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ABSTRACT
LOW DOSE CT IMAGING FOR CANCER DIAGNOSIS

AND THERAPY

Esra SUMER
M.Sc.
Supervisor: Prof. Dr. Biilent YILMAZ

Co-Supervisor: Assoc. Prof. Dr. isa YILDIRIM
June 2018

Cancer is a common disease among human population and second leading cause
of death. It is well known that diagnosing cancer at early stages is very critical for
increasing success of therapy. There have been different imaging modalities used
in diagnosing and staging of cancer. One of them is computed tomography (CT)
that provides two-dimensional (2D) slices of three-dimensional (3D) object using
the series of projections taken around the object. The main limitations of CT are
radiation dose and low sensitivity to soft tissue. Firstly, fewer projections can be
used to lower dose in CT which causes the reconstruction problem heavily
underdetermined. Former studies proposed iterative reconstruction techniques to
overcome this problem. The significant weakness of these methods is their
computational expensiveness. In the present thesis, this problem is addressed by
developing a computationally efficient filtered back projection (FBP) based
method using total variation (TV) minimization. 2D modified Shepp-Logan
phantom is used for performance evaluations. The superiority of the proposed
method is shown both qualitatively and quantitatively. The second aim of the
thesis is to enhance contrast capability of CT imaging by using novel magnetic
nanoparticles (MNPs) as contrast agents which were fabricated at Mechanical
Engineering Department of Istanbul Technical University. The pixel density
enhancements of CT images induced by five different core types of MNPs in the
agarose gel are analyzed. The results confirm the effectiveness of the MNPs as
contrast media for CT imaging.

Keywords: sparse CT, filtered backprojection, total variation, magnetic
nanoparticles, contrast enhancement.



OZET
KANSER TESHIS VE TEDAVISI ICIN DUSUK DOZDA
BT GORUNTULEME

Esra SUMER
Elektrik ve Bilgisayar Miihendisligi Boliimii Yiiksek Lisans
Tez Yoneticisi: Prof. Dr. Biilent YILMAZ
II. Danisman: Dog. Dr. Isa YILDIRIM
Haziran 2018
Kanser, insanlarda sikga goriilen ve 6liim sebepleri arasinda ikinci sirada olan bir

hastaliktir. Kanserin erken evrelerde teshis edilmesinin tedavinin basarisini
arttirmak i¢in ¢ok kritik oldugu bilinmektedir. Kanserin teshisi ve evresinin
belirlenmesinde farkli goriintiileme yontemleri kullanilir. Bu yontemlerden biri
bilgisayarli tomografi (BT), nesnenin etrafindan alinan iz diigiimleri kullanarak
tic boyutlu (3B) nesnenin iki boyutlu (2B) goriintii dilimlerini saglar. BT nin
temel kisitlar1 radyasyon dozu ve diisiik kontrast duyarliligidir. Oncelikle, BT de
radyasyon dozunu azaltmak i¢in daha az sayida iz diistim alinabilir ki bu durum
geri ¢atma probleminin eksik belirtili olmasina neden olur. Onceki ¢alismalar bu
problemi agmak i¢in yinelemeli geri catma yontemleri nermistir. Bu yontemlerin
en onemli zayifligi, yiiksek hesaplama maliyetidir. Bu sorun toplam degisinti
(Total Variation: TV) en kiigiiklenmesini kullananarak, hesaplama acisindan
verimli filtrelenmis geri projeksiyon (filtered backprojection: FBP) temelli
yontem ile ele alinmistir. 2B modifiye Shepp-Logan fantomu 6nerilen methodun
performans degerlendirmeleri i¢in kullanilmistir. Onerilen ydntemin {istiinliigii
niceliksel ve niteliksel dlgiitlerle gosterilmektedir. Tezin ikinci amaci, Istanbul
Teknik Universitesi Makine Fakiiltesinde iiretilen manyetik nanopartikiillerin
(Magnetic Nanoparticles: MNPs) kontrast maddesi olarak kullanarak BT’nin
kontrast duyarliligini arttirilmasidir. Agaroz jel igindeki bes farkli g¢ekirdekli
manyetik nanopartikiillerden kaynakli piksel yogunlugu artirimlari analiz
edilmistir. Sonuglar manyetik nanopartikiillerin BT i¢in kontrast madde olarak
kullanilabilirligini dogrulamaktadir.

Anahtar kelimeler: seyrek BT, filtrelenmis geri projeksiyon, toplam degisinti,

manyetik nanopartiikiiller, kontrast artirimi.
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Chapter 1

Introduction

In this Chapter, problems of the subject will be briefly reviewed and the

purpose, contributions, and outline of the thesis will be specified.

1.1 Problems

Cancer is a common disease among both men and women population and
its mortality and morbidity rates are very high. Cancer occurs when the cells of
the body start to increase their population unrestrainedly. According to American
Cancer Society, it is estimated that there will be 1,735,350 new cancer patients
and 609,640 deaths from cancer in 2018 in the U.S. As shown in Figure 1.1.1,
cancer was remained the second cause of death from 1975 to 2015 years and
became nearly the same with heart diseases which were top leading causes of
death in the same period.

Cancer diagnosis and treatment process requires accurate imaging in order
to determine the stage of cancer correctly as well as to determine the size and
position of tumorous tissues. Advanced imaging modalities are used for detecting

and monitoring of cancer and they have a major impact on the reduction of



mortality and morbidity rates of cancer. For instance, computed tomography
(CT), digital mammography and tomosynthesis, magnetic resonance imaging
(MRI), positron emission tomography (PET) and their integration with other
modalities are widely performed in all steps of cancer management [1].
Stemming from the development of X-ray by Wilhelm C. Rontgen,
advanced imaging techniques have been developed and enabled more efficient

diagnostic modalities in the medical imaging field.
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Figure 1.1.1 (a) Mortality causes in the U.S. in between 1975 and 2015 years, (b)
percentage of top leading causes of mortality in 2015 in the U.S [2].

The most important one, CT, is a breakthrough for clinical imaging as well
as industrial applications. CT is an imaging modality that provides two-
dimensional (2D) slices of a three-dimensional object using the series of
projections taken from different angles around the object. CT is able to provide
accurate detailed images of body and picture even small abnormal tissue such as
a tumor. Thus, CT is commonly used in many clinical applications such as
diagnosing and monitoring treatment of cancer [3], examination of coronary

artery diseases [4] and imaging trauma [5].

It is well known that the demand for installing CT imaging systems in

hospitals has been increasing worldwide due to the clinical benefits of CT [3].



The statistics support that the scans of CT imaging expanded tremendously during
the quarter of a century in the US as shown in Fig. 1.1.2. The corresponding figure
indicates that there has been a rapid increase in CT scans, because of the CT is
the most useful diagnostic development around the world when compared with
other X-ray modalities such as projectional radiography [6].

Despite its superiority of imaging with short scanning and reconstruction
time, the radiation dose still remains its main limitation. The quality of
reconstructed image directly related to radiation dose [7]. In order to obtain
acceptable quality images, the radiation dose have to be used at a certain value.
However, it is well known that ionizing radiation can lead to harmful
consequences in long-term exposure. The former studies indicated that ionizing
radiation brings about DNA modifications and these permanent changes depend

on the complexity of diversity on DNA [8].
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Figure 1.1.2. Trend in a number of CT scans per year in the US with the number of scans
per person per year [9].
Although CT imaging is ubiquitous for clinical diagnosis, the adverse
outcomes of X-ray are debatable issues [9]. In order to determine the level of
radiation dose, there are several measures, for instance, absorbed dose and

effective dose. The measurement of absorbed dose is gray (Gy) that equals to the



energy per unit mass (1 Gy= J/kg). The commonly used effective dose is referred
for sieverts (Sv) for non-uniform exposures [6]. The measurements are significant
to compare safety level of radiation received from CT with natural background
radiation [10]. As though, the radiation of CT is at a safe level as comparable as
natural radiation, overuse of CT can lead significant issues on human’s health.
Inherently, CT uses high radiation dose when compared with other X-ray imaging
modalities as shown in Figure 1.1.3 [6]. The individual examination can be
associated with small radiation but when taken into account the yearly scans it
becomes a significant number. The prediction of the relation between cancer risks
and radiation is coming from studies that were done with people who were

exposed to atomic bombs in Nagasaki and Hiroshima [11].

Relevant Relevant Organ Dose*
Study Type Organ (mGy or mSv)
Dental radiography Brain 0.005
Posterior—anterior chest radiography Lung 0.01
Lateral chest radiography Lung 0.15
Screening mammography Breast 3
Adult abdominal CT Stomach 10
Barium enema Colon 15
Neonatal abdominal CT Stomach 20

Figure 1.1.3. Different X-ray imaging modalities and their relevant organ doses [6].

In the research field, there exists several reports that indicate the radiation
can be associated with cancer risks. At the beginning of the eighties, Doll and
Peto indicated that 0.5% mortality from cancer in the US was depended on
diagnostic X-ray back then [12]. Gonzalez et al., 2004 showed that in the UK
approximately 0.6% of the cumulative risk of cancer, the percentage equals to
about 700 people annually, to age 75 years can be assignable to medical
diagnostic X-rays [11]. Brenner et al., 2007 states that between 1991 and 1996,

approximately 0.4% of all cancers in the US can be due to radiation of CT



researches [6]. The cancer risk comes from diagnostic X-rays differs according

to the frequency of exposure annually.

In order to lower the annual number of cancer cases originating from X-ray,
either the radiation dose in an examination should be decreased to agreeable level
or frequency of examinations should be reduced [11]. This principle is called ‘As
Low As Reasonably Achievable’ (ALARA) that aims radiation protection for
human health in medical imaging [9].

In CT imaging, there is a trade-off between image quality and radiation
dose. Thus, developing the new strategies for reducing radiation dose without
compromising image quality is a hot topic in the research field. Using advanced
reconstruction algorithms can provide acceptable CT imaging quality from low
dose scans. In order to realize this, there exists numerous studies proposed to
estimate target image from insufficient projection data by limiting the number of

projections without lowering the reconstruction quality [13], [14].

It is well known that CT is able to visualize hard tissues surrounding by soft
tissues successfully due to existing of natural contrast between hard and soft
tissues [15]. However, it is difficult to distinguish accurately different soft tissues
which have similar CT numbers [16]. Therefore, researchers have studied to
overcome this issue. In order to increase the sensitivity of CT imaging, contrast
agents have been developed. According to IMV U.S. Medical Information
Division survey, in 2010 55% of the total CT scans performed with using contrast
agents to improve the sensitivity of imaging results in the U.S. Because of usage
restrictions for traditional contrast agents, researchers have directed to
nanotechnology because of unique properties of nanoparticles. Consequently,
using nanoparticles as the contrast agent is a phenomenon for both clinical and

research areas.



1.2 Aims and Contributions of Thesis

This thesis is motivated by desires to improve low dose CT imaging
reconstruction results and to increase the sensitivity of CT imaging. In order to
realize the first aim, one of the traditional reconstruction-based methods is
developed and its efficiency is investigated using analytical phantom. The second
aim which is the improving sensitivity of CT imaging is executed with under
experimental protocol and analyzing of the results. Both studies show promising

outcomes for CT imaging.

