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ABSTRACT 

LOW DOSE CT IMAGING FOR CANCER DIAGNOSIS 

AND THERAPY 

Esra SÜMER 

M.Sc.  

Supervisor: Prof. Dr. Bülent YILMAZ 

Co-Supervisor: Assoc. Prof. Dr.  İsa YILDIRIM 

June 2018 

 

Cancer is a common disease among human population and second leading cause 

of death. It is well known that diagnosing cancer at early stages is very critical for 

increasing success of therapy. There have been different imaging modalities used 

in diagnosing and staging of cancer. One of them is computed tomography (CT) 

that provides two-dimensional (2D) slices of three-dimensional (3D) object using 

the series of projections taken around the object. The main limitations of CT are 

radiation dose and low sensitivity to soft tissue. Firstly, fewer projections can be 

used to lower dose in CT which causes the reconstruction problem heavily 

underdetermined. Former studies proposed iterative reconstruction techniques to 

overcome this problem. The significant weakness of these methods is their 

computational expensiveness. In the present thesis, this problem is addressed by 

developing a computationally efficient filtered back projection (FBP) based 

method using total variation (TV) minimization. 2D modified Shepp-Logan 

phantom is used for performance evaluations. The superiority of the proposed 

method is shown both qualitatively and quantitatively. The second aim of the 

thesis is to enhance contrast capability of CT imaging by using novel magnetic 

nanoparticles (MNPs) as contrast agents which were fabricated at Mechanical 

Engineering Department of Istanbul Technical University. The pixel density 

enhancements of CT images induced by five different core types of MNPs in the 

agarose gel are analyzed. The results confirm the effectiveness of the MNPs as 

contrast media for CT imaging.  

Keywords: sparse CT, filtered backprojection, total variation, magnetic 

nanoparticles, contrast enhancement. 
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ÖZET 

KANSER TEŞHİS VE TEDAVİSİ İÇİN DÜŞÜK DOZDA 

BT GÖRÜNTÜLEME 

Esra SÜMER 

 Elektrik ve Bilgisayar Mühendisliği Bölümü Yüksek Lisans 

Tez Yöneticisi:  Prof. Dr. Bülent YILMAZ 

Ⅱ. Danışman: Doç. Dr. İsa YILDIRIM 

Haziran 2018 

Kanser, insanlarda sıkça görülen ve ölüm sebepleri arasında ikinci sırada olan bir 

hastalıktır. Kanserin erken evrelerde teşhis edilmesinin tedavinin başarısını 

arttırmak için çok kritik olduğu bilinmektedir. Kanserin teşhisi ve evresinin 

belirlenmesinde farklı görüntüleme yöntemleri kullanılır. Bu yöntemlerden biri 

bilgisayarlı tomografi (BT), nesnenin etrafından alınan iz düşümleri kullanarak 

üç boyutlu (3B) nesnenin iki boyutlu (2B) görüntü dilimlerini sağlar. BT’nin 

temel kısıtları radyasyon dozu ve düşük kontrast duyarlılığıdır. Öncelikle, BT’de 

radyasyon dozunu azaltmak için daha az sayıda iz düşüm  alınabilir ki bu durum 

geri çatma probleminin eksik belirtili olmasına neden olur. Önceki çalışmalar bu 

problemi aşmak için yinelemeli geri çatma yöntemleri önermiştir. Bu yöntemlerin 

en önemli zayıflığı, yüksek hesaplama maliyetidir.  Bu sorun toplam değişinti 

(Total Variation: TV) en küçüklenmesini kullananarak, hesaplama açısından 

verimli filtrelenmiş geri projeksiyon (filtered backprojection: FBP) temelli 

yöntem ile ele alınmıştır. 2B modifiye Shepp-Logan fantomu önerilen methodun 

performans değerlendirmeleri için kullanılmıştır. Önerilen yöntemin üstünlüğü 

niceliksel ve niteliksel ölçütlerle gösterilmektedir. Tezin ikinci amacı, İstanbul 

Teknik Üniversitesi Makine Fakültesinde üretilen manyetik nanopartiküllerin 

(Magnetic Nanoparticles: MNPs)  kontrast maddesi olarak kullanarak BT’nin 

kontrast duyarlılığını arttırılmasıdır. Agaroz jel içindeki beş farklı çekirdekli 

manyetik nanopartiküllerden kaynaklı piksel yoğunluğu artırımları analiz 

edilmiştir. Sonuçlar manyetik nanopartiküllerin BT için kontrast madde olarak 

kullanılabilirliğini doğrulamaktadır.  

Anahtar kelimeler: seyrek BT, filtrelenmiş geri projeksiyon, toplam değişinti, 

manyetik nanopartüküller, kontrast artırımı.  
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Chapter 1  

 

 

Introduction 

 

 

 

In this Chapter, problems of the subject will be briefly reviewed and the 

purpose, contributions, and outline of the thesis will be specified.   

 

1.1 Problems 

 

Cancer is a common disease among both men and women population and 

its mortality and morbidity rates are very high. Cancer occurs when the cells of 

the body start to increase their population unrestrainedly. According to American 

Cancer Society, it is estimated that there will be 1,735,350 new cancer patients 

and 609,640 deaths from cancer in 2018 in the U.S. As shown in Figure 1.1.1, 

cancer was remained the second cause of death from 1975 to 2015 years and 

became nearly the same with heart diseases which were top leading causes of 

death in the same period.  

Cancer diagnosis and treatment process requires accurate imaging in order 

to determine the stage of cancer correctly as well as to determine the size and 

position of tumorous tissues. Advanced imaging modalities are used for detecting 

and monitoring of cancer and they have a major impact on the reduction of 
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mortality and morbidity rates of cancer. For instance, computed tomography 

(CT), digital mammography and tomosynthesis, magnetic resonance imaging 

(MRI), positron emission tomography (PET) and their integration with other 

modalities are widely performed in all steps of cancer management [1].  

Stemming from the development of X-ray by Wilhelm C. Rontgen, 

advanced imaging techniques have been developed and enabled more efficient 

diagnostic modalities in the medical imaging field.  

Figure 1.1.1 (a) Mortality causes in the U.S.  in between 1975 and 2015 years, (b) 

percentage of top leading causes of mortality in 2015 in the U.S [2]. 

 

The most important one, CT, is a breakthrough for clinical imaging as well 

as industrial applications. CT is an imaging modality that provides two-

dimensional (2D) slices of a three-dimensional object using the series of 

projections taken from different angles around the object. CT is able to provide 

accurate detailed images of body and picture even small abnormal tissue such as 

a tumor. Thus, CT is commonly used in many clinical applications such as 

diagnosing and monitoring treatment of cancer [3], examination of coronary 

artery diseases [4] and imaging trauma [5].  

It is well known that the demand for installing CT imaging systems in 

hospitals has been increasing worldwide due to the clinical benefits of CT [3]. 

 
(a)                                                                         (b) 
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The statistics support that the scans of CT imaging expanded tremendously during 

the quarter of a century in the US as shown in Fig. 1.1.2. The corresponding figure 

indicates that there has been a rapid increase in CT scans, because of the CT is 

the most useful diagnostic development around the world when compared with 

other X-ray modalities such as projectional radiography [6].  

Despite its superiority of imaging with short scanning and reconstruction 

time, the radiation dose still remains its main limitation. The quality of 

reconstructed image directly related to radiation dose [7]. In order to obtain 

acceptable quality images, the radiation dose have to be used at a certain value.  

However, it is well known that ionizing radiation can lead to harmful 

consequences in long-term exposure. The former studies indicated that ionizing 

radiation brings about DNA modifications and these permanent changes depend 

on the complexity of diversity on DNA [8].  

 

Figure 1.1.2. Trend in a number of CT scans per year in the US with the number of scans 

per person per year [9]. 

Although CT imaging is ubiquitous for clinical diagnosis, the adverse 

outcomes of X-ray are debatable issues [9]. In order to determine the level of 

radiation dose, there are several measures, for instance, absorbed dose and 

effective dose. The measurement of absorbed dose is gray (Gy)  that equals to the 
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energy per unit mass (1 Gy= J/kg). The commonly used effective dose is referred 

for sieverts (Sv) for non-uniform exposures [6]. The measurements are significant 

to compare safety level of radiation received from CT with natural background 

radiation [10]. As though, the radiation of CT is at a safe level as comparable as 

natural radiation,  overuse of CT can lead significant issues on human’s health. 

Inherently, CT uses high radiation dose when compared with other X-ray imaging 

modalities as shown in Figure 1.1.3 [6]. The individual examination can be 

associated with small radiation but when taken into account the yearly scans it 

becomes a significant number. The prediction of the relation between cancer risks 

and radiation is coming from studies that were done with people who were 

exposed to atomic bombs in Nagasaki and Hiroshima [11]. 

  

Figure 1.1.3. Different X-ray imaging modalities and their relevant organ doses [6]. 

In the research field, there exists several reports that indicate the radiation 

can be associated with cancer risks. At the beginning of the eighties, Doll and 

Peto indicated that 0.5% mortality from cancer in the US was depended on 

diagnostic X-ray back then [12]. Gonzalez et al., 2004 showed that in the UK 

approximately 0.6% of the cumulative risk of cancer, the percentage equals to 

about 700 people annually, to age 75 years can be assignable to medical 

diagnostic X-rays [11].  Brenner et al., 2007 states that between 1991 and 1996, 

approximately 0.4% of all cancers in the US can be due to radiation of CT 
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researches [6].  The cancer risk comes from diagnostic X-rays differs according 

to the frequency of exposure annually.  

In order to lower the annual number of cancer cases originating from X-ray, 

either the radiation dose in an examination should be decreased to agreeable level 

or frequency of examinations should be reduced [11]. This principle is called ‘As 

Low As Reasonably Achievable’ (ALARA) that aims radiation protection for 

human health in medical imaging [9].  

In CT imaging, there is a trade-off between image quality and radiation 

dose. Thus, developing the new strategies for reducing radiation dose without 

compromising image quality is a hot topic in the research field. Using advanced 

reconstruction algorithms can provide acceptable CT imaging quality from low 

dose scans. In order to realize this, there exists numerous studies proposed to 

estimate target image from insufficient projection data by limiting the number of 

projections without lowering the reconstruction quality [13], [14].  

