)  

 

 

 

Figure 5.1. Penalty Cost of Formulation Example 
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5.2. Computation Results 
For the implementation of the Algorithm 1, we generate a program on Java 

API of CPLEX solver on an Intel 4th generation i5 CPU computer with 6 GB RAM 

and run it on three different data sets that are used in the literature for computation 

benchmarking:  

1-) CAB (Civil Aeronautical Bureau) data set consists of flight passenger 

data over USA airports. It is named after the number of nodes in it, for example, 

CAB25 and CAB50. It also includes flow values. 

2-) AP (Australia Post) includes package flow over Australia network. The 

data set consists of 200 nodes. However, we will use 20 nodes version. Flow 

values are included in the data. 

CAB25 and AP20 data are utilized for the experiments, and the results are 

given in Tables 5.2.1 and 5.2.2, respectively. In the tables, interdictor’s budget 

set, (|T|), discount factor (α), NU’s last hub facilities (Selected Hubs), additional 

cost after interdiction in percentage (Increase), the number of iterations (Cuts 

Count) and solution times (Time) are given.  

Table 5.2.1. MCFPIP computations on CAB-25 data 

Data Set: CAB-25 

p-hub: 5 

α 
Interdicted 

Hubs 

Selected 

Hubs 

Hubs before 

interdiction 

Total Cost-

Interdiction 

Increase 

(%) 

Cuts 

Count 

Time 

(s) 

|T| : 1 

0.3 4 
17, 7, 9, 

12, 14 

17, 4, 7, 12, 

14 
5431050615.0 5,20 6 154 

0.5 12 
17, 4, 

22, 7, 14 

17, 4, 7, 12, 

14 
6572490579.0 3,57 5 175 

0.7 12 
17, 4, 

22, 7, 14 

17, 4, 7, 24, 

12 
7594774146.0 3,40 4 224 

0.9 4 
17, 7, 9, 

12, 14 
1, 17, 4, 7, 12 8269177006.8 2,00 4 426 
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|T| : 2 

0.3 22, 12 
17, 19, 

4, 7, 14 

17, 4, 7, 12, 

14 
5628785655.8 9,03 16 319 

0.5 4, 12 
17, 21, 

6, 22, 14 

17, 4, 7, 12, 

14 
6796520995.0 7,11 13 480 

0.7 4, 12 
17, 19, 

21, 6, 14 

17, 4, 7, 24, 

12 
7792435814.1 5,78 8 471 

0.9 4, 12 
1, 17, 

22, 9, 11 
1, 17, 4, 7, 12 8370050507.2 3,25 11 870 

|T| : 3 

0.3 19, 22, 12 
17, 4, 7, 

8, 14 

17, 4, 7, 12, 

14 
6113339174.0 18,41 37 671 

0.5 19, 22, 12 
17, 4, 7, 

8, 14 

17, 4, 7, 12, 

14 
7068125636.0 11,39 33 953 

0.7 19, 22, 12 
17, 4, 7, 

8, 24 

17, 4, 7, 24, 

12 
7879035950.6 7,28 26 1139 

0.9 19, 22, 12 
1, 17, 4, 

7, 8 
1, 17, 4, 7, 12 8496303481.6 4,80 25 1581 

|T| : 4 

0.3 19,22,8, 12 
17, 4, 7, 

23, 14 

17, 4, 7, 12, 

14 
6442670758.4 24,79 69 1121 

0.5 19,22,8, 12 
17, 4, 7, 

23, 14 

17, 4, 7, 12, 

14 
7428850136.0 17,07 63 1608 

0.7 19,22,8, 12 
17, 4, 7, 

23, 24 

17, 4, 7, 24, 

12 
8222315559.8 11,95 51 1982 

0.9 19,22,8, 12 
1, 17, 4, 

7, 23 
1, 17, 4, 7, 12 8652536352.8 6,73 40 1682 

Tables 5.2.1 and 5.2.2 indicate that when the interdiction budget increases, 

optimal cuts and consequently solution time grows. Since higher budget allows 

NI try different alternatives, the number of iterations increases. Since inner level 

which is the p-hub median problem solution time increases independent from the 

number of iterations. When the discount factor increases, the number of iterations 

decreases and the solution time grows.  



 63   
 
 
 

For the CAB25 network, the most critical hub seems hub facility 12 since it 

is almost in every interdiction set for different discount factors and interdiction 

budget. Hub facilities 4, 7, and 17 are selected after most of the interdiction cases. 