The thesis contributions can be arranged in two main categories:

1. Development of new computationally efficient reconstruction method
using traditional and compressed-sensing based methods for low dose CT
imaging

2. Investigating feasibility of the magnetic nanoparticles as contrast agents

for CT imaging

1.3 Outline of Thesis

Chapter 2 contains fundamentals of X-ray imaging and brief information of
CT, medical background of CT imaging and existing CT reconstruction methods
which are very popular in CT such as filtered backprojection (FBP), algebraic
reconstruction technique (ART) and compressed sensing-based method total
variation (TV) are explained.

Chapter 3 includes related work and relevant CT reconstruction methods

and proposes a new approach that performs low CT image reconstruction



iteratively in an efficient way and the simulation results are provided in this
Chapter.

Chapter 4 consists of background about nanosized contrast agents in CT
Imaging and investigating the usage of novel magnetic nanoparticles as contrast
agents for CT imaging.

Finally, the contributions of the thesis are discussed and future work of the

thesis is given in Chapter 5.



Chapter 2

Background

This Chapter reviews the X-ray imaging, the mathematical basis of CT
imaging and fundamental reconstruction techniques to demonstrate the
capabilities of various techniques and challenges. The detailed theory of two
dimensional (2D) CT reconstruction is well known. Thus, brief information about
underlying mathematics of CT will be given and with the extension of some main

reconstruction methods that will provide base for the proposed method.

2.1 X-ray Imaging

This Section reviews the X-ray imaging in terms of X-ray generation,
interactions of X-ray with matter and brief information about CT scanner. These
are not our focuses to give all detailed information about X-ray and CT, and the

reader is directed to Buzug (2008) for a more detailed explanation.



2.1.1. X-ray Generation

As is mentioned in Chapter 1, CT uses attenuated X-rays that are acquired
around the object at different angles to reconstruct 2D images or 3D volumes of
structures. X-ray radiation was discovered accidentally by Wilhelm Rontgen in
1895 and he received the Nobel Prize due to this invention. After this invention,
the foundations of diagnostic medicine have been devised however production of
X-rays has almost stayed the same. X-ray imaging modalities use vacuum tube to
produce X-rays and the illustration of the typical X-ray tube is given in Figure
2.1.1.1.

X-ray tube

J

Focusing cup and filament

e

W
NS S

Focal spot

Cathode (-)

= X-ray detector

Figure 2.1.1.1 A typical X-ray tube. The basic components of typical X-ray tube are anode
and cathode. The cathode provides the electrons and anode supplies the target material.
When the cathode filament is heated to specified energy, the electrons are accelerated from
cathode to anode in the electric field [17].

The acceleration voltage is chosen in a range between 25kV and 150KV for
medical diagnostics [18]. Since the temperature at the focal point can reach 2600-
2700°C, the anode is rotated at a very high speed in order to avoid melting of the
target. The heat and X-ray radiation are produced by bombarding the target with
high-speed accelerated electrons. Over 99% of input energy is converted into heat
and only approximately 1% of the energy turns into X-ray photons [19]. The X-



ray photons are detected by X-ray detector and intensity of X-ray radiation
depends on the type of target material and the number of electrons hit the target.
The potential difference between the cathode and anode effects the energy level
of X-ray photons.

The electron scattering continues until electrons approximately stay
immobile that means loses all own energy. All X-ray photons provided from the
bombardment of target atoms create continues X-ray spectrum. If the electron

interacts with the target atom and loses all energy acutely, initial kinetic energy

equals to a maximum energy of X-ray photon (minimum wavelength 4_;. ):

1 2 hc
=(my,) =—. (2.1.1.1)
2 ;I'min

As is seen in Figure 2.1.1.2, the peaks of spectrum correspond to
characteristic radiation. If the electrons have sufficient energy, an electron is

ejected from K shell of target material and peaks are labeled as K, and K, which

have high intensities [17]. Moreover, because of self-absorption, the intensity

reduces with the increased anode angle ( #) [18]. Low energy X-rays which have

long wavelength are absorbed more strongly by matter. In practice, suppressing
low energy X-ray photons is necessary because they increase the total radiation
exposure and produce artifacts in reconstructed images [18]. This process is called

beam filtering in practice.
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Figure 2.1.1.2 X-ray spectrum of a tungsten anode illustration for different anode angles.
The spectrum illustrates the continuous radiations at different energy levels and the peaks

Ka and Kﬁ represent the characteristic radiation [18] simulated at 120 kV.
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2.1.2. Interaction of X-ray with Matter

When X-ray photons passing through the matter, they lose their energy
because of absorption and scattering interactions between X-ray beams and
matter. The underlying principle of X-ray imaging is that the determination of
how much X-ray photons are attenuated when they pass through the object. X-ray
attenuation is based on Beer-Lambert law as given below:

1(x)=1, exp(—z LX) (2.1.2.1)

where, l;, 1(x) are X-ray intensities before and after the matter and £, X; are

attenuation coefficients and dimensions of volumes along the X-ray beam. The
calculation of attenuation of X-ray photons by the matter can be modeled by
discrete attenuation coefficients in Figure 2.1.2.1.

To reconstruct the internal structure of an object, the measured attenuation
coefficients that are converted to Hounsfield unit (HU) scale. The HU values of
distilled water, air and bone are 0, -1000 and 1000 HU, respectively. The

transformation formula as follows:

HU = (—(”ﬂswe — Huer )]x1000. (21.22)
/uwater

Figure 2.1.2.1 Attenuation of X-ray beam while passing through the matter which includes

various attenuation coefficients [18].
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2.1.3. Computed Tomography

As discussed earlier, computed tomography is an irreplaceable imaging
technique in clinical applications due to its superior features. It visualizes the
images of internal structures of an object noninvasively. There has been a
numerous number of texts explaining the history, principles, and advances of CT
such as Webb (1990) that explains the classical tomography in details, Buzug
(2008) and Hsieh (2009) give broad information about underlying mathematics
and advances of CT. In this Section, we will focus on the fundamental knowledge
of CT imaging to a certain extent.

When a chest X-ray is taken into account (given in Figure 2.1.3.1), only
certain anatomical structures are observed. The bone structures appear lighter than
soft tissues because they attenuate X-rays more strongly. Moreover, lungs seem
as the darkest regions in the radiograph due to less attenuation of X-ray beams by
air. However, the final 2D image is the result of the 2D projection of a 3D
structure. Thus, a final image obtained from many planes whereas the planes
superimposed on each other and this leads to loss of depth information [20]. Other
problems with conventional radiography that it is not adequate in the way of the
visualization and differentiation of soft tissues. It is insufficient to spatially
resolving soft tissue structures such as blood and lesion details [21].

Figure 2.1.3.1 The X-ray radiograph of chest [21].
CT is a sectional imaging technique offers superior results. Unlike the
conventional X-ray radiography, CT acquires projections from different angles in

12



specified planar slice and reconstruct the 2D images from these measurements.
This solves the plane overlapping problem and CT slice thickness is generally a
few millimeters and resulting images show the body structures in a cross-sectional
manner with lower than 1mm spatial resolution [21]. Despite there is a number
of different CT imaging designs, present thesis confines in classical parallel-beam
CT scanner which is sketched in Figure 2.1.3.3. As can be seen in Figure 2.1.3.3,
the X-ray source generates parallel X-ray beams and parallel projections are
measured by detector simultaneously. After one scan, the gantry is rotated to its
new position and projection data is gathered at this angle.

Later advance models have been developed to reduce the motion artifacts
and the scan time which leads to decreasing the time of data acquisition in early
designs of CT imaging systems. In order to reach improved image quality, the
number of beams was increased. Moreover, the cover angle of beams and detector
arrays were extended to record more measurements at each pulse of the X-ray
tube [19]. A more detailed description of generations of CT scanner can be found
in Hsieh (2009) and Webb (2006).

/ SIEMENS

@) (b)

Figure 2.1.3.2 (a) The CT head image acquired with the GE LightSpeed VCT 2005 [19]
and (b) Siemens SOMATOM Force CT imaging system [22].
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Figure 2.1.3.3 The demonstration of parallel-beam tomography scan. The X-ray flux passes
through the object and the detector is located opposite side to generate projections at
different angles. This procedure continues at many angles until sufficient set of projection
data is obtained [21].

2.2 Mathematical Basis of CT

In this Section, the fundamental terminologies used in present thesis will
be defined. Firstly, the projections will be explained with Radon transformation
that is the key component of CT image reconstruction. The most common image
reconstruction techniques will be surveyed an extension of one of the analytical
reconstruction technique filtered backprojection and it will be the base for the new

reconstruction algorithm.
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2.2.1. Radon Transformation

On 30 April 1917, Austrian mathematician Johann Radon introduced a
mathematical model as a solution for the inverse problem in CT imaging titled as
‘On the Determination of Functions from their Integrals along Certain Manifolds’
[23]. It is a building block of CT image reconstruction and ensuing studies have
emerged from Radon transformation. In 2D parallel-beam geometry, the image is
reconstructed from a set of line integrals that are acquired from parallel aligned
beams at different angles. From now on this thesis, f (X, y) represents the two-
dimensional image to be reconstructed.

Figure 2.2.1.1 illustrates the parallel projection lines passing through the
tissue at a certain projection angle & of the X-ray tube and the detector,
respectively. The spatial distribution of density values of tissue to be

reconstructed are discrete values yet we assume continues.

Figure 2.2.1.1 Illustration of Radon transform in parallel-beam geometry on original and
rotated coordinate systems [19].
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The X-ray intensity values before and after object are |, and | respectively

and attenuation is calculated by Beer-Lambert law as given before. We suppose
that X-ray beam attenuated by the object through the line L. In order to obtain

line integral value of the object function formulated as follows:

[Ty =—|n|l. (2.2.1.1)

L 0

As can be seen in Figure 2.2.1.1, at an angle & the projection value can be

written as:

p(t,0) = T T (f(x,y)o(xcos(8)+ ysin(d) —t)dxdy . (2.2.1.2)

—00 —00

The relation of original patient coordinate (x,y) and rotating coordinate

(t,s) systems are given as follows:

t =(xcos(0) + ysin(6)) (2.2.1.3)

and
s =(—xsin(#) + ysin(0)). (2.2.1.4)

Collected projection data (line integrals) over the angular range () used to
reconstruct the tomographic image and the data are regularized in a two-
dimensional map which is called sinogram [24]. All projections are assembled
vertically in this way and a single projection corresponds to a vertical line in the

sinogram. The illustration of sinogram formation is given in Figure 2.2.1.2.
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Figure 2.2.1.2 (a) The 256 X 256 pixel image was generated in MATLAB. (b) The
sinogram of image simulated using Radon transformation.
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2.2.2. Fourier Slice Theorem

Fourier Slice Theorem is the major component of CT image reconstruction
and the theorem related to the understanding of the mathematical basis of
tomographic imaging [25]. The theorem states that one-dimensional (1D) Fourier

transform (FT) of each projection ( p,(t,8) ) with respect to the radial line equals
to the 2D FT of the image (F(u,v)) at 8. Ultimately, inverse 2D FT can be
calculated from 1D FT of the projections to recover the original image ( f(x,y))

as shown in Figure 2.2.1.3. Each projection gives the access of a slice at a certain
angle in the frequency domain to recover the image accurately. The main steps of

Fourier Slice theorem are given as below:

1) Calculation of 1D FT of each projection respect to a radial line
F(@) +—— p,(D)

2) Construction of 2D Fourier representation of the image from
1D FT of projections
F(uv) «—— FR(a)

3) Calculation of inverse FT to acquire the image function

f(x,y) «—— F(u\v)

The mathematical notation of Fourier slice theorem is denoted as follows:

P, (@)= [ p, (e > dt, (2.2.2.1)
F(u,v) = I j f(x, y)e " dxdy (2.2.2.2)
P,(q) = F(qcos(d),gsin(d)), VgeR, VO eR. (2.2.2.3)
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1D Fourier
Transform

p(t,0) ———> F(0cosh,nsind)
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2D Fourier 0
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|:> F(u,v)

.