It is well known that CT is able to visualize hard tissues surrounding by soft 

tissues successfully due to existing of natural contrast between hard and soft 

tissues [15].  However, it is difficult to distinguish accurately different soft tissues 

which have similar CT numbers [16]. Therefore, researchers have studied to 

overcome this issue.  In order to increase the sensitivity of CT imaging, contrast 

agents have been developed. According to IMV U.S. Medical Information 

Division survey, in 2010 55% of the total CT scans performed with using contrast 

agents to improve the sensitivity of imaging results in the U.S. Because of usage 

restrictions for traditional contrast agents, researchers have directed to 

nanotechnology because of unique properties of nanoparticles. Consequently, 

using nanoparticles as the contrast agent is a phenomenon for both clinical and 

research areas.  
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1.2 Aims and Contributions of Thesis  

 

 

This thesis is motivated by desires to improve low dose CT imaging 

reconstruction results and to increase the sensitivity of CT imaging. In order to 

realize the first aim, one of the traditional reconstruction-based methods is 

developed and its efficiency is investigated using analytical phantom. The second 

aim which is the improving sensitivity of CT imaging is executed with under 

experimental protocol and analyzing of the results. Both studies show promising 

outcomes for CT imaging.  

 

The thesis contributions can be arranged in two main categories: 

1. Development of new computationally efficient reconstruction method 

using traditional and compressed-sensing based methods for low dose CT 

imaging  

2. Investigating feasibility of the magnetic nanoparticles as contrast agents 

for CT imaging  

 

1.3 Outline of Thesis  

 

 

Chapter 2 contains fundamentals of X-ray imaging and brief information of 

CT, medical background of CT imaging and existing CT reconstruction methods 

which are very popular in CT such as filtered backprojection (FBP), algebraic 

reconstruction technique (ART) and compressed sensing-based method total 

variation (TV) are explained.  

Chapter 3 includes related work and relevant CT reconstruction methods 

and proposes a new approach that performs low CT image reconstruction 
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iteratively in an efficient way and the simulation results are provided in this 

Chapter.  

Chapter 4 consists of background about nanosized contrast agents in CT 

imaging and investigating the usage of novel magnetic nanoparticles as contrast 

agents for CT imaging.  

Finally, the contributions of the thesis are discussed and future work of the 

thesis is given in Chapter 5. 
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Chapter 2 

 

Background 

 

 

 

This Chapter reviews the X-ray imaging, the mathematical basis of CT 

imaging and fundamental reconstruction techniques to demonstrate the 

capabilities of various techniques and challenges. The detailed theory of two 

dimensional (2D) CT reconstruction is well known. Thus, brief information about 

underlying mathematics of CT will be given and with the extension of some main 

reconstruction methods that will provide base for the proposed method. 

 

 

2.1 X-ray Imaging 

 

 

This Section reviews the X-ray imaging in terms of X-ray generation, 

interactions of X-ray with matter and brief information about CT scanner. These 

are not our focuses to give all detailed information about X-ray and CT, and the 

reader is directed to Buzug (2008) for a more detailed explanation. 
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2.1.1. X-ray Generation 

 

As is mentioned in Chapter 1, CT uses attenuated X-rays that are acquired 

around the object at different angles to reconstruct 2D images or 3D volumes of 

structures. X-ray radiation was discovered accidentally by Wilhelm Röntgen in 

1895 and he received the Nobel Prize due to this invention. After this invention, 

the foundations of diagnostic medicine have been devised however production of 

X-rays has almost stayed the same. X-ray imaging modalities use vacuum tube to 

produce X-rays and the illustration of the typical X-ray tube is given in Figure 

2.1.1.1. 

 

 
Figure 2.1.1.1 A typical X-ray tube. The basic components of typical X-ray tube are anode 

and cathode. The cathode provides the electrons and anode supplies the target material. 

When the cathode filament is heated to specified energy, the electrons are accelerated from 

cathode to anode in the electric field [17]. 
 

The acceleration voltage is chosen in a range between 25kV and 150kV for 

medical diagnostics [18]. Since the temperature at the focal point can reach 2600-

2700°C, the anode is rotated at a very high speed in order to avoid melting of the 

target. The heat and X-ray radiation are produced by bombarding the target with 

high-speed accelerated electrons. Over 99% of input energy is converted into heat 

and only approximately 1% of the energy turns into X-ray photons [19].  The X-
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ray photons are detected by X-ray detector and intensity of X-ray radiation 

depends on the type of target material and the number of electrons hit the target. 

The potential difference between the cathode and anode effects the energy level 

of X-ray photons.   

The electron scattering continues until electrons approximately stay 

immobile that means loses all own energy. All X-ray photons provided from the 

bombardment of target atoms create continues X-ray spectrum. If the electron 

interacts with the target atom and loses all energy acutely, initial kinetic energy 

equals to a maximum energy of X-ray photon (minimum wavelength min ): 

                                                  ( )
2

min

1

2
e e

hc
m v


= .                                        (2.1.1.1) 

As is seen in Figure 2.1.1.2, the peaks of spectrum correspond to 

characteristic radiation. If the electrons have sufficient energy, an electron is 

ejected from K shell of target material and peaks are labeled as K and K  which 

have high intensities [17]. Moreover, because of self-absorption, the intensity 

reduces with the increased anode angle (  ) [18].  Low energy X-rays which have 

long wavelength are absorbed more strongly by matter. In practice,  suppressing 

low energy X-ray photons is necessary because they increase the total radiation 

exposure and produce artifacts in reconstructed images [18]. This process is called 

beam filtering in practice. 

 

Figure 2.1.1.2 X-ray spectrum of a tungsten anode illustration for different anode angles. 

The spectrum illustrates the continuous radiations at different energy levels and the peaks 

K and K  represent the characteristic radiation [18] simulated at 120 kV. 
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2.1.2. Interaction of X-ray with Matter  

 

When X-ray photons passing through the matter, they lose their energy 

because of absorption and scattering interactions between X-ray beams and 

matter. The underlying principle of X-ray imaging is that the determination of 

how much X-ray photons are attenuated when they pass through the object. X-ray 

attenuation is based on Beer-Lambert law as given below: 

                                       
0( ) exp( )i i

i

I x I x= − ,                                       (2.1.2.1) 

where, 0I , ( )I x  are X-ray intensities before and after the matter and i , ix  are 

attenuation coefficients and dimensions of volumes along the X-ray beam. The 

calculation of attenuation of X-ray photons by the matter can be modeled by 

discrete attenuation coefficients in Figure 2.1.2.1. 

To reconstruct the internal structure of an object, the measured attenuation 

coefficients that are converted to Hounsfield unit (HU) scale. The HU values of 

distilled water, air and bone are 0, -1000 and 1000 HU, respectively. The 

transformation formula as follows: 

                                             
( )

1000
tissue water

water

HU
 



− 
=  
 

.                      (2.1.2.2) 

 

Figure 2.1.2.1 Attenuation of X-ray beam while passing through the matter which includes 

various attenuation coefficients  [18]. 
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2.1.3. Computed Tomography  

 

As discussed earlier, computed tomography is an irreplaceable imaging 

technique in clinical applications due to its superior features. It visualizes the 

images of internal structures of an object noninvasively. There has been a 

numerous number of texts explaining the history, principles, and advances of CT 

such as Webb (1990) that explains the classical tomography in details, Buzug 

(2008) and Hsieh (2009) give broad information about underlying mathematics 

and advances of CT. In this Section, we will focus on the fundamental knowledge 

of CT imaging to a certain extent.  

When a chest X-ray is taken into account (given in Figure 2.1.3.1), only 

certain anatomical structures are observed. The bone structures appear lighter than 

soft tissues because they attenuate X-rays more strongly.  Moreover, lungs seem 

as the darkest regions in the radiograph due to less attenuation of X-ray beams by 

air. However, the final 2D image is the result of the 2D projection of a 3D 

structure. Thus, a final image obtained from many planes whereas the planes 

superimposed on each other and this leads to loss of depth information [20]. Other 

problems with conventional radiography that it is not adequate in the way of the 

visualization and differentiation of soft tissues. It is insufficient to spatially 

resolving soft tissue structures such as blood and lesion details [21]. 

 

Figure 2.1.3.1 The X-ray radiograph of chest [21]. 

CT is a sectional imaging technique offers superior results. Unlike the 

conventional X-ray radiography, CT acquires projections from different angles in 
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specified planar slice and reconstruct the 2D images from these measurements. 

This solves the plane overlapping problem and CT slice thickness is generally a 

few millimeters and resulting images show the body structures in a cross-sectional 

manner with lower than 1mm spatial resolution [21].    Despite there is a number 

of different CT imaging designs, present thesis confines in classical parallel-beam 

CT scanner which is sketched in Figure 2.1.3.3. As can be seen in Figure 2.1.3.3, 

the X-ray source generates parallel X-ray beams and parallel projections are 

measured by detector simultaneously. After one scan, the gantry is rotated to its 

new position and projection data is gathered at this angle.            

Later advance models have been developed to reduce the motion artifacts 

and the scan time which leads to decreasing the time of data acquisition in early 

designs of CT imaging systems. In order to reach improved image quality, the 

number of beams was increased. Moreover, the cover angle of beams and detector 

arrays were extended to record more measurements at each pulse of the X-ray 

tube [19]. A more detailed description of generations of CT scanner can be found 

in Hsieh (2009) and Webb (2006).  

 

      

(a)                                                                        (b) 

Figure 2.1.3.2 (a) The CT head image acquired with the GE LightSpeed VCT 2005 [19] 

and (b) Siemens SOMATOM Force CT imaging system [22]. 
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Figure 2.1.3.3 The demonstration of parallel-beam tomography scan. The X-ray flux passes 

through the object and the detector is located opposite side to generate projections at 

different angles. This procedure continues at many angles until sufficient set of projection 

data is obtained [21]. 