Eventually, they are also optimal facilities without interdiction case. Therefore, 

these hubs must be in the alternative plan of NU. Also, when the discount factor 

is smaller, interdiction damage is higher. It makes sense since when the discount 

factor increases, economies of scale of hub facilities loses economic value.  

 

Table 5.2.2. MCFPIP computations on  AP-20 data 

Data Set: AP-20 
p-hub: 3 

α 
Interdicted 

Hubs 
Selected 

Hubs 
Hubs before 
interdiction 

Total Cost-
Interdiction 

Increase 
(%) 

Cuts 
Count 

Time 
(s) 

|T| : 1 

0.3 7 
18, 20, 

10 
18, 20, 7 700542 1.24 3 245 

0.5 20 
19, 7,  

24 
18, 20, 7 773592 0.82 4 180 

0.7 24 
20, 7,  

14 
19, 7, 24 823178 1.07 3 179 

|T| : 2 

0.3 20, 7 
18, 19,  

4 
18, 20, 7 708966 2.45 6 186 

0.5 20, 7 
17, 4,  

24 
18, 20, 7 784291 2.21 4 198 

0.7 7, 24 
20, 10, 

14 
19, 7, 24 837353 1.70 6 301 

 
For the AP20 network, NU’s hub selection is restricted by 3-node since 

having smaller nodes. Hub facilities 20 and 7 seem most critical hubs of NU. For 

every alternative setting on interdiction budget and discount factor, NI directly 

interdicts hub facilities as in facility interdiction problems. However, it is just an 

issue depending on the example network. For CAB25, interdicted facilities are 

different from primal optimal hubs as seen in Table 5.2.1. 

Next Chapter 6 concludes and discuss the future work of the thesis.  
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Chapter 6 

 

 

CONCLUSION AND DISCUSSION 
The hub-and-spoke structure firstly emerged in the 1970s in the USA for 

package delivery and airline networks, and then companies and governments 

which wanted to expand their supply chains and reduce transportation costs have 

also considered and implemented the hub-and-spoke structure. Since the hub 

located networks have an efficient system approach with flexibility and 

affordability in transport costs and manageability, they have attracted many 

researchers. The motivation of these researchers has been that finding optimal 

location of hub facilities in the network is incredibly profitable thanks to the 

economies of scale principle.  

These studies assume that hub networks are run in the perfect environment. 

However, many natural and intentional disruptions so-called interdiction may 

threat hub networks. These disruptions may make hubs dysfunctional and cause 

immense damage to networks since hubs are a critical infrastructure of the 

networks. Although analysis of these disruptions is of great importance, there are 

a few studies consider hub interdiction problem. Therefore, we try to contribute 

the research area with this thesis. 

This study examines the discrete interdiction of an uncapacitated hub-and-

spoke network. The problem we consider takes the perspectives of two decision 

makers, e.g. a network user (NU) and a network interdictor (NI). The NU wishes 

to minimize transportation cost of service flows across the network by facilitating 

p hub facilities, and the NI attempts to worsen the NU’s objective by disrupting 
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NU’s facilities. We refer to this problem as the Multi-Commodity Flow-based p-

hub Median Interdiction Problem (MCFPIP).  

MCFPIP incorporates the risks of possible interdiction operations in the 

initial design of a hub-and-spoke network system by identifying alternative hub 

location strategies which are both cost-efficient and robust to external disruptions. 

Unlike previous hub interdiction studies, MCFPIP assumes that NI interdicts most 

critical facilities of the network and NU can continue its activities on the resulted 

network after interdiction with p hub facilities.  

MCFPIP is a two-stage game between two players who have different 

objectives. Therefore, we model MCFPIP in a bilevel program which is 

appropriate to model two-stage Stackelberg game. In this interdiction game, NI 

and NU sequentially make decisions in a noncooperative manner. We adopt a 

decomposition algorithm based on Benders Decomposition to solve this bilevel 

program since there is no software on hand for a direct solution of bilevel 

programs. 

Furthermore, we benefit G-MApHMP features to locate hubs of NU in our 

base model of the p-hub median problem. Therefore, MCFPIP can be applied to 

incomplete network structures even if they do not have triangle inequality. Hence, 

it is possible to run it on the cases that would represent network structures in real-

world applications. 

We focus on deterministic interdiction cases. Stochastic versions of the 

problem can work on the probabilistic measure for success probability of both NU 

and NI operations. Instead of discrete interdiction, the continuous case may also 

be studied. Moreover, protection problem can be added as a third stage to our two-

stage interdiction game. 
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