(@)

(b)
Figure 2.2.2.1 (a) The demonstration of Fourier slice theorem and (b) sampling pattern in
Fourier space [19].

2.2.3. Simple Backprojection

The Radon transform takes the forward projection of a 2D image ( f(Xx,y))

and places the data into sinogram. In order to recover the 2D object from its
projections, every projection profile is smeared back into spatial space through

the direction of the corresponding ray. This procedure is named ‘backprojection’
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[26]. It is essential for image reconstruction. This process can be formulated by

the following:
f(x,y)= j p,(t)de = j p, (xcos(8) + ysin(8))dé . (2.2.3.1)
0 0

Unfortunately, the process does not recover the desired object instead
generates a blurred version of the image. Because of non-negativity of projection
data, the simple back-projection assigns positive values to the entire 2D image
even to pixels of outside the object [18]. The example of simple backprojection is
given in Figure 2.2.3.1. As can be seen from the figure, the backprojection

produces a blurred result while a high number of projections are used.

(@) (b) (©)
Figure 2.2.3.1 The example of backprojection process: (a) The 256 x 256 synthetic
image, (b) the sinogram of the image, (c) the simple backprojection of the image using
180 projections.

2.2.4. Siddon’s Algorithm

Defining an exact radiological path for CT image reconstruction is necessary.
The reason behind this is to determine the intersection of the ray with voxels when
the X-ray beam passes through the object. In view of the complexity of CT
geometry and a great number of CT data, the determination of weighting
parameters as well as voxel indices are time-consuming and difficult. In order to
overcome these problems, Siddon presented an efficient algorithm to determine
the exact radiological path for 3D CT array in 1985 [27]. The algorithm is
commonly preferred in calculating the ray path of 2D and 3D image
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reconstruction for different studies in medical imaging. Figure 2.2.4.1 illustrates
the intersection of the ray and a 2D image. In this case, the pixels are considered
as the intersection regions of orthogonal sets of equally spaced, parallel lines.
When the corresponding figure is considered, the ray can be represented

parametrically as follows:

X(a)=X,+a(X,-X,),

Y(a)=Y, +a(Y,-Y,), a<[0]] (2.2.4.1)

where, 1 and 2 points entry and exit points of the ray respectively.

1

AN

a . \

Figure 2.2.4.1 The entry and exit points of the ray are @ = &,;,and & = &, respectively.

2

For a 2D CT array of (N, -1 N -1) voxels, the orthogonal sets of equally

spaced, parallel planes can be denoted as:
Xplane(i)= Xplane(1)+(i_1)dx (I :l!"'le)v

(2.2.4.2)
Yplane(j)=Yp|ane(1)+(j_1)dy (j=1,...,Ny),
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where d,and d, represent the distances between X,y planes. Moreover, these
distances exhibit the lengths of sides of pixels. The intersection of the ray with
the sides of array results in the parametric values «;, and «,,, . The formulations

of parametric values as given followings:

If (X,— X,) %0,
a, (1) _ [X plane (1) - Xl] ’
(Xz_ xl)
(2.2.4.3)
_ [xplane(Nx) B Xl]
a,(N,) = :
(Xz_ Xl)

for a,(1),,(N,) similar formulations are written. In (X,— X,) =0 case, the ray

is perpendicular to x axis and denominator of equation (2.2.4.3) will be zero. If

a,and ¢, values undefined, these values can be excluded from all following

expressions. The formulation of «;, and «,, Vvalues are given as:

iy = Max {0, min[ e, (1), e, (N,)], min[ @, (1), &, (N,) |, },
(2.2.4.9)
ey = Min {0, max [, (1), &, (N,) ], max| &, (@), 2, (N,) | },

where min and max functions choose the minimum and maximum values
respectively from their arguments. Only certain intersected planes have these
parametric values in this range («,,;, and «.,, ). The specified range of indices

are given below:

If (X,— X,) >0,

i =N _[Xplane(Nx)_amin(XZ_Xl)_Xl}
min X dX
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X +a,., (X,—X)-X 1
i :1+|: 1 max( 2 l) plane():|.

max ™
If (X,—X,) <0, (2.2.4.5)
i =N _[Xplane(NX)—amax(Xz_Xl)_xl:l
min X ™ |
imax =1+ |:X1 + & pin (Xz(_j Xl) - X olane (]_):I |
X

which are similar formulations for other indices ( j;, ). The range of

jmax

indices (i ) and their corresponding parametric values that indicate

min,lmax, Jmin, J max

the intersections as follows:

If (X,— X,) >0,
{0} = {0 (i) -ors O (i)}

If (X, X,) <0, (2.2.4.6)
(e} = {@, (i s &, (i)}

I:X plane (I) - Xl}
(Xz_ Xl)

dx

where a, (i) = W

:ax(i—1)+[

] using  similar

expressions for {a, }.
Then, the calculated «, and «, values are sorted in the range «;, and .,

. I «a,, equalsor less than «_, , then the ray does not intersect with the array.

min ?

{a)= {amm , merge[{ax},{ay}]am} , (2.2.4.7)

where the last term has the index represents with n as follow:

N = (e —hin +1) + Cinax_ Jnin +D +1. (2.2.4.8)
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The length of pixel intersection I(m) is given below for two intersections

mand m-1:

I(m)=d,, [a(m)-a(m-1)], (m=1,...,n) (2.2.4.9)
dy, =[ (X, = X,)" + (YZ—Yl)ZTI2 . (2.2.4.10)

The pixel [i(m), j(m)] corresponds to the intersection of mand m-1 that

contains midpoint of the intersections. The mathematical formulations of indices

are given as:

(M) =1+ X, + g (X, = X)) = X e @ ]/,

(2.2.4.11)
J(M) =1+ Y, + g (V=) =Yy D ]/
where ¢, is formulated by following:
-1
_[e(m)+a(m-B] (2.2.4.12)

mid 2

Finally, the radiological path d can be written as the following formulation,

d= mzfl(m)p[i(m), ji(m)]= dlzmj[a(m) —a(m-1)]p[i(m), j(m)]. (2.24.13)

2.3 Reconstruction Methods of CT

There exists numerous studies proposed to estimate target image from the
projection data. In order to reconstruct the image from the projections, the

reconstruction methods proposed in the literature can be divided into two major
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groups as analytical methods and iterative methods [28]. In this section, we will
concentrate on algebraic reconstruction technique (ART) and filtered

backprojection (FBP) in particular.
2.3.1. Filtered Backprojection (FBP)

The most commonly used analytical method for CT image reconstruction is
filtered backprojection (FBP). When the computation time is one of main
constraint, the Fourier transform based methods are widely preferred. Thus, FBP
has a practical application in standard imaging modalities due to short
reconstruction time [29]. There is a strong relation between FBP and Fourier Slice
Theorem which was discussed in the former Section. In order to explain the idea
behind FBP, Fourier Slice Theorem should be focused. The 1D FT of every
projection data gives the value of object’s 2D FT along the specified line. Then,
mapping sufficient number of projection data into the Fourier space can construct
2D transform of the object and its simple inversion of Fourier results in a
reconstruction.

As its name refer, FBP consist of two major components as filtering and
backprojection. Firstly, the filtering step works out for the rescaling of each
projection in the frequency domain. Secondly, the backprojection step is
necessary to smear out every filtered projection data into the spatial domain.
Although filtered backprojection has been used in practice commonly, there are
some limitations. The method usually assumes continues projections, unlike real
algorithms, work on discrete data and it requires complete sampling in both
angular and radial coordinates [26]. Image quality is also another problem. It
cannot overcome striking artifacts also cannot hold missing data problems [18].

Firstly, the theory of FBP is presented and derived from Kak and Slaney
(1988) and Hsieh (2009). Taking inverse Fourier transform of a 2D representation

of an object, the function of the object can be written as:

fooy)= [ [ Fuv)e @ dudv. 23.1.1)

—00 —00
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Cartesian coordinate system (u,v) is expressed in the polar coordinate
system (g, #) to define F(u,v) in natural form because each FT of projection data

is located in the polar coordinate system. The substitution can be done as follows,

1=4 c_os(@) : (2.3.1.2)
v =(gsin(6)
and
dudv =qdqdé . (2.3.1.3)

Then the inverse FT of object function in polar coordinate can be written as,

27 ©

f(x,y)= I j F(q, @)e!? 00y qadqd 4. (2.3.1.4)
0 —o

The equation (2.3.1.4) can be divided into two by summing @ from 0° to
180° and 180° to 360° as given below,

f (X, y) — J'J' F(q, e)ejZ;zq(xcosmysinH)qdqd0

. 00 (2.3.1.5)
_+_J'.[ F(q, 9+1800)ejerq(xcos(9+180°)+ysin(¢9+180°))qdqd0

00

In parallel sampling geometry, the formulation can be substituted with

following using the symmetry property:

F(q,0+7)=F(-q,6). (2.3.1.6)
Using (2.3.1.5) and (2.3.1.6) equations, the relationship can be rewritten

as:
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f(x, Y)=J‘“ F(q,0)|q|e"z”qtdq}d9, (2.3.1.7)
0] —o

where t simplified by:
t=xcosf+ysing. (2.3.1.8)

Using Fourier Slice Theorem indicated with equation (2.2.2.3), we can

substitute F(g,8) with P (g,8) and construct the following formulation:

f(xy)= j[ | P(q,9)|q|e12”qtdq}da (2.3.1.9)
0] -
and
S, (t) :[J' Pg(q)|q|e"2”q‘dq}. (2.3.1.10)

The equation (2.3.1.10) illustrates the filtering operation, S,(t) is named

modified or filtered projection. The filtered projections from different angles are

summed to estimate spatial density distribution ( f (X, y)) of a 2D image.

S(t,6)

© xcosO+ysin® <)

Figure 2.3.1.1 The demonstration of backprojection process in FBP reconstruction [19].