 

 

 

2.2 Mathematical Basis of CT  

 

 

 In this Section, the fundamental terminologies used in present thesis will 

be defined. Firstly, the projections will be explained with Radon transformation 

that is the key component of CT image reconstruction. The most common image 

reconstruction techniques will be surveyed an extension of one of the analytical 

reconstruction technique filtered backprojection and it will be the base for the new 

reconstruction algorithm.  
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2.2.1. Radon Transformation 

 

On 30 April 1917, Austrian mathematician Johann Radon introduced a 

mathematical model as a solution for the inverse problem in  CT imaging titled as 

‘On the Determination of Functions from their Integrals along Certain Manifolds’ 

[23]. It is a building block of CT image reconstruction and ensuing studies have 

emerged from Radon transformation. In 2D parallel-beam geometry, the image is 

reconstructed from a set of line integrals that are acquired from parallel aligned 

beams at different angles. From now on this thesis, ( , )f x y represents the two-

dimensional image to be reconstructed.  

Figure 2.2.1.1 illustrates the parallel projection lines passing through the 

tissue at a certain projection angle   of the X-ray tube and the detector, 

respectively. The spatial distribution of density values of tissue to be 

reconstructed are discrete values yet we assume continues.  

 

 

Figure 2.2.1.1 Illustration of Radon transform in parallel-beam geometry on original and 

rotated coordinate systems [19]. 
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The X-ray intensity values before and after object are 0I  and  I respectively 

and attenuation is calculated by Beer-Lambert law as given before. We suppose 

that X-ray beam attenuated by the object through the line L . In order to obtain 

line integral value of the object function formulated as follows: 

 

                                          
0

( , ) ln
L

I
f x y dl

I
= − .                                          (2.2.1.1) 

 

As can be seen in Figure 2.2.1.1, at an angle   the projection value can be 

written as:  

                          ( , ) ( ( , ) ( cos( ) sin( ) )p t f x y x y t dxdy   
 

− −

= + −  .         (2.2.1.2) 

 

 The relation of original patient coordinate ( , )x y  and rotating coordinate 

( , )t s  systems are given as follows: 

 

 

                                        ( )cos( ) sin( )t x y = +                                       (2.2.1.3) 

and 

                                       ( )sin( ) sin( )s x y = − + .                                      (2.2.1.4) 

  

Collected projection data (line integrals) over the angular range ( ) used to 

reconstruct the tomographic image and the data are regularized in a two-

dimensional map which is called sinogram [24]. All projections are assembled 

vertically in this way and a single projection corresponds to a vertical line in the 

sinogram. The illustration of sinogram formation is given in Figure 2.2.1.2.  
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(a) 

 
                                                                

(b) 

Figure 2.2.1.2 (a) The 256× 256 pixel image was generated in MATLAB. (b) The 

sinogram of image simulated using Radon transformation. 

  

 

=
 4

5
° 

x 

y 
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2.2.2. Fourier Slice Theorem  

 

Fourier Slice Theorem is the major component of CT image reconstruction 

and the theorem related to the understanding of the mathematical basis of 

tomographic imaging [25]. The theorem states that one-dimensional (1D) Fourier 

transform (FT) of each projection ( ( , )p t  ) with respect to the radial line equals 

to the 2D FT of the image ( ( , ))F u v  at  . Ultimately, inverse 2D FT can be 

calculated from 1D FT of the projections to recover the original image ( ( , )f x y ) 

as shown in Figure 2.2.1.3. Each projection gives the access of a slice at a certain 

angle in the frequency domain to recover the image accurately. The main steps of 

Fourier Slice theorem are given as below: 

 

1) Calculation of 1D FT of each projection respect to a radial line  

( )P q                    ( )p t  

2) Construction of 2D Fourier representation of the image from 

1D FT of projections  

( , )F u v                     ( )P q  

3) Calculation of inverse FT to acquire the image function  

     ( , )f x y                   ( , )F u v  

   

    The mathematical notation of Fourier slice theorem is denoted as follows: 

                                            2( ) ( ) i qtP q p t e dt

 



−

−

=  ,                                    (2.2.2.1) 

                                     2 ( )( , ) ( , ) i ux vyF u v f x y e dxdy

 

− +

− −

=   ,                          (2.2.2.2) 

                              ( ) ( cos( ), sin( ))P q F q q  = , , .q                   (2.2.2.3) 
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(a) 

 

(b) 

Figure 2.2.2.1 (a) The demonstration of Fourier slice theorem and (b) sampling pattern in 

Fourier space [19]. 

 

 

2.2.3. Simple Backprojection 

 

       The Radon transform takes the forward projection of a 2D image ( ( , )f x y ) 

and places the data into sinogram. In order to recover the 2D object from its 

projections, every projection profile is smeared back into spatial space through 

the direction of the corresponding ray. This procedure is named ‘backprojection’ 
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[26]. It is essential for image reconstruction. This process can be formulated by 

the following: 

                         
0 0

( , ) ( ) ( cos( ) sin( ))f x y p t d p x y d

 

    = = +  .               (2.2.3.1) 

      Unfortunately, the process does not recover the desired object instead 

generates a blurred version of the image. Because of non-negativity of projection 

data, the simple back-projection assigns positive values to the entire 2D image 

even to pixels of outside the object [18]. The example of simple backprojection is 

given in Figure 2.2.3.1. As can be seen from the figure, the backprojection 

produces a blurred result while a high number of projections are used.   

 

 

2.2.4. Siddon’s Algorithm 

 

        Defining an exact radiological path for CT image reconstruction is necessary. 

The reason behind this is to determine the intersection of the ray with voxels when 

the X-ray beam passes through the object. In view of the complexity of CT 

geometry and a great number of CT data, the determination of weighting 

parameters as well as voxel indices are time-consuming and difficult. In order to 

overcome these problems, Siddon presented an efficient algorithm to determine 

the exact radiological path for 3D CT array in 1985 [27]. The algorithm is 

commonly preferred in calculating the ray path of 2D and 3D image 

      
(a)                                        (b)                                                    (c) 

Figure 2.2.3.1 The example of backprojection process: (a) The 256256 synthetic 

image, (b) the sinogram of the image, (c) the simple backprojection of the image using 

180 projections. 
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reconstruction for different studies in medical imaging. Figure 2.2.4.1 illustrates 

the intersection of the ray and a 2D image. In this case, the pixels are considered 

as the intersection regions of orthogonal sets of equally spaced, parallel lines. 

When the corresponding figure is considered, the ray can be represented 

parametrically as follows: 

 

                             
1 2 1

1 2 1

( ) ( ),

( ) ( ),

X X X X

Y Y Y Y

 

 

= + −

= + −
                [0,1]                   (2.2.4.1) 

 

where, 1 and 2 points entry and exit points of the ray respectively.  

 

Figure 2.2.4.1 The entry and exit points of the ray are min = and max = respectively.  

 

For a 2D CT array of ( 1, 1)x yN N− −  voxels, the orthogonal sets of equally 

spaced, parallel planes can be denoted as: 

 

                      ( ) (1) ( 1)plane planeX i X i dx= + −           ( 1,..., )xi N= , 

                                                                                                                                             (2.2.4.2)   

                       ( ) (1) ( 1)plane planeY j Y j dy= + −           (j 1,..., )yN= ,                   
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where  xd and yd   represent the distances between ,x y  planes. Moreover, these 

distances exhibit the lengths of sides of pixels. The intersection of the ray with 

the sides of array results in the parametric values min  and max . The formulations 

of parametric values as given followings: 

 

2 1(X ) 0,If X−   

                                         

1

2 1

1

2 1

[X (1) X ]
(1) ,

(X )

[X ( ) ]
( ) ,

(X )

plane

x

plane x

x x

X

N X
N

X





−
=

−

−
=

−

                               (2.2.4.3) 

for (1)y , ( )y yN  similar formulations are written. In 2 1(X ) 0X− =  case, the ray 

is perpendicular to x  axis and denominator of equation (2.2.4.3) will be zero. If 

x and y values undefined, these values can be excluded from all following 

expressions.  The formulation of min  and max  values are given as: 

 

  min max 0,min (1), ( ) ,min (1), ( ) ,x x x y y yN N     =   , 

                                                                                                                      (2.2.4.4) 

  max min 0,max (1), ( ) ,max (1), ( )x x x y y yN N     =   , 

 

where min and max functions choose the minimum and maximum values 

respectively from their arguments. Only certain intersected planes have these 

parametric values in this range ( min  and max ). The specified range of indices 

are given below: 

 

 

2 1(X ) 0,If X−   

min 2 1 1

min

( ) (X )plane x

x

X N X X
i N

dx

 − − − = −                      
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1 max 2 1

max

(X ) (1)
1

planeX X X
i

dx

 + − − = + . 

 

2 1(X ) 0,If X−                                                                                             (2.2.4.5) 

max 2 1 1

min

( ) (X )plane x

x

X N X X
i N

dx

 − − − = − , 

                              
1 min 2 1

max

(X ) (1)
1

planeX X X
i

dx

 + − − = + ,                    

which are similar formulations for other indices ( min, maxj j ). The range of 

indices ( min, max, min, maxi i j j ) and their corresponding parametric values that indicate 

the intersections as follows: 

 

2 1(X ) 0,If X−   

   min max( ),..., ( )x x xi i  = . 

2 1(X ) 0,If X−                                                                                             (2.2.4.6)    

   max min( ),..., ( )x x xi i  = . 

where 
1

2 1 2 1

( )
( ) ( 1)

(X ) (X )

plane

x x

X i X dx
i i

X X
 

 −   = = − +  
− − 

, using similar 

expressions for  y . 

Then, the calculated 
x  and y values are sorted in the range min  and max

.  If  max  equals or less than min , then the ray does not intersect with the array.  

 

                                          min max, , ,x ymerge     =
  ,                   (2.2.4.7)  

where the last term has the index represents with n  as follow: 

 

                                    ( )max min max min1 ( 1) 1n i i j j−= − + + + + .                      (2.2.4.8) 
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The length of pixel intersection ( )l m  is given below for two intersections 

m and 1m − : 

                                12( ) d ( ) ( 1)l m m a m= − − ,             ( 1,..., )m n=         (2.2.4.9) 

  

                                  
1/2

2 2

12 2 1 2 1( ) (Y )d X X Y = − + −  .                             (2.2.4.10) 

 

The pixel  ( ), ( )i m j m  corresponds to the intersection of  m and 1m −  that 

contains midpoint of the intersections. The mathematical formulations of indices 

are given as:  

1 2 1( ) 1 ( ) (1) /mid plane xi m X X X X d = + + − −  , 

                                                                                                                                           (2.2.4.11)

1 2 1j( ) 1 (Y ) (1) /mid plane ym Y Y Y d = + + − −  ,                    

where mid  is formulated by following: 

                                            
 ( ) ( 1)

.
2

mid

m m
a

 + −
=                                (2.2.4.12) 

 

Finally, the radiological path d  can be written as the following formulation, 

 

                      12

1 1

( ) ( ), ( ) ( ) ( 1) ( ), ( )
m n m n

m m

d l m i m j m d m m i m j m   
= =

= =

= = − −  . (2.2.4.13) 

 

 

2.3 Reconstruction Methods of CT  

 

 

There exists numerous studies proposed to estimate target image from the 

projection data. In order to reconstruct the image from the projections, the 

reconstruction methods proposed in the literature can be divided into two major 
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groups as analytical methods and iterative methods [28]. In this section, we will 

concentrate on algebraic reconstruction technique (ART) and filtered 

backprojection (FBP) in particular.  