As can be seen in Figure 2.3.1.1, xcos@+ ysin@ represents the distance

from the point (x,y) to the line that passes through the center of coordinate
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system. FBP states that the estimated image f(Xx,y) at the location (x,y) is the

summation of every filtered projection data that pass through the same point. The

mathematical formulation is given below,
f(x,y) = [S(xcos0, ysin6)do. (2.3.1.11)
0

The FBP reconstruction is performed by summing FT of every projection
data until whole frequency space is filled. Consequently, center regions are over
enhanced and high-frequency regions are less present. In order to overcome this
problem, every projection can be multiplied by weighting function that has a

lower density in the center region and higher density at the high-frequency region.
The main steps of FBP reconstruction are given as follows:

1) For every projection angle @&, calculation of FT of the
projection:
St,o) — P(a.9)

2) Multiply each P(qg,0) with weighting function (high-pass
filtering) and inverse FT:

|a|P(a,0) —> S(t,0)

3) Backprojection of modified projection data:
S(xcosd,ysingd) — f(Xx,y)

Practical implementation of FBP reconstruction differs from the theory.
Because of real data are discrete and spatially limited, projections are band-

limited in the range between —w and w. The assumption can be written as:

S(t,0) = j P(a,6)|qk'*"*"dq. (2.3.1.12)

-w

To avoid aliasing, the bandwidth should satisfy Nyquist criteria:
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w=i cycles/mm. (2.3.1.13)
2t

The original ramp filter |q| can be multiplied by a window function in

frequency domain.

H (q) =|q|W(a), (2.3.1.14)
where
W(OI)={L g <w _ (2.3.1.15)
0, otherwise.

The impulse response of the ramp filter is given as:

w . - 2
h(t): J‘|qk\j2nqtdq:i(5|n 27Z'Tt) 1 (Sln ﬂft) . (23.1.16)

2\ 2xrt _472 mrt

The frequency representation and impulse response of ramp filter given in
figures 2.3.1.2 and 2.3.1.3.

A H(w)
ideal ramp
filter
(28)”

band-limited

ramp filter ~

Q)]
- (28)” (28)

Figure 2.3.1.2 The demonstration of band-limited ramp filter [19].
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Figure 2.3.1.3 The illustration of the impulse response of ramp filter [19].

As it can be seen in figures 2.3.1.2 and 2.3.1.3, ramp filter suppresses the
blurring coming from the backprojection. Indeed, ramp filter works as a derivative
filter and enhances the edges. In order to reduce amplification of high-frequency
noise present in the image, the window function is used in practice by multiplying
window function with original ramp filter in the frequency domain. Thus, the filter
becomes softer and artifacts present in the image are reduced. However, the
spatial resolution is impaired by smoothing filters. There is always a trade-off
between spatial resolution and noise performance of estimated image.

There have been lots of low-pass filters that are used in CT reconstruction.
To describe a window function formulation, there are two parameters as cut-off
frequency and order of function. The cut-off frequency determines the elimination
level and above this level, the frequency is suppressed. The order of filter
determines the slope of the filter. The most commonly used window functions’
mathematical formulations are given below [30]:

e Hanning filter:

O.5+0.5cos[ﬂ], 0<|al<q,
q

C

I, (q) = , (2.3.1.17)

0, otherwise

where g and q,are spatial and cut-off frequencies respectively.
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e Hamming filter:

0.54+0.46cos(?], 0<l|a|<q,

c

I, (@)= , (2.3.1.18)

0, otherwise

similarly, q and g_are spatial and cut-off frequencies respectively and produces
the smoothest results.

e Shepp-Logan filter:

2Q,

s (q) = [ﬂ(sin |q|7r/2qC] : (2.3.1.19)
The Shepp-Logan filter generates the sharpest image.
e Butterworth filter:
[g(q) = ;, (2.3.1.20)
[1+(@/q,)" ]

where, n is the order of the filter. The filter is able to both preserve the image
resolution and suppress noise due to the capability of changing the cut-off
frequency and order of filter at same time.

The selection of window function and cut-off frequency has a significant
impact on achieving the desired image. Mostly, design details of the filters are
empirical also depend on examination type. The results of different filter functions
are given in Figure 2.3.1.4. As can be seen in the figure, ramp and Shepp-Logan
results are quite similar while background noise is more present in the images.

The Hanning and Hamming low-pass filters provide smoother images. The results

acquired with 90 number of projections and g, =0.5 for all illustrations.
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The interpolation needs to be used in FBP either on filtered projections data
or on estimated images. In backprojection step, the filtered profile is distributed
to closer pixels by using linear or nonlinear interpolations. For ray-driven
backprojection, each ray’s intensity distributed into pixels which are the closest
to the ray. Another way is using pixel-based backprojection which is called pixel-
driven back projection. In this method, the ray which goes through the pixel center
and intersects it with the filtered profile. Usually, the position of intersection does
not correspond to the exact value of the projection. Thus, in order to estimate the
value of filtered projection at the intersection position, interpolation methods
should be used. The illustration of different backprojection methods is given in
Figure 2.3.1.6. The simple forms of interpolation are preferred as nearest neighbor
or linear to reduce computational load. To improve the accuracy of interpolation

advanced forms can be used such as cubic or spline interpolation methods.

Ramp
045 |- --- Shepp Logan
"""" Hamming
041 Hanning
Butterworth (n=2)

Amplitude
[=J
[o*]
tn

0= s . s s s s . | i i
0 005 01 015 02 025 03 035 04 045 05
Frequency

Figure 2.3.1.4 The illustration of ramp and window functions for cut-off frequency

0. =0.5and order n=2.,
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Figure 2.3.1.5 (a) The visualization of true image, (b) simple backprojection, (c) ramp,
(d) Shepp-Logan window, (e) Hamming window and (f) Hanning window results.
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Figure 2.3.1.6 (@) The demonstration of ray-driven and (b) pixel-driven backprojections
[19].

2.3.2. Algebraic Reconstruction Technique (ART)

Iterative reconstruction (IR) methods have been developed in CT image
reconstruction field due to the inefficacy of analytical methods. However, the

computational load of image reconstruction has been increased due to demands
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of high image resolution. Thus, the usage of IR methods is limited in the practical
application of current systems. However, advancements in computation power
lead to IR methods become a hot topic for both clinical and research areas. In
literature, there exists many texts explaining the principles of IR methods in
details such as Herman (1979) and Kak and Slaney (1988). Kak and Slaney
discuss projection and image representation for algebraic methods with visual
explanations also elaborate computer implementations of the algebraic method
and its forms. The typical IR method can be divided into three major steps as
acquiring projections of the object which provides observed raw data. The second
step is to compare observed data with real measured raw data to compute
correction term. In the last step, the error is backprojected to the object. The steps
are illustrated in Figure 2.3.2.1. These three steps are repeated until a certain

convergence criterion is a satisfied or maximum number of iteration is reached.

Input IR loop Output
back
projection
_______________ __:
|
1
compare current :
b image !
o IR 1
measured forward i
raw data E it ;
projection .
1
1
|
1
]
1
initial image final image

Figure 2.3.2.1 lllustration of the typical IR method. The final image can be estimated from
empty or FBP reconstructed initial image [31].

Algebraic reconstruction technique (ART) is the earliest method in the

literature of IR techniques also called as Kaczmarz method originated from its
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inventor [32]. It was primarily used in image reconstruction by Gordon in 1970
[33]. ART is a reconstruction technique which uses the projections that are
provided from different perspectives to estimate the desired object. The
implementation of ART as the same as IR methods scheme (Figure 2.3.2.1). The
idea of ART is to solve linear equations using detector values and the voxel or

pixel contribution to projections. The linear equations are formulated as follows:

Yi=>a X, (2.3.2.1)
j=1

where the number of the ray is represented with i=12,...M,j=12,..,N
represents the number of pixels in the objectand a, ; is weighting parameter which

is computed using Siddon’s algorithm and indicates the intersection of the pixel

with the ith ray. y stands for projection value for certain ray and x represents

the estimated image intensity. The illustration of the intersection of the X-ray
beam and image pixels is given in Figure 2.3.2.2. In order to solve these equations
matrix, inversion-based methods can be used. However, an ill-posed system and
large volumes are taken into account, iterative methods have been proposed to

overcome these issues. The formulation of the method is given as:

N
[yi_zainxll;j
oyl Jg i=12,.,M, j=12..,N, (232.2)
D2

n=1

k+1

where Xx;™ and xf represent the estimated image, previous intensity values and

updated image by adding the correction term which is computed from the

N
difference between measured ray sum (y;) and observed ray sum (Za. X<)

in*m /*
n=1

These computations are repeated until a convergence criterion is satisfied.
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Figure 2.3.2.2 The intersection of X-ray beam and pixels of object. The section of pixel that
intersects with X-ray beam included in system equations as weighting term and calculated
using Siddon’s algorithm [18].

2.4 Compressed Sensing

The Shannon/Nyquist sampling theory states that the sampling frequency
needs to be at least twice as much as the highest frequency present in the signal
to avoid aliasing [34], [35]. In many practical applications, Nyquist rate is very
high such as digital image and video cameras and imaging systems. Thus, the data
acquisition and reconstruction become challenging in real applications.

(CS) overcomes these problems by exploiting the sparsity existing in the
data or by sparsifying it. CS theory on creating an efficient sensing approach that
involves the crucial information inserted in a sparse and small number of data
[36]. Thereby, CS theory is able to reduce the number of data that need to be
stored and computed. By using fewer samples, CS can accurately recover signal
or an image using the sparsity principle. This approach is very useful in imaging
modalities such as MRI and CT. Especially in CT image reconstruction, the main
issue is to estimate an image accurately from insufficient projection data. The
acquisition of data can be formulated by linear equations as follows:

y=AX, 2.4.1)
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where y is the vector of measurements in R™, x is the image to be reconstructed

in R"and Adenotes the mxn system matrix. The CS method enables the
accurate reconstruction from m<n (indicates the underdetermined system)
situation [36] using the advantage of the sparsity of signals.

The entire concept of CS consists of three steps: encoding, sensing and
decoding [37]. In the first step, the image Xis encoded in a small vector by a

system matrix. The second step is to gather a few data y. The third step is to

recover x from y underdetermined measurements. The more realistic solution is
minimizing ¢, norm of the sparse image [38]. Some natural images and signals

are sparse by itself or can be done sparse by taking magnitude of the image’s
gradient [39]. The constraint minimization problem can be expressed as given

below and v is sparsifying operator:

min |y x|, subject to y = Ax. (2.4.2)

2.4.1 Total Variation

The most popular method of CS is total variation (TV) and there exists a
number of variants of TV minimization algorithm in literature. TV has been used
as a regularization term in inverse problems and was proposed by Rudin, Osher,
and Fatemi [40]. TV minimization is frequently used in image processing
applications as an efficient filtering operator.