 

2.3.1. Filtered Backprojection (FBP) 

 

The most commonly used analytical method for CT image reconstruction is 

filtered backprojection (FBP). When the computation time is one of main 

constraint, the Fourier transform based methods are widely preferred. Thus, FBP 

has a practical application in standard imaging modalities due to short 

reconstruction time [29]. There is a strong relation between FBP and Fourier Slice 

Theorem which was discussed in the former Section. In order to explain the idea 

behind FBP, Fourier Slice Theorem should be focused. The 1D FT of every 

projection data gives the value of object’s 2D FT along the specified line. Then, 

mapping sufficient number of projection data into the Fourier space can construct 

2D transform of the object and its simple inversion of Fourier results in a 

reconstruction.  

As its name refer, FBP consist of two major components as filtering and 

backprojection. Firstly, the filtering step works out for the rescaling of each 

projection in the frequency domain. Secondly, the backprojection step is 

necessary to smear out every filtered projection data into the spatial domain.  

Although filtered backprojection has been used in practice commonly, there are 

some limitations. The method usually assumes continues projections, unlike real 

algorithms, work on discrete data and it requires complete sampling in both 

angular and radial coordinates [26]. Image quality is also another problem. It 

cannot overcome striking artifacts also cannot hold missing data problems [18].  

Firstly, the theory of FBP is presented and derived from Kak and Slaney 

(1988) and Hsieh (2009). Taking inverse Fourier transform of a 2D representation 

of an object, the function of the object can be written as:  

                              
2 ( )( , ) ( , ) j ux vyf x y F u v e dudv

 

+

− −

=   .                              (2.3.1.1) 
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Cartesian coordinate system ( , )u v  is expressed in the polar coordinate 

system ( , )q   to define ( , )F u v  in natural form because each FT of projection data 

is located in the polar coordinate system. The substitution can be done as follows, 

                                             
cos( )

sin( )

u q

v q





=

=
 ,                                                  (2.3.1.2) 

and    

                                          dudv qdqd= .                                                   (2.3.1.3) 

 

Then the inverse FT of object function in polar coordinate can be written as,  

 

                               

2

2 ( cos sin )

0

( , ) ( , ) j q x yf x y F q e qdqd



   


+

−

=   .                 (2.3.1.4) 

 

The equation (2.3.1.4) can be divided into two by summing   from 0° to 

180° and 180° to 360° as given below, 

 

                        

2 ( cos sin )

0 0

2 (xcos( 180 ) ysin( 180 ))

0 0

( , ) ( , )

( , 180 )

j q x y

j q

f x y F q e qdqd

F q e qdqd



  



  

 

 



+



+  + + 

=

+ + 

 

 

                (2.3.1.5) 

 

In parallel sampling geometry, the formulation can be substituted with 

following using the symmetry property: 

 

                                              ( , ) ( , ).F q F q  + = −                                   (2.3.1.6) 

Using (2.3.1.5) and (2.3.1.6) equations, the relationship can be rewritten 

as: 
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                                    2

0

( , ) ( , ) ,j qtf x y F q q e dq d



 


−

 
=  

 
                        (2.3.1.7) 

where t simplified by: 

                                                cos sint x y = + .                                      (2.3.1.8) 

 

Using Fourier Slice Theorem indicated with equation (2.2.2.3), we can 

substitute ( , )F q   with  ( , )P q  and construct the following formulation: 

 

                                      2

0

( , ) P( , ) j qtf x y q q e dq d



 


−

 
=  

 
                        (2.3.1.9) 

and 

                                        2( ) P ( ) j qtS t q q e dq

 



−

 
=  
 
 .                             (2.3.1.10) 

 

The equation (2.3.1.10) illustrates the filtering operation, ( )S t  is named 

modified or filtered projection. The filtered projections from different angles are 

summed to estimate spatial density distribution ( ( , )f x y ) of a 2D image.  

   

Figure 2.3.1.1 The demonstration of backprojection process in FBP reconstruction [19]. 

 

As can be seen in Figure 2.3.1.1, cos sinx y +  represents the distance 

from the point ( , )x y  to the line that passes through the center of coordinate 

(t, )S   
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system. FBP states that the estimated image ( , )f x y  at the location  ( , )x y  is the 

summation of every filtered projection data that pass through the same point. The 

mathematical formulation is given below, 

                                       
0

( , ) ( cos , sin )f x y S x y d



  =  .                         (2.3.1.11) 

The FBP reconstruction is performed by summing FT of every projection 

data until whole frequency space is filled.  Consequently, center regions are over 

enhanced and high-frequency regions are less present. In order to overcome this 

problem, every projection can be multiplied by weighting function that has a 

lower density in the center region and higher density at the high-frequency region.  

 

The main steps of FBP reconstruction are given as follows: 

                                     

1) For every projection angle  , calculation of FT of the 

projection:  

      S(t, )                (q, )P   

2) Multiply each (q, )P   with weighting function (high-pass 

filtering) and inverse FT: 

(q, )q P              S(t, )  

3) Backprojection of modified projection data: 

( cos , sin )S x y              ( , )f x y             

 

Practical implementation of FBP reconstruction differs from the theory. 

Because of real data are discrete and spatially limited, projections are band-

limited in the range between w−  and w . The assumption can be written as: 

 

                                          
2( , ) (q, )

w

j qt

w

S t P qe dq 
−

=  .                           (2.3.1.12) 

To avoid aliasing, the bandwidth should satisfy Nyquist criteria: 
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1

2
w


= cycles/mm.                                         (2.3.1.13) 

 

The original ramp filter q  can be multiplied by a window function in 

frequency domain.  

                                                ( ) W( )H q q q= ,                                         (2.3.1.14) 

where 

                                             
1,

( )
0, otherwise.

q w
W q

 
= 


                                  (2.3.1.15)      

The impulse response of the ramp filter is given as: 

 

               

2

2

2

1 sin 2 1 sin
( )

2 2 4

w

j qt

w

t t
h t qe dq

t t

  

   
−

   
= = −   

   
 .                  (2.3.1.16)     

The frequency representation and impulse response of ramp filter given in 

figures 2.3.1.2 and 2.3.1.3.  

 

 

Figure 2.3.1.2 The demonstration of band-limited ramp filter [19]. 
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Figure 2.3.1.3 The illustration of the impulse response of ramp filter [19]. 

 

As it can be seen in figures 2.3.1.2 and 2.3.1.3, ramp filter suppresses the 

blurring coming from the backprojection. Indeed, ramp filter works as a derivative 

filter and enhances the edges. In order to reduce amplification of high-frequency 

noise present in the image, the window function is used in practice by multiplying 

window function with original ramp filter in the frequency domain. Thus, the filter 

becomes softer and artifacts present in the image are reduced. However, the 

spatial resolution is impaired by smoothing filters. There is always a trade-off 

between spatial resolution and noise performance of estimated image.   

There have been lots of low-pass filters that are used in CT reconstruction. 

To describe a window function formulation, there are two parameters as cut-off 

frequency and order of function. The cut-off frequency determines the elimination 

level and above this level, the frequency is suppressed. The order of filter 

determines the slope of the filter. The most commonly used window functions’ 

mathematical formulations  are given below [30]: 

• Hanning filter:  

                            

(q)
0.5 0.5cos , 0

(q)

0,

c

H c

q q
q

otherwise

  
+    

 =   



,            (2.3.1.17)     

where q  and cq are spatial and cut-off frequencies respectively.  
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• Hamming filter:  

 

                           

(q)
0.54 0.46cos , 0

(q)

0,

c

HM c

q q
q

otherwise

  
+    

 =   



,           (2.3.1.18)     

 

similarly, q  and cq are spatial and cut-off frequencies respectively and produces 

the smoothest results.  

 

 

• Shepp-Logan filter:  

 

                        
2

( )
(sin / 2q

c
S

c

q
q

q 
 =

  

.                                     (2.3.1.19)   

 

The Shepp-Logan filter generates the sharpest image.  

 

• Butterworth filter:  

 

                                           
2

1
( )

1 (q/ q )
B n

c

q =
 + 

,                                  (2.3.1.20)   

 

where, n  is the order of the filter. The filter is able to both preserve the image 

resolution and suppress noise due to the capability of changing the cut-off 

frequency and order of filter at same time.   

The selection of window function and cut-off frequency has a significant 

impact on achieving the desired image. Mostly, design details of the filters are 

empirical also depend on examination type. The results of different filter functions 

are given in Figure 2.3.1.4. As can be seen in the figure, ramp and Shepp-Logan 

results are quite similar while background noise is more present in the images. 

The Hanning and Hamming low-pass filters provide smoother images. The results 

acquired with 90 number of projections and 0.5cq =  for all illustrations.  
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The interpolation needs to be used in FBP either on filtered projections data 

or on estimated images. In backprojection step, the filtered profile is distributed 

to closer pixels by using linear or nonlinear interpolations. For ray-driven 

backprojection, each ray’s intensity distributed into pixels which are the closest 

to the ray. Another way is using pixel-based backprojection which is called pixel-

driven back projection. In this method, the ray which goes through the pixel center 

and intersects it with the filtered profile. Usually, the position of intersection does 

not correspond to the exact value of the projection. Thus, in order to estimate the 

value of filtered projection at the intersection position, interpolation methods 

should be used. The illustration of different backprojection methods is given in 

Figure 2.3.1.6. The simple forms of interpolation are preferred as nearest neighbor 

or linear to reduce computational load. To improve the accuracy of interpolation 

advanced forms can be used such as cubic or spline interpolation methods.  