TV is a numeric value that indicates how much rapid variation occurs
between the neighboring pixel values. High total variation corresponds to the
excrescent details and usually noise present in the image because tomographic
images have generally uniform intensity values in the organ structures and rapid
variations occur at only the edges of structures [14]. In the light of this
information, minimizing TV of the CT image in order to rid of undesired details

while preserving the edges. TV of a 2D image can be defined as follows:
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TV(X) = Zfzj\/((x” ~Xo, ) +H(X,, - xi,j_l)Z) L a1

where X represents an image to be reconstructed and X, represents
intensity value at pixel (i, j) withi={1...,K}, j={1,...,L}. Since the present

Chapter focuses on 2D image reconstruction, Table 2.4.1.1 summarizes the

reconstruction techniques reviewed until here.

i1, i RN R

Figure 2.4.1.1 The illustration of TV formulation on neighbor pixels.

FBP ART TV
Reconstruction time low high medium
Accuracy low medium high
Reconstruction ability ) )
] o low medium high
from insufficient data
Noise sensitivity high medium low

Table 2.4.1.1 Comparison of CT reconstruction methods.
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Chapter 3

Total Variation Regularized Iterative
Filtered Backprojection for Sparse CT

Imaging

3.1 Related Work

The main knowledge of CT image reconstruction can be divided into two
major groups as direct (analytical) and iterative reconstruction techniques.
Despite recent works focus on iterative methods, the commercial CT scanners still
employ one of the analytical method FBP. FBP is a direct approach which is based
on estimating the Fourier Transform (FT) of objects from their projections in the
frequency domain, then obtaining the spatial distribution of the object [41], [42].
Related to the FBP reconstruction methods, the works can be enclosed in two
main topics as exploring new interpolation methods or filtering operators to
increase the accuracy of reconstruction.

In order to eliminate shortcomings of traditional ramp filter, the paper which

is titled as © A Novel Scheme to Design the Filter for CT Reconstruction Using

39



FBP Algorithm’ [43] proposes a novel scheme to create new filters to use in FBP
reconstruction instead of traditional ramp filter. The performance evaluation of
designed filter clearly outperforms to ramp filter. With similar objective, the
article titled ‘Adaptive Filtered Back Projection for Computed Tomography’ [44]
proposes an adaptive linear filter based on 2D kernels as a post-processing step in
image reconstruction. Their aim is to avoid usage of iterative methods due to their
computational burden. Their results show that the adaptive scheme effectively
increases the reconstruction quality. A paper appeared in 2013, ‘Improving
Filtered Backprojection Reconstruction by Data-Dependent Filtering’ [45] gives
an approach for 2D parallel-beam reconstruction problems. The paper introduces
a new approach which is called minimum residual filtered backprojection method
in the paper. The method drives a data dependent filter to minimize the projection
error using the sense of algebraic methods. The results are compared with
algebraic methods and the results similar to the one of algebraic methods which
shorter reconstruction time.

Another study on filter design with regard to interpolation is ‘Filter Design
for Filtered Back Projection Guided by Interpolation Model’ [46] introduces an
approach that combines ramp filtering and spline interpolation into a new filtering
operator. The designed filtering operation is applied to sinogram and improves
the reconstruction quality even at low interpolation degrees which provides faster
reconstruction. In the similar sense, the paper titled ‘Optimal Prefiltering for
Linear Interpolation in Computed Tomography’ [47] aims to illustrate the modern
interpolation models for obtaining more accurate results. Linear interpolation is
widely used in the backprojection step of CT reconstruction because it is able to
provide a balance between computation time and accuracy. In a related paper, a
proper pre-filter is applied to projection data and it increases the accuracy of
current image reconstruction method. The recent study is titled as ‘Optimal
Filtered Backprojection for Fast and Accurate Tomography Reconstruction’ [48]
formulates the optimization scheme for filtering of backprojection and also

connects the optimization of filtering and filtering- backprojection approach.
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The ‘A Novel Iterative CT Reconstruction Approach Based on FBP
Algorithm’ [49] introduces iterative FBP by reducing the difference between
original projection data and reprojection data which is generated by forward
projection of the reconstructed image by FBP. In every iteration, the difference
between original and reprojection data is filtered and smeared back to produce
correction term. The correction term is added to the reconstructed image by FBP.
The simulations support the superiority of proposed method to some IR methods.

As it can be seen there is not a certain step to be optimized but several steps
of FBP process can be improved. Most of the studies relevant to FBP enclosed in
interpolation and denoising steps.

However, the performance of FBP is not sufficient when the projection data
is noisy or limited number of projections are available. In this case, IR methods
have been proceeded to estimate object from projections more accurately since
1970s [50]. One of the earliest iterative method ART solves the linear equations
using sets of measured and observed projections [50]. Applications of varied
forms of ART such as simultaneous algebraic reconstruction (SART) has
provided superior results to traditional ART reconstruction method [51]. Another
type of iterative methods is least squares technique (ILST) that is based on
statistical methods [52]. Because of data insufficiency in low dose CT imaging,
the new approaches have been developed to overcome reconstruction problem
such as TV minimization. Despite TV minimization is proposed by Rudin, Osher,
and Fatemi in 1997, TV has been improved and used in image reconstruction field
as a strong tool. The method has been evaluated for handling data inadequacy,
limited angle and bad bins problems of CT imaging in 2009 [14]. In the early
work of Quinto indicates that boundaries and details of the object are more
accurately recovered through projection directions. Moreover, the artifacts
present only in some certain directions [53]. To address this issue, anisotropic TV
has been introduced in the literature [54], [55]. In their study, it is clearly seen that
edges and artifacts are apparent at specified directions while in other directions

they are less present.
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Another limitation of TV minimization is that it is based on local
neighboring pixels or voxels. Local TV minimization utilizes constant
penalization without considering spatial intensity variations. In order to increase
contrast and accuracy also preserving detailed structures of reconstructed images,
non-local TV minimization (NLTV) has been proposed in the literature [56]-[58].
The NLTV presents a non-local TV minimization operator by considering global
information.

The previous works of both analytical and IR based methods have been
reviewed. The weaknesses and advantages of the reconstruction methods have
been outlined in this Section.

3.2 The Problem Definition

Since the certain range of view angle is missing in sparse CT imaging, the
quality of the image will be affected and degraded. Thus, in sparse tomographic
imaging, the main challenge is to reconstruct images without noticeable limited-
view artifacts arose from the insufficient projection data [14]. Iterative techniques
have been used for improving image quality while diminishing the required
number of projection in CT imaging. However, the significant weakness of IR
techniques is a vast computational burden because of high computational
complexity.

The first contribution of present thesis centers on how to solve an ill-posed
problem in low dose CT imaging by exploiting computational efficient method
FBP and superior features of the TV minimization. The ultimate purpose of the
proposed algorithm is to reconstruct a CT image which is comparable to the
outcome of the IR techniques such as ART [59] while keeping its computational

load as low as being able to use in clinical applications.
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3.3 Application of Proposed Method

Our iterative reconstruction algorithm consists of two major parts as FBP
and TV minimization. The ingredients of FBP and TV minimization methods, as
well as the integration within the CT imaging system, have been discussed in
Chapter 2.

The main component of FBP is 1D filter function. The adjusting parameters
of the filtering step are crucial. In such a way that, determining the window

function [60] and optimizing the cut-off frequency (d. ) are important factors for

reducing noise while keeping the loss of resolution at least [30]. The ramp filter
is applied to the projections before backprojection step to reduce low-frequency
artifacts. However, the main weakness of ramp filtering is amplifying noise as its
gain increases at higher frequencies. In order to suppress high-frequency noise, a
proper window function needs to be used. Because of its success in the literature,
Hamming window function is used in this work [61]. The cut-off frequency of
proposed method is determined by minimizing error based on quality metrics and

optimized for a different number of projections. The illustration of filters at

g, =0.5is showed in Figure 3.3.1 and the form of W(q) determines the

suppressing level of filtering.

However, if the problem is overly underdetermined the FBP lacks of
providing satisfactory outcomes even if it is computationally so efficient. Thus,
exploiting the computationally efficient method FBP and applying TV
minimization to get rid of the blurring and other artifacts existing in the images
reconstructed by the FBP helps to obtaining superior results using the proposed

method. TV minimization has successful applications in limited view angle
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imaging through removing artifacts while preserving boundaries and other fine
details [62].

0.5
045 | Ramp (|q))
42 = = =Hamming filter (W(q))
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Figure 3.3.1 The illustration of ramp and Hamming filters at (, = 05.

TV operator is applied to the FBP reconstructed images in an iterative manner.

The formulation is as follows:

X " =argmin U‘X -x" H; +ATv (X)), ], (3.3.1)
) .

where X represents the estimated image by FBP, A is a constant TV

regularization term and TV (.) is TV minimization operator. TV of the 2D image

can be formulated as 1,-norm of the gradient of the image as:

TV(X)= ZXK Z;\/((Xxvy a Xxflyy)2 +(Xx,y - Xx,yl)z) ’ (332)
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where X represents an image to be reconstructed and X, ; represents intensity
value at the pixel {x,y} with x={1..,K}, y={1..,L}. TV minimization is

utilized using the gradient descent minimization algorithm.

The flow of the method is given in Figure 3.3.2. The projection data are
obtained by the Radon transform. Then, the data are filtered in the frequency
domain using the ramp and Hamming filters to improve the quality of low dose
CT images by removing the high-frequency artifacts. Then, the initial
reconstructed image (the reference image), X°, is obtained by the inversion of
Radon transform. The FBP is used to reconstruct the image (Y*). The updated
image is obtained by X *** = X* + X° —Y* . Finally, TV minimization is applied to
the image X ***. This procedure is repeated until a number of iteration is satisfied.
The pseudo code of given algorithm as below:

Iterative Algorithm of Proposed Method

Input: Load phantom image
Step 1. For each angle acquire projections (forward projection)
Step 2. Compute X° using the FBP
k=0;
Step 3. For each iteration
For each angle

Forward projection of X*
End each angle

Y — Reconstruct image using the FBP from the forward
projection of X*

Compute  X**«—— X + X% Yk

Set A (regularization impact of TV)

X &t e— TV (X"
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Compute quality metric values of X 5™

k=k+1;

End each iteration
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Projection data: p(t,0) of phantom image f(X,Y)

l

Frequency space denoising of p(t,8)
Filtered data: P, (q) =W (q)|a|P(q)

l‘_ Backprojection

Initial estimated image: X°

l

Forward projection of X*: p*(t, &)

l

Frequency space denoising of p*(t,&)
Filtered data: P; () =W (q)|q|P*(a)

l‘— Backprojection

Yk
Update: X** = X*+X°-Yk

l

Apply spatial domain filtering using TV: TV ( X**)

l

XTV

Figure 3.3.2 The flow of the implementation of the proposed method.
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3.3.1 Phantom

In order to investigate the performance of the proposed method, the well-
known 2D Shepp-Logan phantom model is used. The phantom was designed by
Larry Shepp and Benjamin F. Logan for their study [63]. The phantom is a
grayscale image that has one large ellipse which illustrates the brain containing
other smaller ellipses represent structures of the brain. It has been widely used for
testing of image reconstruction algorithms. It consists of ten ellipses and its
parameters are given in Table 3.3.1.1. In the present thesis, the modified Shepp-

Logan phantom is used due to improved contrast and better visual perception.