 

 

Figure 2.3.1.4 The illustration of ramp and window functions for cut-off frequency  

0.5cq = and order 2n = . 
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(a)                                                                 (b) 

Figure 2.3.1.6 (a)  The demonstration of ray-driven and (b)  pixel-driven backprojections 

[19].  

 

2.3.2. Algebraic Reconstruction Technique (ART) 

 

Iterative reconstruction (IR) methods have been developed in CT image 

reconstruction field due to the inefficacy of analytical methods. However, the 

computational load of image reconstruction has been increased due to demands 

            
(a)                                     (b)                                          (c) 

            
                          (d)                                        (e)                                        (f) 

 

Figure 2.3.1.5 (a) The visualization of true image, (b) simple backprojection, (c) ramp, 

(d) Shepp-Logan window, (e) Hamming window and (f) Hanning window results. 
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of high image resolution. Thus, the usage of IR methods is limited in the practical 

application of current systems. However, advancements in computation power 

lead to IR methods become a hot topic for both clinical and research areas. In 

literature, there exists many texts explaining the principles of IR methods in 

details such as Herman (1979) and Kak and Slaney (1988). Kak and Slaney 

discuss projection and image representation for algebraic methods with visual 

explanations also elaborate computer implementations of the algebraic method 

and its forms. The typical IR method can be divided into three major steps as 

acquiring projections of the object which provides observed raw data. The second 

step is to compare observed data with real measured raw data to compute 

correction term. In the last step, the error is backprojected to the object. The steps 

are illustrated in Figure 2.3.2.1. These three steps are repeated until a certain 

convergence criterion is a satisfied or maximum number of iteration is reached.  

 

 

Figure 2.3.2.1 Illustration of the typical IR method. The final image can be estimated from 

empty or FBP reconstructed initial image [31]. 

 

Algebraic reconstruction technique (ART) is the earliest method in the 

literature of IR techniques also called as Kaczmarz method originated from its 
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inventor [32]. It was primarily used in image reconstruction by Gordon in 1970 

[33].  ART is a reconstruction technique which uses the projections that are 

provided from different perspectives to estimate the desired object. The 

implementation of ART as the same as IR methods scheme (Figure 2.3.2.1). The 

idea of ART is to solve linear equations using detector values and the voxel or 

pixel contribution to projections. The linear equations are formulated as follows: 

 

                                            ,

1

i i j j

j

y a x
=

= ,                                                   (2.3.2.1)                 

where the number of the ray is represented with 1,2,...,i M= , 1,2,...,j N=  

represents the number of pixels in the object and ,i ja  is weighting parameter which 

is computed using Siddon’s algorithm and indicates the intersection of the pixel 

with the ith  ray. y  stands for projection value for certain ray and x  represents 

the estimated image intensity. The illustration of the intersection of the X-ray 

beam and image pixels is given in Figure 2.3.2.2. In order to solve these equations 

matrix, inversion-based methods can be used. However, an ill-posed system and 

large volumes are taken into account, iterative methods have been proposed to 

overcome these issues. The formulation of the method is given as: 

 

     
11

,
2

1

N
k

i in m

nk k

j j ijN

im

n

y a x

x x a

a
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         1,2,...,i M= , 1,2,...,j N= ,           (2.3.2.2) 

                     

where 
1k

jx +
 and 

k

jx  represent the estimated image, previous intensity values and 

updated image by adding the correction term which is computed from the 

difference between measured ray sum ( iy ) and observed ray sum (
1

N
k

in m

n

a x
=

 ). 

These computations are repeated until a convergence criterion is satisfied. 
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iy  

Figure 2.3.2.2 The intersection of X-ray beam and pixels of object. The section of pixel that 

intersects with X-ray beam included in system equations as weighting term and calculated 

using Siddon’s algorithm [18]. 

 

2.4 Compressed Sensing  

 

The Shannon/Nyquist sampling theory states that the sampling frequency 

needs to be at least twice as much as the highest frequency present in the signal 

to avoid aliasing  [34], [35]. In many practical applications, Nyquist rate is very 

high such as digital image and video cameras and imaging systems. Thus, the data 

acquisition and reconstruction become challenging in real applications.  

(CS) overcomes these problems by exploiting the sparsity existing in the 

data or by sparsifying it. CS theory on creating an efficient sensing approach that 

involves the crucial information inserted in a sparse and small number of data 

[36]. Thereby, CS theory is able to reduce the number of data that need to be 

stored and computed. By using fewer samples, CS can accurately recover signal 

or an image using the sparsity principle. This approach is very useful in imaging 

modalities such as MRI and CT. Especially in CT image reconstruction, the main 

issue is to estimate an image accurately from insufficient projection data. The 

acquisition of data can be formulated by linear equations as follows: 

                                                        y Ax= ,                                                  (2.4.1)  
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where y is the vector of measurements in m , x  is the image to be reconstructed 

in n and A denotes the m n  system matrix. The CS method enables the 

accurate reconstruction from m n  (indicates the underdetermined system) 

situation [36] using the advantage of the sparsity of signals.  

The entire concept of CS consists of three steps: encoding, sensing and 

decoding [37]. In the first step, the image x is encoded in a small vector by a 

system matrix. The second step is to gather a few data y . The third step is to 

recover x  from y underdetermined measurements. The more realistic solution is 

minimizing 1  norm of the sparse image [38]. Some natural images and signals 

are sparse by itself or can be done sparse by taking  magnitude of the image’s 

gradient [39]. The constraint minimization problem can be expressed as given 

below and   is sparsifying operator: 

 

                                            
1

min ,x subject to y Ax = .                       (2.4.2)  

 

 

2.4.1 Total Variation 

 

The most popular method of CS is total variation (TV) and there exists a 

number of variants of TV minimization algorithm in literature. TV has been used 

as a regularization term in inverse problems and was proposed by Rudin, Osher, 

and Fatemi [40].  TV minimization is frequently used in image processing 

applications as an efficient filtering operator.  

TV is a numeric value that indicates how much rapid variation occurs 

between the neighboring pixel values. High total variation corresponds to the 

excrescent details and usually noise present in the image because tomographic 

images have generally uniform intensity values in the organ structures and rapid 

variations occur at only the edges of structures [14]. In the light of this 

information, minimizing TV of the CT image in order to rid of undesired details 

while preserving the edges. TV of a 2D image can be defined as follows: 

http://tureng.com/tr/turkce-ingilizce/excrescent
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                         ( ) ( )( )2 2

, 1, , , 1( )
K L

i j i j i j i ji j
TV X X X X X− −= − + −    ,            (2.4.1.1) 

 

where X  represents an image to be reconstructed and 
,i jX  represents 

intensity value at pixel ( )    ,    1, , ,  1, ,i j with i K j L=  =  . Since the present 

Chapter focuses on 2D image reconstruction, Table 2.4.1.1 summarizes the 

reconstruction techniques reviewed until here.  

 

                                                                y 

 

 
, 1i jX −

  

1,i jX −  ,i jX  1,i jX +  

  
, 1i jX +   

 

Figure 2.4.1.1 The illustration of TV formulation on neighbor pixels. 

 

 FBP ART TV 

Reconstruction time low high medium 

Accuracy low medium high 

Reconstruction ability 

from insufficient data 
low medium high 

Noise sensitivity high medium low 

 

Table 2.4.1.1 Comparison of CT reconstruction methods. 

 

 

x 
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Chapter 3 

 

Total Variation Regularized Iterative 

Filtered Backprojection for Sparse CT 

Imaging 

 

 

 

3.1 Related Work 

 

 

 

The main knowledge of CT image reconstruction can be divided into two 

major groups as direct (analytical) and iterative reconstruction techniques. 

Despite recent works focus on iterative methods, the commercial CT scanners still 

employ one of the analytical method FBP. FBP is a direct approach which is based 

on estimating the Fourier Transform (FT) of objects from their projections in the 

frequency domain, then obtaining the spatial distribution of the object [41], [42]. 

Related to the FBP reconstruction methods, the works can be enclosed in two 

main topics as exploring new interpolation methods or filtering operators to 

increase the accuracy of reconstruction.  

In order to eliminate shortcomings of traditional ramp filter, the paper which 

is titled as ‘ A Novel Scheme to Design the Filter for CT Reconstruction Using 
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FBP Algorithm’ [43]  proposes a novel scheme to create new filters to use in FBP 

reconstruction instead of traditional ramp filter. The performance evaluation of 

designed filter clearly outperforms to ramp filter. With similar objective, the 

article titled ‘Adaptive Filtered Back Projection for Computed Tomography’ [44] 

proposes an adaptive linear filter based on 2D kernels as a post-processing step in 

image reconstruction. Their aim is to avoid usage of iterative methods due to their 

computational burden. Their results show that the adaptive scheme effectively 

increases the reconstruction quality. A paper appeared in 2013, ‘Improving 

Filtered Backprojection Reconstruction by Data-Dependent Filtering’ [45] gives 

an approach for 2D parallel-beam reconstruction problems.  The paper introduces 

a new approach which is called minimum residual filtered backprojection method 

in the paper. The method drives a data dependent filter to minimize the projection 

error using the sense of algebraic methods. The results are compared with 

algebraic methods and the results similar to the one of algebraic methods which 

shorter reconstruction time.  

Another study on filter design with regard to interpolation is ‘Filter Design 

for Filtered Back Projection Guided by Interpolation Model’ [46] introduces an 

approach that combines ramp filtering and spline interpolation into a new filtering 

operator. The designed filtering operation is applied to sinogram and improves 

the reconstruction quality even at low interpolation degrees which provides faster 

reconstruction. In the similar sense,  the paper titled ‘Optimal Prefiltering for 

Linear Interpolation in Computed Tomography’ [47] aims to illustrate the modern 

interpolation models for obtaining more accurate results. Linear interpolation is 

widely used in the backprojection step of CT reconstruction because it is able to 

provide a balance between computation time and accuracy. In a related paper, a 

proper pre-filter is applied to projection data and it increases the accuracy of 

current image reconstruction method. The recent study is titled as ‘Optimal 

Filtered Backprojection for Fast and Accurate Tomography Reconstruction’ [48] 

formulates the optimization scheme for filtering of backprojection and also 

connects the optimization of filtering and filtering- backprojection approach.  
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The ‘A Novel Iterative CT Reconstruction Approach Based on FBP 

Algorithm’ [49]  introduces iterative FBP by reducing the difference between 

original projection data and reprojection data which is generated by forward 

projection of the reconstructed image by FBP. In every iteration, the difference 

between original and reprojection data is filtered and smeared back to produce 

correction term. The correction term is added to the reconstructed image by FBP. 