Ellipse Centre Maj.or y 4 Theta Gray
AXis AXis Level

a (0,0 0.69 0.92 0 2
b (0, —0.0184) 0.6624 0.874 0 —0.98
c (0.22,0) 0.11 0.31 —-18° —0.02
d (—0.22,0) 0.16 0.41 18° —0.02
e (0,0.35) 0.21 0.25 0 0.01
f (0,0.2) 0.046 0.046 0 0.01
g (0,-0.1) 0.046 0.046 0 0.01
h (-0.08,-0.605) |  0.046 0.023 0 0.01
[ (0, -0.605) 0.023 0.023 0 0.01
J (0.06,—0.605) 0.023 0.046 0 0.01

Table 3.3.1.1 The parameters of ellipses that form the Shepp-Logan phantom image.
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Figure 3.3.1.1 The Modified Shepp-Logan phantom image with resolution 256x256.

3.3.2 Image Quality Assessment

In order to examine the accuracy of the implemented algorithm, quantitative
and qualitative measurements are used. The qualitative measurements are based
on visual inspections and do not express a numerical value. Thus, four different
guantitative metrics are used in this study. The quantitative metrics aim to
measure the similarity between the original phantom image and the estimated
image by the proposed algorithm. Root Mean Squared Error (RMSE) is frequently
used in medical imaging to compare the reconstructed image with ground truth
image. Signal to noise ratio (SNR) measures the reconstructed image noise
performance by comparing the estimated image with noise level present in the
reconstructed image. Despite the implementation of these metrics is easy, they
express the real quality of estimated images at some extent. Thus, a contrast to
noise ratio (CNR) and structural similarity (SSIM) are used to validate numerical

results in this study.
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3.3.2.1 Root Mean Squared Error (RMSE)

RMSE value is widely used for measuring the difference between estimated
values by a predictor model and actual values. In medical imaging, RMSE value
gives the accuracy or similarity of two images that are predicted image and
phantom image. In other words, RMSE shows the convergence rate of the

proposed method.

J,
RMSE =\/

where N shows the number of pixels, X,y represent the pixel indices and P and

X

(Px,y - Xx,y)2 I'N ) (3.3.2.1.1)

<

X indicate the original phantom image and reconstructed image, respectively.

3.3.2.2 Signal to Noise Ratio (SNR)

Quantitative analyses also include SNR which expresses power of the signal
and power noise in medical images. SNR usually states in decibels (dB). SNR
gives clues about the noise level of reconstructed images. In our study, the
Frobenius norm of the estimated image is used as indicated with the following

expression:

2

J K

.
J,K‘ » |

\/Xzy: Px,y_xx,y

SNR =10xlog (3.3.2.2.1)
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similar with RMSE, X, y represent the pixel indices and P and X indicate the

original phantom image and reconstructed image, respectively. SNR results

turned out to be an inverse form of RMSE values.
3.3.2.3 Structural Similarity (SSIM)

Despite the easy implementation of SNR and RMSE, they may not give
successful results when the investigating the visual quality of reconstructed
images. For this reason, characteristic of human vision system implementation is
developed in the literature [64].

The structural similarity (SSIM) index is an effective method to measure
the structural similarity between two images. SSIM computes the similarity based

on three features and y local areas that are located in the same regions of images
to be compared. The features are the similarity of luminances (I(p,t)), the
similarity of contrasts (c(p,t)) and similarity of structures (s(p,t)) [65]. The

formulation of the method as follows:

SSIM, (%, y) = (X, y)c(X, Y)s(X, y)
(2,1, +¢,) (20,0, +¢,) (0 +C5) . (33.2.3.1)

(i + 1} +¢)(o? +0s +¢3 ) (0,0, +Cy)

In the formulation x and s, values represent the mean of the intensity of x and
y patches, o, and o indicate the standard deviation of them. The formulation

of ¢, and c, is given below.

c,=(K L) m=12 (3.3.2.3.2)

where L is the dynamic range of the input image (for 8 bits grayscale image L

equals to 255) and K, <1 for k=1,2 are constants. In this work, we employee
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the global structural similarity for the proposed method at last iteration since other
metrics suggest us the proposed method is superior to other reconstruction

methods notably.
3.3.2.4 Contrast to Noise Ratio (CNR)

The noise present in medical images degrades the image quality. In order
to measure that, CNR has been developed similar to SNR and defines the ability
to differentiate the small details in medical images against to noise. CNR values
are computed only for proposed method since other metrics suggest us the
proposed method is superior to classical FBP notably. CNR values are computed

by using the following notation:

CNR=(p, — )/ oy , (3.3.2.4.1)

where the mean intensity of the targeted structure is presented as ,, L, is the

mean intensity of background and o is the standard deviation of background

noise in the ROI. The ROI is framed in a white rectangle with Figure 3.3.2.4.1
below.

Figure 3.3.2.4.1 The illustration of the targeted region to investigate CNR values from
reconstructed images by the proposed method.
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3.4 Simulation Results

The performance of the proposed method is examined using 2D modified
Shepp-Logan phantom in [0-1] dynamic range with 256x256 resolution and all
simulations are performed in MATLAB® 2017a software with Intel Core i7
6500U / 2.5 GHz CPU and 8 GB RAM computer. In the study, the parallel beam
geometry is simulated. The scanning angle is 180° for three different setups with
30, 40 and 60 projections. The simulated projection data is provided by forward
projection of original phantom image without any noise added.

The FBP and TV minimization algorithms have parameters that affect the
performance of proposed method. The cut-off frequency parameter is optimized
separately for each projection setup and fixed to a constant value. The TV
regularization parameter (A) which determines the balance between the level of
noise existing in the estimated image and preserving edges and is fixed to 1 based
on previous knowledge. The interpolation type used in backprojection step is
selected as linear.

The results are analysed both qualitatively and quantitatively. The
parameters used in the simulations are summarized in Table 3.4.1.

As the simulations are performed using insufficient projection data, several
artifacts are observed in the reconstructed images. In order to compare visually
the results of the proposed method with original phantom and BP and FBP
methods, the reconstructed images at the first iteration are given in Fig. 3.4.1 (a).
The FBP is able to estimate only the main features of the phantom as well as some
small details to some extent especially when the number of projections increased.
The proposed method provides improved results even at the smallest number of
projections. As the number of projections is increased, the method provides much
better results by recovering even the tiniest details.

Reconstructed images at the final iteration can be seen in Fig. 3.4.1 (b).

Streaking artifacts in the FBP results is still present while the proposed method
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helps obtain superior results by suppressing background noise and generating
sharper images. Almost all details are fully recovered by the proposed method
when the number of projections is 40 or more. To further analyze the visual
difference between the FBP and the proposed method, vertical and horizontal

profiles of the reconstructed images are drawn in figures 3.4.2. and 3.4.3.

Parameter Value
Resolution 256%256
The motion of X-ray Step-and-Shoot
Projection Geometry Parallel-Beam
Scanning Angle 180°
Number of Projections 30, 40 and 60
Iteration Number 50
TV Regularization 1
Parameter
Window Function Hamming
Cut-off Frequency 0.4,0.6and 1

Table 3.4.1: Simulation parameters of the proposed method.
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Figure 3.4.1 (a) The reconstructed images at the first iteration and (b) at the final
iteration. From left to right column: original image and the reconstructed images by
using BP, FBP and proposed method, respectively. The first row: estimated images by
using 30 projections, the second row: estimated images by using 40 projections, the
third row: estimated images by using 60 projections.
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(c)
Figure 3.4.2 Vertical profile drawn at the 128" column, from 40™ row to 214" row of

the original phantom, reconstructed images by FBP and the proposed method. (a) The
profile using 30 projections, (b) using 40 projections, and (c) using 60 projections.
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Figure 3.4.3 Horizontal profile drawn at the 128™ row, from 40™ column to 214%™
column of the original phantom, reconstructed by the FBP and proposed method. (a)
The profile using 30 projections, (b) using 40 projections, and (c) using 60 projections.
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The horizontal profile is drawn at 128" row, from 40" column to 214"
column and vertical profile is formed using vice versa direction of the horizontal
profile. The FBP shows severe oscillations due to insufficient projection data
whereas the proposed method is able to track nearly the original profiles in both
directions. The oscillations are removed utterly by the proposed method in 60
projections. The intensity profiles of proposed method show sharper transitions in
edge regions also more similar to the true image.

In order to validate results of the visual analysis, the numerical analyses are
performed on outputs of BP, FBP, and the proposed methods. The performance
comparisons are done using RMSE, SNR, CNR and SSIM metrics for each
projection setup. As can be noticed from figures 3.4.4 and 3.4.5, the results of BP
nearly become the same as the results of FBP while the FBP results remain stable
as expected. Starting from this point, thanks to our update step in an iterative
algorithm, BP can generate such results that are comparable with the FBP results.
This is an unexpected outcome because the BP method is free of adjusting filter
parameters such as window function and cut-off frequency.

Clearly, the results of proposed method have the lowest error level and the
highest noise removal ability in regard to RMSE and SNR values respectively.
Beside this, TV-based methods can lead to loss of small details in reconstructed
images. However, our method clearly recovers all details in the reconstructed
images with sufficient robustness against to noise.

CNR and SSIM values are computed only for the proposed method because
of the superiority of RMSE and SNR values of the proposed algorithm. The
reconstructed ROI to calculate CNR values for a different number of projections
are given in Figure 3.4.6.

Moreover, 300% zoomed images of the targeted area which contains fine
details are shown in Fig. 3.4.7 to have a detailed visual investigation of
reconstructed images. As expected, increased number of projections helps to

obtain improved image quality.
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Figure 3.4.4 RMSE values of BP, FBP and proposed method for different projection
setups, (a) RMSE graph of 30 projections, (b) RMSE graph of 40 projections and (c)

RMSE graph of 60 projections.
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Figure 3.4.5 SNR values of the BP, FBP and proposed method for different projection
setups, (a) SNR graph of 30 projections, (b) SNR graph of 40 projections and (c) SNR
graph of 60 projections.
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In clinical practice, having the ability of recovering small details is critical
to detect accurately low-contrast small lesions. The zoomed images clearly show
the ability of the proposed method to recover fine details by removing severe
artifacts due to incomplete projection data.

All numerical analyses for the proposed method in the last iteration are
demonstrated in Table 3.4.2 to quantify the performance of proposed method with
algebraic reconstruction technique [59], [66]. The results validate that the
proposed algorithm is a computationally efficient way to generate images

comparable to the results of ART using insufficient projection data.

Figure 3.4.6 The illustration of targeted regions to investigate CNR values from
reconstructed images by the proposed method using 30, 40 and 60 projections. From
left to right: the targeted structure enframed in the original image and reconstructed
images using 30, 40 and 60 projections respectively.

(@) (b)
(©) (d)

Figure 3.4.7 300% zoom of a region in the original image which has small details. (a)
Original image, (b) reconstructed image of the proposed method by using 30
projections, (c) 40 projections and (d) 60 projections.
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RMSE SNR CNR SSIM

30
o 0.075 11.106 13.896 0.55
Projections
40
o 0.047 16.097 17.228 0.73
Projections
60
0.016 27.428 22.880 0.99

Projections

Table 3.4.2 Numerical results of the proposed method at last iteration.

3.5 Discussion and Outlook

In medical imaging area, lowering radiation dose and producing acceptable
quality images in limited time have been demanded frequently. The aim of this
study relies on the similar idea that obtaining comparable results of ART [59] by
combining the computational efficiency of the FBP and superiority of TV
minimization in sparse CT imaging. The quantitative results are quite
encouraging that the proposed method provides comparable results with the
results of ART when the number of projections exceeds 30. Since the major
problem with ART is its high computational time in contrast to the FBP, we
develop an efficient algorithm for sparse CT imaging.

The method presented in this thesis requires much less time compared to
ART as can be seen from Figure 3.5.1 and the proposed method provides
comparable results, if not better, with ART. For example, the proposed method
for 60 projections provides better results such as 27.4 SNR and 0.016 RMSE
values than ART which gives 20.9 SNR and 0.031 RMSE values using 60
projections. The similarity metric indicates the superiority of the proposed method
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through producing SSIM number of “0.99” whereas ART gives a SSIM value of
“0.94”. All quantitative metrics show consistent results for the proposed method.
The proposed method depends on adjusting three parameters as TV
regularization parameter A, window function, and cut-off frequency. For the
regularization parameter A, an experienced-based constant value is used for all
simulations. The determination of cut-off frequency is highly dependent on
number of projections. When the number of projections increases from 30 to 60,
the cut-off frequency is increased from 0.4 to 1 as expected due to noise is
minimized with the increased projections. The appropriate window function is
varied according to object structure to be scanned.
Although the number of iterations is limited to 50, the trend of numerical

graphs suggests gradually increase the performance of the proposed method.

ART Proposed method

o
+
=
=
=
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£
'_

0.37

30 Projections 40 Projections 60 Projections

Figure 3.5.1 Reconstruction time in minutes for a different number of projections by using
ART and the proposed method.
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Chapter 4

Magnetic Nanoparticles for CT

Imaging as Contrast Agents

4.1 Background

As discussed throughout the present thesis, CT is the most widely used non-
invasive imaging modality in clinal imaging due to striking benefits. The major
components of a typical CT scanner are an X-ray tube and detector array as can
be seen in Figure 4.1.1. While the detector array and X-ray tube are rotated
synchronously around the patient, the intensity of X-ray radiation is reduced. X-
ray beam goes through the object and two main interactions are observed as
scattering and absorption. The detector array records the attenuated X-ray beams

to form projection data from different angles.

~ -

o — -

Figure 4.1.1 The schematic representation of a CT scanner (third generation) [67].
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4.1.1 Principle of Contrast Generation

Since the detailed information about the interaction of X-ray with matter is
given Chapter 2, in this section we just focus on the underlying principle of
contrast generation of CT imaging.

In medical imaging applications, the X-ray tube voltage is in 80-140 kV
range that defines the maximum limit of X-ray photons. The energy of X-ray
photons typically ranges from 20 keV to maximum of X-ray tube voltage (140
keV). Low energy photons below the 20 keV are usually absorbed by body
structures thus they do not reach to the detector. In 20 keVV-140 keV energy range,
there are two main interactions as the photoelectric and Compton effects.

Basically, contrast enhancement in CT imaging is mainly due to the
photoelectric effect. The photoelectric effect defines the situation that the photon
has greater but nearly the same energy with the binding energy of an electron.
Thus, the X-ray photon usually transfers entire energy to K-shell electron and the
electron is ejected then called as photoelectron. The binding energy of human
tissue is very low (approximately 500 eV). Thus, the photoelectron travels a short
distance roughly as long as the dimension of the human cell before totally
attenuated [19]. The strongly bounded electrons lead to more photoelectric
absorption (K-shell). The photoelectric effect is proportional to the atomic
number cubed (Z*) and reduces with increased photon energy ( E*). Therefore,
using high atomic number elements leads great differences in absorption rate of
X-rays and results in contrast enhancement.

The photoelectric effect generates high-quality images at low energy X-rays
since no scattering radiation is observed. The variations in probability of
photoelectric effect underlie the contrast generation between different tissues
[19]. However, it leads to high radiation exposure to patient whereas high-energy
X-rays (Compton effect) results in degradation in contrast. Thereby, there is a
trade-off between image quality and radiation exposure [68]. An adequate
increase in energy of X-ray radiation can increase the contribution of photoelectric

effect by using higher atomic number elements [69]. The difference between mass
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attenuation of X-ray by different materials are given in Figure 4.1.1.1. As can be
seen in the figure, at higher photon energies, the difference of attenuation
coefficients of materials is diminished. Thanks to instinct contrast between bones
and surrounding soft tissues, bone structures are visualized successfully under X-

ray imaging system.

:

—-—- Adipose tissue
— lodine
- - -Gold

—-—- Tantalum

Mass Attenuation Coefficient(cm®/g)
Al

0.1

' 10 ' s '160 1000
Photon Energy (keV)

Figure 4.1.1.1 Mass attenuation coefficients of different materials according to X-ray
energy [16].

The attenuation coefficients of different soft tissues are relatively close to each
also close to the water as can be seen from Figure 4.1.1.2. This is not surprising
because the soft tissues mainly made up of water. lodine has higher attenuation
coefficient than water also soft tissue [19]. In unenhanced X-ray imaging, soft tissues
that have similar attenuation coefficients cannot be distinguished accurately.
Thereby, injecting contrast agents into patient body increases the accuracy of
differentiating the tissues with similar coefficients.

The heavy metals are incorporated in contrast agent to increase CT attenuation
difference between interest tissue and surrounding tissue[70]. Table 4.1.1.1 provides
several heavy elements and their atomic number with K-shell energies. In conclusion,
developing new contrast agents can help to lower the radiation to the patient also

increases the sensitivity of CT imaging.
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Figure 4.1.1.2 The attenuation coefficients of various materials [19].

Element Atomic number K-shell energy
I 53 33.2
Ba 56 37.4
Gd 64 50.2
Tb 65 52.0
Au 79 80.7
Bi 83 90.5

Table 4.1.1.1 Atomic numbers and K-shell energies of several heavy elements [68].

4.2 Related Work

The beginning of contrast agent studies is as early as the development of X-
ray imaging modalities. The high atomic number elements such as iodine, barium,
bromine, and bismuth were used as contrast agents in early stages of studies. For
instance, bismuth was used as a contrast material for the first contrast enhanced

angiography on human cadaver [71]. Water-soluble aromatic iodinated molecules
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are used currently in biomedical investigations such as angiography, urography
and CT imaging [72], [73]. Despite the superior features of iodine-based contrast
agents such as high absorption coefficient, chemical tuneability and inertness
[73], the efficiency of iodinated contrast agents is degraded by several limitations.
For instance, short circulation time of iodine causes rapid clearance of contrast
materials from the body. Secondly, higher doses need to be used due to their low
contrast enhancement capability [15]. Additionally, non-specific biodistribution
of these agents leads to obtaining unclear CT images [16].

To overcome these issues, researchers have started to create new contrast
agent formulations. In recent years, great advances in nanotechnology and
material science have made an important impact on medical imaging area by
developing new generation contrast agents that have ability to overcome many of
challenges mentioned above. These agents have opened up new imaging
applications through their unique properties.

There exists a numerous number of different nanoparticle types in literature
for biomedical investigations and can be divided into two categories as synthetic
and natural nanoparticles. The natural nanoparticles such as lipoproteins, viruses,
and ferritin are advantageous to synthetic ones due to their biocompatibility and
biodegradability [74]. The human-made nanoparticles such as micelles,
liposomes, emulsions, metal nanoparticles, silica etc have been studied widely in
research area [75]-[77].

The size of synthetic nanoparticle contrast agents varies from 1 to 100 nm
and their size can be adjustable in order to reduce renal clearance rate. Gold
nanoparticles have been introduced to medical imaging applications and their
approaches have been investigated widely. Thanks to their high atomic number,
they are excellent to achieve sufficient contrast effect. Additionally, the best range
for imaging gold within 80-100 keV. That range decreases the absorption of X-
ray by both soft and bone tissues which means radiation dose to the patient can be
reduced [78]. A small amount of gold nanoparticle agent administration results in

clear imaging of soft tissues owing to larger attenuation coefficient of gold. The
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toxicity analysis shows that no sign of toxic effect because of inertness of gold
[79].

Bismuth-based nanoparticulate contrast agents have been promising as a
new class of contrast agents. When bismuth is compared with gold, bismuth is
less expensive and ensures higher contrast enhancement effect. However,
fabrication of bismuth-based nanoparticles is difficult [80]. Through the new
developments in nanotechnology and material science, capabilities of
nanoparticle contrast agents to be improved to address limitations of traditional

iodine-based contrast agents.

Sources of contrast and
therapeutics may be
included in the nanoparticle
core, in the coating or be
attached to the coating

Targeting ligand
Nanoparticle core
Nanoparticle coating

Biocompatible polymer

Figure 4.2.1 Typical scheme of a nanoparticle-based contrast agent [75].

In this way, more advanced nanoparticle structures have been introduced to
improve the accuracy of imaging techniques also for adding therapeutic features
to nanoparticle structures. One of the advanced nanosized structure is magnetic
nanoparticles that show magnetic properties and unique physical & chemical
properties under certain conditions. They exhibit biocompatible [81] and low
toxicity [82] properties in biomedical applications. Magnetic nanoparticles can be

divided into three types as ferromagnetic (Fe,0O,), Maghemite (y-Fe,O,) and

paramagnetic. Their fundamental feature is that they can be manipulated under

the proper magnetic field. Thus, they can be used in drug delivery applications.
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Secondly, they have been utilized as contrast agents in MRI imaging. For
instance, one of the most commonly studied magnetic nanoparticle type iron-
oxide based magnetic nanoparticles (SPIONs) has been already used in MRI
imaging as contrast agents to detect tumours accurately [83]. Also, their targeted
drug delivery features have been developed and the results are promising for
transporting the drug to disease centre without harming any surrounding tissue
[84], [85].

Finally, the greatest advantage of magnetic nanoparticles can be associated
with their usage in cancer treatment via hyperthermia. Traditional treatments of
cancer include surgery, chemotherapy, and radiation therapy. These traditional
therapies have some significant side effects to healthy tissue and also they may
lead to tumor recurrence or metastasis since they do not have the capability to rid
of all tumorous tissue utterly from the body. At this point, magnetic nanoparticles
can provide effective treatment while enhancing the safeness of surrounding
healthy tissue. These nanoparticles have potential accumulate and produce
sufficient heating to irregular or deep-seated tumor sites when they are exposed
to AC magnetic field at proper magnetic strength [86]-[90]. Researchers often
use about 100 kHz frequency and 8-16 kA/m magnetic field (H).