The simulations support the superiority of proposed method to some IR methods.  

As it can be seen there is not a certain step to be optimized but several steps 

of FBP process can be improved. Most of the studies relevant to FBP enclosed in 

interpolation and denoising steps.  

However, the performance of FBP is not sufficient when the projection data 

is noisy or limited number of projections are available. In this case, IR methods 

have been proceeded to estimate object from projections more accurately since 

1970s [50]. One of the earliest iterative method ART solves the linear equations 

using sets of measured and observed projections [50]. Applications of varied 

forms of ART such as simultaneous algebraic reconstruction (SART) has 

provided superior results to traditional ART reconstruction method [51]. Another 

type of iterative methods is least squares technique (ILST) that is based on 

statistical methods [52]. Because of data insufficiency in low dose CT imaging, 

the new approaches have been developed to overcome reconstruction problem 

such as TV minimization. Despite TV minimization is proposed by Rudin, Osher, 

and Fatemi in 1997, TV has been improved and used in image reconstruction field 

as a strong tool. The method has been evaluated for handling data inadequacy, 

limited angle and bad bins problems of CT imaging in 2009 [14]. In the early 

work of Quinto indicates that boundaries and details of the object are more 

accurately recovered through projection directions. Moreover, the artifacts 

present only in some certain directions [53]. To address this issue, anisotropic TV 

has been introduced in the literature [54], [55]. In their study, it is clearly seen that 

edges and artifacts are apparent at specified directions while in other directions 

they are less present.  
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Another limitation of TV minimization is that it is based on local 

neighboring pixels or voxels. Local TV minimization utilizes constant 

penalization without considering spatial intensity variations. In order to increase 

contrast and accuracy also preserving detailed structures of reconstructed images, 

non-local TV minimization (NLTV) has been proposed in the literature [56]–[58]. 

The NLTV presents a non-local TV minimization operator by considering global 

information.  

The previous works of both analytical and IR based methods have been 

reviewed. The weaknesses and advantages of the reconstruction methods have 

been outlined in this Section. 

 

 

3.2  The Problem Definition 

 

 

Since the certain range of view angle is missing in sparse CT imaging, the 

quality of the image will be affected and degraded. Thus, in sparse tomographic 

imaging, the main challenge is to reconstruct images without noticeable limited-

view artifacts arose from the insufficient projection data [14]. Iterative techniques 

have been used for improving image quality while diminishing the required 

number of projection in CT imaging. However, the significant weakness of IR 

techniques is a vast computational burden because of high computational 

complexity.   

 The first contribution of present thesis centers on how to solve an ill-posed 

problem in low dose CT imaging by exploiting computational efficient method 

FBP and superior features of the TV minimization. The ultimate purpose of the 

proposed algorithm is to reconstruct a CT image which is comparable to the 

outcome of the IR techniques such as ART [59] while keeping its computational 

load as low as being able to use in clinical applications.  
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3.3 Application of Proposed Method  

 

 

 Our iterative reconstruction algorithm consists of two major parts as FBP 

and TV minimization. The ingredients of FBP and TV minimization methods, as 

well as the integration within the CT imaging system, have been discussed in 

Chapter 2. 

The main component of FBP is 1D filter function.  The adjusting parameters 

of the filtering step are crucial. In such a way that, determining the window 

function [60] and optimizing the cut-off frequency ( cq ) are important factors for 

reducing noise while keeping the loss of resolution at least [30]. The ramp filter 

is applied to the projections before backprojection step to reduce low-frequency 

artifacts. However, the main weakness of ramp filtering is amplifying noise as its 

gain increases at higher frequencies. In order to suppress high-frequency noise, a 

proper window function needs to be used. Because of its success in the literature, 

Hamming window function is used in this work [61].  The cut-off frequency of 

proposed method is determined by minimizing error based on quality metrics and 

optimized for a different number of projections. The illustration of filters at 

0.5cq = is showed in Figure 3.3.1 and the form of ( )W q  determines the 

suppressing level of filtering.  

However, if the problem is overly underdetermined the FBP lacks of 

providing satisfactory outcomes even if it is computationally so efficient. Thus, 

exploiting the computationally efficient method FBP and applying TV 

minimization to get rid of the blurring and other artifacts existing in the images 

reconstructed by the FBP helps to obtaining superior results using the proposed 

method. TV minimization has successful applications in limited view angle 
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imaging through removing artifacts while preserving boundaries and other fine 

details [62]. 

 

 

             Figure 3.3.1 The illustration of ramp and Hamming filters at 0.5cq = . 

  

TV operator is applied to the FBP reconstructed images in an iterative manner. 

The formulation is as follows: 

 

                   
2

22
arg min ( )

TV TV

TV
X

X X X TV X = − + 
 ,                             (3.3.1) 

 

where  X  represents the estimated image by FBP,   is a constant TV 

regularization term and TV (.) is TV minimization operator. TV of the 2D image 

can be formulated as 2l -norm of the gradient of the image as: 

 

                      ( ) ( )( )2 2

, 1, , , 1( )
K L

x y x y x y x yx y
TV X X X X X− −= − + −  ,                 (3.3.2) 
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where X  represents an image to be reconstructed and 
,i jX  represents intensity 

value at the pixel  ,x y  with  1,...,x K= ,  1,...,y L= . TV minimization is 

utilized using the gradient descent minimization algorithm. 

The flow of the method is given in Figure 3.3.2. The projection data are 

obtained by the Radon transform. Then, the data are filtered in the frequency 

domain using the ramp and Hamming filters to improve the quality of low dose 

CT images by removing the high-frequency artifacts. Then, the initial 

reconstructed image (the reference image), 0X , is obtained by the inversion of 

Radon transform. The FBP is used to reconstruct the image ( kY ). The updated 

image is obtained by 1 0k k kX X X Y+ = + − . Finally, TV minimization is applied to 

the image 1kX + . This procedure is repeated until a number of iteration is satisfied. 

The pseudo code of given algorithm as below: 

 

 

 Iterative Algorithm of Proposed Method  

 

Input: Load phantom image 

Step 1. For each angle acquire projections (forward projection) 

Step 2. Compute 0X  using the FBP  

k=0; 

Step 3. For each iteration 

  For each angle 

                           Forward projection of kX  

  End each angle 

                    kY           Reconstruct image using the FBP from the forward 

projection of kX  

                     Compute   1 0k k kX X X Y+ ⎯⎯ + −  

                     Set   (regularization impact of TV) 

                    
1

TV

kX + ⎯⎯  TV ( 1kX + )                  
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                    Compute quality metric values of 1
TV

kX +  

k=k+1; 

             End each iteration 
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Figure 3.3.2 The flow of the implementation of the proposed method. 

 

 

Projection data: (t, )p    of  phantom image ( , )f x y  

Initial estimated image: 
0X  

Frequency space denoising of (t, )p   

Filtered data: ( ) ( ) ( )fP q W q q P q=  

 

 Backprojection 

 

Forward projection of kX : *(t, )p   

Frequency space denoising of *(t, )p   

Filtered data: *( ) ( ) *( )fP q W q q P q=  

 

 

kY  

Update: 1 0k k kX X X Y+ = + −  

 

Apply spatial domain filtering using TV: TV ( 1kX + )   

TVX  

Backprojection 
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3.3.1 Phantom  

 

In order to investigate the performance of the proposed method, the well-

known 2D Shepp-Logan phantom model is used. The phantom was designed by 

Larry Shepp and Benjamin F. Logan for their study [63]. The phantom is a 

grayscale image that has one large ellipse which illustrates the brain containing 

other smaller ellipses represent structures of the brain. It has been widely used for 

testing of image reconstruction algorithms. It consists of ten ellipses and its 

parameters are given in Table 3.3.1.1. In the present thesis, the modified Shepp-

Logan phantom is used due to improved contrast and better visual perception. 

 

Ellipse Centre 
Major 

Axis 

Minor 

Axis 
Theta 

Gray 

Level 

a (0,0) 0.69 0.92 0 2 

b (0, −0.0184) 0.6624 0.874 0 −0.98 

c (0.22,0) 0.11 0.31 −18° −0.02 

d (−0.22,0) 0.16 0.41 18° −0.02 

e (0,0.35) 0.21 0.25 0 0.01 

f (0,0.1) 0.046 0.046 0 0.01 

g (0, −0.1) 0.046 0.046 0 0.01 

h (−0.08,−0.605) 0.046 0.023 0 0.01 

i (0, −0.605) 0.023 0.023 0 0.01 

j (0.06,−0.605) 0.023 0.046 0 0.01 

 

Table 3.3.1.1 The parameters of ellipses that form the Shepp-Logan phantom image. 
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Figure 3.3.1.1 The Modified Shepp-Logan phantom image with resolution 256×256. 

 

 

3.3.2 Image Quality Assessment 

 

 In order to examine the accuracy of the implemented algorithm, quantitative 

and qualitative measurements are used. The qualitative measurements are based 

on visual inspections and do not express a numerical value. Thus, four different 

quantitative metrics are used in this study. The quantitative metrics aim to 

measure the similarity between the original phantom image and the estimated 

image by the proposed algorithm. Root Mean Squared Error (RMSE) is frequently 

used in medical imaging to compare the reconstructed image with ground truth 

image. Signal to noise ratio (SNR) measures the reconstructed image noise 

performance by comparing the estimated image with noise level present in the 

reconstructed image. Despite the implementation of these metrics is easy, they 

express the real quality of estimated images at some extent. Thus, a contrast to 

noise ratio (CNR) and structural similarity (SSIM) are used to validate numerical 

results in this study.  
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3.3.2.1 Root Mean Squared Error (RMSE)  

 

 RMSE value is widely used for measuring the difference between estimated 

values by a predictor model and actual values.  In medical imaging, RMSE value 

gives the accuracy or similarity of two images that are predicted image and 

phantom image.  In other words, RMSE shows the convergence rate of the 

proposed method.  
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where N shows the number of pixels, ,x y represent the pixel indices and P and 

X indicate the original phantom image and reconstructed image, respectively. 

 

 

 

3.3.2.2 Signal to Noise Ratio (SNR)  

  

 Quantitative analyses also include SNR which expresses power of the signal 

and power noise in medical images. SNR usually states in decibels (dB). SNR 

gives clues about the noise level of reconstructed images. In our study, the 

Frobenius norm of the estimated image is used as indicated with the following 

expression: 

 

                          

,
2

,

,

,
2

, ,

,

10 log

J K

x y

x y

J K

x y x y

x y

X

SNR

P X

 
 
 

= 
 
 −
 
 





,                               (3.3.2.2.1) 

 



51 

 

similar with RMSE,  ,x y represent the pixel indices and P and X  indicate the 

original phantom image and reconstructed image, respectively. SNR results 

turned out to be an inverse form of RMSE values.  

 

3.3.2.3 Structural Similarity (SSIM)  

 

 Despite the easy implementation of SNR and RMSE, they may not give 

successful results when the investigating the visual quality of reconstructed 

images. For this reason, characteristic of human vision system implementation is 

developed in the literature [64]. 

The structural similarity (SSIM) index is an effective method to measure 

the structural similarity between two images.  SSIM computes the similarity based 

on three features and y local areas that are located in the same regions of images 

to be compared.  The features are the similarity of luminances ( ( , )l t ), the 

similarity of contrasts ( ( , )c t ) and similarity of structures ( ( , )s t ) [65]. The 

formulation of the method as follows: 
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In the formulation x and y values represent the mean of the intensity of  x  and 

y  patches, x  and y indicate the standard deviation of them. The formulation 

of 1c  and 2c  is given below.  

 

                                              2( ) , 1,2,m mc K L m= =                                (3.3.2.3.2) 

 

where L is the dynamic range of the input image (for 8 bits grayscale image L

equals to 255) and 1mK  for 1,2k =  are constants. In this work, we employee 
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the global structural similarity for the proposed method at last iteration since other 

metrics suggest us the proposed method is superior to other reconstruction 

methods notably.  

 

3.3.2.4 Contrast to Noise Ratio (CNR)  

 

 The noise present in medical images degrades the image quality.  In order 

to measure that, CNR has been developed similar to SNR and defines the ability 

to differentiate the small details in medical images against to noise. CNR values 

are computed only for proposed method since other metrics suggest us the 

proposed method is superior to classical FBP notably. CNR values are computed 

by using the following notation:  

 

                                            ( ) /o b bCNR   = −  ,                                 (3.3.2.4.1) 

 

where the mean intensity of the targeted structure is presented as o , b is the 

mean intensity of background and b is the standard deviation of background 

noise in the ROI. The ROI is framed in a white rectangle with Figure 3.3.2.4.1 

below.  

 

Figure 3.3.2.4.1 The illustration of the targeted region to investigate CNR values from 

reconstructed images by the proposed method. 

 



53 

 

3.4 Simulation Results  

 

 

 The performance of the proposed method is examined using 2D modified 

Shepp-Logan phantom in [0-1] dynamic range with 256×256 resolution and all 

simulations are performed in MATLAB® 2017a software with Intel Core i7 

6500U / 2.5 GHz CPU and 8 GB RAM computer.  In the study, the parallel beam 

geometry is simulated. The scanning angle is 180° for three different setups with 

30, 40 and 60 projections. The simulated projection data is provided by forward 

projection of original phantom image without any noise added.  

The FBP and TV minimization algorithms have parameters that affect the 

performance of proposed method. The cut-off frequency parameter is optimized 

separately for each projection setup and fixed to a constant value. The TV 

regularization parameter ( ) which determines the balance between the level of 

noise existing in the estimated image and preserving edges and is fixed to 1 based 

on previous knowledge. The interpolation type used in backprojection step is 

selected as linear.  

The results are analysed both qualitatively and quantitatively.  The 

parameters used in the simulations are summarized in Table 3.4.1. 

As the simulations are performed using insufficient projection data, several 

artifacts are observed in the reconstructed images. In order to compare visually 

the results of the proposed method with original phantom and BP and FBP 

methods, the reconstructed images at the first iteration are given in Fig. 3.4.1 (a). 

The FBP is able to estimate only the main features of the phantom as well as some 

small details to some extent especially when the number of projections increased. 

The proposed method provides improved results even at the smallest number of 

projections. As the number of projections is increased, the method provides much 

better results by recovering even the tiniest details.  

Reconstructed images at the final iteration can be seen in Fig. 3.4.1 (b).  

Streaking artifacts in the FBP results is still present while the proposed method 
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helps obtain superior results by suppressing background noise and generating 

sharper images. Almost all details are fully recovered by the proposed method 

when the number of projections is 40 or more.  To further analyze the visual 

difference between the FBP and the proposed method, vertical and horizontal 

profiles of the reconstructed images are drawn in figures 3.4.2.  and 3.4.3. 

 

 

Parameter Value 

Resolution  256×256 

The motion of X-ray Step-and-Shoot 

Projection Geometry Parallel-Beam 

Scanning Angle 180° 

Number of Projections 30, 40 and 60 

Iteration Number 50 

TV Regularization 

Parameter 

1 

Window Function Hamming 

Cut-off Frequency 0.4, 0.6 and 1 

Table 3.4.1: Simulation parameters of the proposed method. 
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(a) 

 

 

 

 

    

    

    

(b) 

 

Figure 3.4.1 (a) The reconstructed images at the first iteration and (b) at the final 

iteration. From left to right column: original image and the reconstructed images by 

using BP, FBP and proposed method, respectively. The first row: estimated images by 

using 30 projections, the second row: estimated images by using 40 projections, the 

third row: estimated images by using 60 projections. 
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(a) 

 
(b) 

 
(c) 

 

Figure 3.4.2 Vertical profile drawn at the 128th column, from 40th row to 214th row of 

the original phantom, reconstructed images by FBP and the proposed method. (a) The 

profile using 30 projections, (b) using 40 projections, and (c) using 60 projections. 
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(a) 

 
(b) 

 
(c) 

Figure 3.4.3 Horizontal profile drawn at the 128th row, from 40th column to 214th 

column of the original phantom, reconstructed by the FBP and proposed method. (a) 

The profile using 30 projections, (b) using 40 projections, and (c) using 60 projections. 
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The horizontal profile is drawn at 128th row, from 40th column to 214th 

column and vertical profile is formed using vice versa direction of the horizontal 

profile. The FBP shows severe oscillations due to insufficient projection data 

whereas the proposed method is able to track nearly the original profiles in both 

directions. The oscillations are removed utterly by the proposed method in 60 

projections. The intensity profiles of proposed method show sharper transitions in 

edge regions also more similar to the true image.  

 In order to validate results of the visual analysis, the numerical analyses are 

performed on outputs of BP, FBP, and the proposed methods. The performance 

comparisons are done using RMSE, SNR, CNR and SSIM metrics for each 

projection setup. As can be noticed from figures 3.4.4 and 3.4.5, the results of BP 

nearly become the same as the results of FBP while the FBP results remain stable 

as expected. Starting from this point, thanks to our update step in an iterative 

algorithm, BP can generate such results that are comparable with the FBP results. 

This is an unexpected outcome because the BP method is free of adjusting filter 

parameters such as window function and cut-off frequency.  

Clearly, the results of proposed method have the lowest error level and the 

highest noise removal ability in regard to RMSE and SNR values respectively. 

Beside this, TV-based methods can lead to loss of small details in reconstructed 

images. However, our method clearly recovers all details in the reconstructed 

images with sufficient robustness against to noise.  

CNR and SSIM values are computed only for the proposed method because 

of the superiority of RMSE and SNR values of the proposed algorithm. The 

reconstructed ROI to calculate CNR values for a different number of projections 

are given in Figure 3.4.6. 

Moreover, 300% zoomed images of the targeted area which contains fine 

details are shown in Fig. 3.4.7 to have a detailed visual investigation of 

reconstructed images. As expected, increased number of projections helps to 

obtain improved image quality.  
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(a) 

 
(b) 

 
(c) 

 

Figure 3.4.4 RMSE values of BP, FBP and proposed method for different projection 

setups, (a) RMSE graph of 30 projections, (b) RMSE graph of 40 projections and (c) 

RMSE graph of 60 projections. 
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(a) 

 
(b) 

 
(c) 

 

 

Figure 3.4.5 SNR values of the BP, FBP and proposed method for different projection 

setups, (a) SNR graph of 30 projections, (b) SNR graph of 40 projections and (c) SNR 

graph of 60 projections. 
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In clinical practice, having the ability of recovering small details is critical 

to detect accurately low-contrast small lesions. The zoomed images clearly show 

the ability of the proposed method to recover fine details by removing severe 

artifacts due to incomplete projection data.  

All numerical analyses for the proposed method in the last iteration are 

demonstrated in Table 3.4.2 to quantify the performance of proposed method with 

algebraic reconstruction technique [59], [66]. The results validate that the 

proposed algorithm is a computationally efficient way to generate images 

comparable to the results of ART using insufficient projection data.  

 

   

 

      
 
Figure 3.4.6 The illustration of targeted regions to investigate CNR values from 

reconstructed images by the proposed method using 30, 40 and 60 projections. From 

left to right: the targeted structure enframed in the original image and reconstructed 

images using 30, 40 and 60 projections respectively. 

 

  

  
(a)                                          (b) 

 

  
(c)                                          (d) 

 

Figure 3.4.7 300% zoom of a region in the original image which has small details. (a) 

Original image, (b) reconstructed image of the proposed method by using 30 

projections, (c) 40 projections and (d) 60 projections. 
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RMSE 

 

SNR CNR SSIM 

30 

Projections 
0.075 11.106 13.896 0.55 

40 

Projections 
0.047 16.097 17.228 0.73 

60 

Projections 
0.016 27.428 22.880 0.99 

 

Table 3.4.2 Numerical results of the proposed method at last iteration. 