However, selecting metal core is a significant factor for reducing health
risks of the patient because of toxic considerations. Therefore, iron and
manganese are favourable magnetic metals for biomedical applications [91].
However, various metals to utilize as the core of magnetic nanoparticle have been
investigated widely.

Previous studies have focused on fabrication of nanoparticle structures and
their tuneable compositions. The superiority of nanoparticles on improving the
image quality of CT has been indicated through their capability of contrast
generation in related papers. According to researchers, the potential of magnetic
nanoparticles from the intrinsic physical and chemical properties offers their

successful utility on drug delivery and cancer treatment.
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4.3 Investigating Contrast Efficacy of Novel

Magnetic Nanoparticles for CT Imaging

The present study is intended to investigate the efficiency of novel magnetic
nanoparticles as contrast agents for CT imaging. In order to realize this, the
experimental setup was designed. In experimental setup, synthetetic CT phantom
was formed using agarose gel since it has been used in similar nanoparticle
studies. Then, the different ferrofluids containing magnetic nanoparticles (MNPSs)
were injected to the agarose gel individually. Agarose is a biphasic viscoelastic
solid and previous experimental studies showed that higher concentration agarose
gels have a structure similar to hard tissue and low concentrations similar to soft
tissue [92] thus it is able to mimic biological tissue [93].

The MNPs were fabricated in Mechanical Engineering Department at
Istanbul Technical University. MNPs were synthesized as super-paramagnetic
NPs (SPIONs) which leads to enable their usage both for contrast enhancement
and hyperthermia applications. The MNPs were synthesized with five different
cores (SrFe, O, BaFe,O, , MnFe O, , MgFe,O ,and Fe,O,).

x=y? Xy Xy y’

4.3.1 Experimental Protocol

The steps of the experiment are given in Figure 4.3.1.1. For every sample
the same amount of nanofluid (0.1 cc) was injected. After preparation of samples,
the coronal CT images were obtained with two different slice thicknesses. Then,
the images were displayed using Radiant and MATLAB programs. In order to
compare pixel index numbers of reference images (without injection of nanofluid)

and different type of MNPs, a pre-processing step was applied.
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Agarose gel was prepared by dispersing 1.5 gr agarose
powder in 75 ml distilled water

\ £

The mixture was heated until agarose powder completly
dissolved using microwave (1.5 minutes)

\ 4

Agarose gel was cooled at room temperature (approximately
25°C for 5 minutes)

\ 4

Nanofluid is mixed softly and 0.1 cc was injected to agarose
gel and blended to have homogenous gel and MNPs mixture

\ 2

The mixture was cooled further at room temperature
(approximately 25°C) until solidification

\ 4

The coronal CT images of samples were acquired with two
different slice thickness (Imm and 2 mm)

Figure 4.3.1.1 The flow of experiment’s steps.

4.3.2 Pre-processing of CT Images

This procedure helped to find the region that includes only agarose gel
combined with nanofluid while getting rid of redundant components existing in
DICOM images. A result of the pre-processing step is provided in Figure 4.3.2.1.
Firstly, each individual image was converted into grayscale. Then, morphological
opening operations were applied with the proper structural element to remove
protrusions and other redundant components in the images. Morphological
operations such as opening and closing are commonly performed in image

processing field for noise suppressing, smoothing and filling gaps purposes [94].
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Then, the result of morphological operation image was converted into a binary
image using proper threshold. The threshold was calculated by using well-known
Otsu’s global thresholding method [94]. Finally, original DICOM images were
multiplied by their binary image to have pure agarose gel and nanofluid mixture

region.

Figure 4.3.2.1 (a) The main steps of pre-processing beginning with original DICOM
image, (b) generated binary image after morphological and thresholding operations
and (c) pre-processed image.

4.3.3 Results

In this study, we aim to evaluate the utility of different type MNPs as
contrast agents for CT imaging. In order to execute this, the mean pixel intensity

values and horizontal pixel intensity profiles were calculated. The total slice
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numbers and slices used in the calculation of mean pixel intensity value are
provided in Table 4.3.3.1.

The result of mean pixel intensity values is given in Figure 4.3.3.1. The
results confirm that adding nanoparticles in agarose gel increases the pixel index
number and the MNPs appears brighter in the CT images. According to mean
intensity values, Mn and Mg NPs have better X-ray attenuation property and Sr
is the second, then respectively Ba and Fe NPs. As expected, the mean intensity

value of reference is the lowest while close to Fe NPs.

Total Slices used in
Samples  number of  calculation of mean
slices pixel intensity values
Reference 39 15 16, 17
Ba 47 23,24, 25
Fo 35 16,17, 18
Mg 39 19, 20, 21
Mn 47 23,24, 25
Sr 38 18, 19, 20

Table 4.3.3.1: The total slice numbers and the slices used in the calculation of mean

intensity value.

Figure 4.3.3.2 illustrates the effect of nanoparticle-fluid on pixel index
number along with the horizontal direction at middle same row. The lines of
profiles permit to understand how the nanoparticle type affects the pixel index
numbers at same slice and at the same row. Despite the same volume of nanofluid
was used in each specimen, the horizontal profiles and mean intensity values are
quite different. As is seen in the figure, after injection nanofluid the pixel intensity
values are increased. The superiority of Sr and Ba NPs are validated against Fe

NPs due to their higher pixel index number enhancement. Surprisingly, the
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increment of pixel numbers using Fe nanofluid is not as well as other types of NPs

while Fe based NPs are commercially used in clinical applications.
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Types of MNPs

Mean pixel intensity values

Figure 4.3.3.1 The mean intensity values of the different samples.

Figure 4.3.3.3 illustrates the greatest contrast enhancement of both Mg and
Mn-based nanofluids in pixel numbers. Additionally, the profile lines of Mg and
Mn are compared with Fe to approve the strongest contrast enhancement

capability of both Mg and Mn NPs against to commercially used Fe-core NPs.
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Figure 4.3.3.2 Horizontal intensity profile comparisons at central slice in between
reference and (a) Ba MNPs, (b) Fe MNPs, (c) Sr MNPs at central slice.
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Figure 4.3.3.3 Horizontal intensity profile comparisons at central slice in between
reference and (a) Mg MNPs, (b) Mn MNPs, (c) Fe, Mg, Mn MNPs at central slice.
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4.3.4 Discussion and Outlook

As is discussed in this Chapter, there have been great advances in
nanoparticle contrast agents for CT imaging in recent years. The fascinating
features of nanoparticle contrast agents against to traditional molecular contrast
agents permit to improve accuracy of CT imaging. Moreover, specific forms of
NPs have been developed such as magnetic-core based nanoparticles recently.
With current advancements, MNPs have been utilized as “theranostics” by
combining their usage in cancer diagnosis and hyperthermia.

The study attempts to shed light improving CT sensitivity and imaging
accuracy using novel MNPs contrast agents. Under the experimental setup as
described in the present Chapter, the MNPs are investigated as contrast agents for
CT imaging. Since the contrast effect is usually associated with HU numbers for
CT imaging, we expect increment on pixel index numbers after injection of the
novel MNPs to the agarose gel. The MNPs contrast agents show high X-ray
absorption by increasing HU numbers and their performances are superior to Fe
NPs which are commercially used. It is found that Mn and Mg cores have
superiority in all comparisons. Although the reason behind performance
differences of five different core types cannot be explained completely, the MNPs
can be suitable choices for more detailed CT images to increase diagnosing
accuracy.

However, a few MNPs formulations approved by FDA due to
biocompatibility and considerations of possible side effects that can be observed
from the administration of MNPs to patient. Since detailed knowledge about
degradation, toxic and metabolism process of heavy metals in the human body are
not well known, intensive assessment of these procedures is needed.

As the limitations of MNPs contrast agents are addressed, nano-scale
contrast agents will be a key component in the field of improving diagnostic
imaging capabilities by incorporating active and passive targeting methods.
Moreover, their unique properties under proper magnetic field push the MNPs

into cancer treatment applications.
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Chapter 5

Conclusion and Future Work

In this dissertation, we aimed to improve CT image quality by developing
new reconstruction algorithm and increasing the contrast sensitivity of CT
imaging system using the novel contrast agents in order to diagnose cancerous
tissues more accurately with acceptable radiation dose.

Indeed, there is a trade-off between the image quality and radiation dose.
The current CT systems employ traditional FBP that has the ability to reconstruct
images at sufficient quality using a high number of projections. However, the high
radiation exposure may result in cancer in long-term. Thus, the advanced methods
need to be developed to overcome data insufficiency problems. Most of the
researchers have been suppressing the image quality degradation by using
iterative methods. Iterative methods estimate the image through generating the
projection data from the estimated image and comparing it with real projection
data. Then, the error term is back propagated to the previous estimated image. The
practical application of iterative methods is restricted because of high
computation complexity of these methods.

The first contribution of the present thesis is the proposed algorithm for
increasing the quality of reconstructed images by using FBP based method to
decrease required computation time. However, the major problem in low dose CT
imaging is data incompleteness thus FBP significantly degrade image quality. In
this case, TV minimization is able to suppress several artifacts arose from a

limited number of projections while preserving boundaries of objects in the
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image. The developed method combines striking features of these two methods as
powerful reconstruction algorithm in order to solve data insufficiency and time
limitation problems. The performance of the proposed method was investigated
using well known 2D Modified Shepp-Logan phantom. The visual comparisons
such as horizontal and vertical profiles have been used. We also informed four
quality metrics as RMSE, SNR, CNR, and SSIM to measure numerically the
accuracy of the proposed method. The results indicate the superiority of the
proposed method against to traditional FBP. Moreover, the outputs of the
proposed method are comparable with ART [59] whereas the proposed method
reduces computation time greatly. Since FBP is still used in commercial CT
scanners, our proposed algorithm can be applied to practice.

The selection of FBP reconstruction parameters has a significant impact on
the image quality. The development of adaptive selection of parameters will be
one of the future work. The other future work is to test our algorithm with real
phantoms.

The second contribution of the thesis centers on approving the usage of
novel MNPs as contrast agents for CT imaging. The use of contrast agents in CT
imaging has been increased due to inability to differentiate soft tissues from
surrounding tissue accurately. This limits the diagnosing accuracy of CT imaging
system. Thus, administration of contrast media to enhance the contrast of CT
images can help to have more detailed images. In accordance with this purpose,
we investigated the contrast efficiency of novel MNPs for CT imaging. MNPs
have been studied widely in biomedical applications due to their unique physical
and chemical properties. In addition to their superior features against to traditional
iodine-based contrast agents, they have therapeutic characteristics.

In order to examine contrast ability of the five different core types MNPs,
the experimental protocol was designed. The results of image processing steps
indicate the superiority of Mg and Mn magnetic core NPs against to Sr, Ba, and
Fe respectively.

Since the MNPs have a theranostic characteristic, they can produce

acceptable heating to the cancerous site to remove a tumor utterly from the body
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without any damage to surrounding healthy tissues. The utilizing MNPs for

hyperthermia will be another future direction of this study.
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