 

 

 

 

3.5 Discussion and Outlook 

 

 In medical imaging area, lowering radiation dose and producing acceptable 

quality images in limited time have been demanded frequently.  The aim of this 

study relies on the similar idea that obtaining comparable results of ART [59] by 

combining the computational efficiency of the FBP and superiority of TV 

minimization in sparse CT imaging.  The quantitative results are quite 

encouraging that the proposed method provides comparable results with the 

results of ART when the number of projections exceeds 30. Since the major 

problem with ART is its high computational time in contrast to the FBP, we 

develop an efficient algorithm for sparse CT imaging. 

The method presented in this thesis requires much less time compared to 

ART as can be seen from Figure 3.5.1 and the proposed method provides 

comparable results, if not better, with ART. For example, the proposed method 

for 60 projections provides better results such as 27.4 SNR and 0.016 RMSE 

values than ART which gives 20.9 SNR and 0.031 RMSE values using 60 

projections. The similarity metric indicates the superiority of the proposed method 
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through producing SSIM number of “0.99” whereas ART gives a SSIM value of 

“0.94”. All quantitative metrics show consistent results for the proposed method.  

The proposed method depends on adjusting three parameters as TV 

regularization parameter λ, window function, and cut-off frequency. For the 

regularization parameter λ, an experienced-based constant value is used for all 

simulations. The determination of cut-off frequency is highly dependent on 

number of projections. When the number of projections increases from 30 to 60, 

the cut-off frequency is increased from 0.4 to 1 as expected due to noise is 

minimized with the increased projections.  The appropriate window function is 

varied according to object structure to be scanned.  

Although the number of iterations is limited to 50, the trend of numerical 

graphs suggests gradually increase the performance of the proposed method.  

 

 

Figure 3.5.1 Reconstruction time in minutes for a different number of projections by using 

ART and the proposed method. 
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Chapter 4  

 

Magnetic Nanoparticles for CT 

Imaging as Contrast Agents  

 

 

 

4.1 Background  

 

 

As discussed throughout the present thesis, CT is the most widely used non-

invasive imaging modality in clinal imaging due to striking benefits. The major 

components of a typical CT scanner are an X-ray tube and detector array as can 

be seen in Figure 4.1.1. While the detector array and X-ray tube are rotated 

synchronously around the patient, the intensity of X-ray radiation is reduced. X-

ray beam goes through the object and two main interactions are observed as 

scattering and absorption. The detector array records the attenuated X-ray beams 

to form projection data from different angles.  

 
Figure 4.1.1 The schematic representation of a CT scanner (third generation) [67]. 
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4.1.1 Principle of Contrast Generation  

 

 Since the detailed information about the interaction of X-ray with matter is 

given Chapter 2, in this section we just focus on the underlying principle of 

contrast generation of CT imaging.  

In medical imaging applications, the X-ray tube voltage is in 80-140 kV 

range that defines the maximum limit of X-ray photons. The energy of X-ray 

photons typically ranges from 20 keV to maximum of X-ray tube voltage (140 

keV). Low energy photons below the 20 keV are usually absorbed by body 

structures thus they do not reach to the detector. In 20 keV-140 keV energy range, 

there are two main interactions as the photoelectric and Compton effects.  

Basically, contrast enhancement in CT imaging is mainly due to the 

photoelectric effect. The photoelectric effect defines the situation that the photon 

has greater but nearly the same energy with the binding energy of an electron. 

Thus, the X-ray photon usually transfers entire energy to K-shell electron and the 

electron is ejected then called as photoelectron. The binding energy of human 

tissue is very low (approximately 500 eV). Thus, the photoelectron travels a short 

distance roughly as long as the dimension of the human cell before totally 

attenuated [19]. The strongly bounded electrons lead to more photoelectric 

absorption (K-shell). The photoelectric effect is proportional to the atomic 

number cubed ( 3Z ) and reduces with increased photon energy ( 3E ). Therefore, 

using high atomic number elements leads great differences in absorption rate of 

X-rays and results in contrast enhancement.  

The photoelectric effect generates high-quality images at low energy X-rays 

since no scattering radiation is observed. The variations in probability of 

photoelectric effect underlie the contrast generation between different tissues 

[19]. However, it leads to high radiation exposure to patient whereas high-energy 

X-rays (Compton effect) results in degradation in contrast. Thereby, there is a 

trade-off between image quality and radiation exposure [68]. An adequate 

increase in energy of X-ray radiation can increase the contribution of photoelectric 

effect by using higher atomic number elements [69]. The difference between mass 



66 

 

attenuation of X-ray by different materials are given in Figure 4.1.1.1. As can be 

seen in the figure, at higher photon energies, the difference of attenuation 

coefficients of materials is diminished. Thanks to instinct contrast between bones 

and surrounding soft tissues, bone structures are visualized successfully under X-

ray imaging system.  

 

 

 

Figure 4.1.1.1 Mass attenuation coefficients of different materials according to X-ray 

energy [16]. 

 

 
 The attenuation coefficients of different soft tissues are relatively close to each 

also close to the water as can be seen from Figure 4.1.1.2. This is not surprising 

because the soft tissues mainly made up of water. Iodine has higher attenuation 

coefficient than water also soft tissue [19]. In unenhanced X-ray imaging, soft tissues 

that have similar attenuation coefficients cannot be distinguished accurately. 

Thereby, injecting contrast agents into patient body increases the accuracy of 

differentiating the tissues with similar coefficients.  

  The heavy metals are incorporated in contrast agent to increase CT attenuation 

difference between interest tissue and surrounding tissue[70]. Table 4.1.1.1 provides 

several heavy elements and their atomic number with K-shell energies. In conclusion, 

developing new contrast agents can help to lower the radiation to the patient also 

increases the sensitivity of CT imaging.   
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Figure 4.1.1.2 The attenuation coefficients of various materials [19]. 

 

Element Atomic number K-shell energy 

I 53 33.2 

Ba 56 37.4 

Gd 64 50.2 

Tb 65 52.0 

Au 79 80.7 

Bi 83 90.5 

 

Table 4.1.1.1 Atomic numbers and K-shell energies of several heavy elements [68].  

 

 

 

4.2 Related Work 
 

 

The beginning of contrast agent studies is as early as the development of X-

ray imaging modalities. The high atomic number elements such as iodine, barium, 

bromine, and bismuth were used as contrast agents in early stages of studies. For 

instance, bismuth was used as a contrast material for the first contrast enhanced 

angiography on human cadaver [71]. Water-soluble aromatic iodinated molecules 
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are used currently in biomedical investigations such as angiography, urography 

and CT imaging [72], [73]. Despite the superior features of iodine-based contrast 

agents such as high absorption coefficient, chemical tuneability and inertness 

[73], the efficiency of iodinated contrast agents is degraded by several limitations. 

For instance, short circulation time of iodine causes rapid clearance of contrast 

materials from the body.  Secondly, higher doses need to be used due to their low 

contrast enhancement capability [15]. Additionally, non-specific biodistribution 

of these agents leads to obtaining unclear CT images [16].  

 To overcome these issues, researchers have started to create new contrast 

agent formulations. In recent years, great advances in nanotechnology and 

material science have made an important impact on medical imaging area by 

developing new generation contrast agents that have ability to overcome many of 

challenges mentioned above. These agents have opened up new imaging 

applications through their unique properties.  

 There exists a numerous number of different nanoparticle types in literature 

for biomedical investigations and can be divided into two categories as synthetic 

and natural nanoparticles. The natural nanoparticles such as lipoproteins, viruses, 

and ferritin are advantageous to synthetic ones due to their biocompatibility and 

biodegradability [74]. The human-made nanoparticles such as micelles, 

liposomes, emulsions, metal nanoparticles, silica etc have been studied widely in 

research area [75]–[77].  

 The size of synthetic nanoparticle contrast agents varies from 1 to 100 nm 

and their size can be adjustable in order to reduce renal clearance rate. Gold 

nanoparticles have been introduced to medical imaging applications and their 

approaches have been investigated widely. Thanks to their high atomic number, 

they are excellent to achieve sufficient contrast effect. Additionally, the best range 

for imaging gold within 80-100 keV. That range decreases the absorption of X-

ray by both soft and bone tissues which means radiation dose to the patient can be 

reduced [78]. A small amount of gold nanoparticle agent administration results in 

clear imaging of soft tissues owing to larger attenuation coefficient of gold. The 
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toxicity analysis shows that no sign of toxic effect because of inertness of gold 

[79].   

Bismuth-based nanoparticulate contrast agents have been promising as a 

new class of contrast agents. When bismuth is compared with gold, bismuth is 

less expensive and ensures higher contrast enhancement effect. However, 

fabrication of bismuth-based nanoparticles is difficult [80]. Through the new 

developments in nanotechnology and material science, capabilities of 

nanoparticle contrast agents to be improved to address limitations of traditional 

iodine-based contrast agents.  

 

 

Figure 4.2.1 Typical scheme of a nanoparticle-based contrast agent [75]. 

 

In this way, more advanced nanoparticle structures have been introduced to 

improve the accuracy of imaging techniques also for adding therapeutic features 

to nanoparticle structures. One of the advanced nanosized structure is magnetic 

nanoparticles that show magnetic properties and unique physical & chemical 

properties under certain conditions. They exhibit biocompatible [81] and low 

toxicity [82] properties in biomedical applications. Magnetic nanoparticles can be 

divided into three types as ferromagnetic ( 2 3Fe O ), Maghemite ( 2 3γ-Fe O ) and 

paramagnetic. Their fundamental feature is that they can be manipulated under 

the proper magnetic field. Thus, they can be used in drug delivery applications. 
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Secondly, they have been utilized as contrast agents in MRI imaging. For 

instance, one of the most commonly studied magnetic nanoparticle type iron-

oxide based magnetic nanoparticles (SPIONs) has been already used in MRI 

imaging as contrast agents to detect tumours accurately [83]. Also, their targeted 

drug delivery features have been developed and the results are promising for 

transporting the drug to disease centre without harming any surrounding tissue 

[84], [85].  

Finally, the greatest advantage of magnetic nanoparticles can be associated 

with their usage in cancer treatment via hyperthermia. Traditional treatments of 

cancer include surgery, chemotherapy, and radiation therapy. These traditional 

therapies have some significant side effects to healthy tissue and also they may 

lead to tumor recurrence or metastasis since they do not have the capability to rid 

of all tumorous tissue utterly from the body. At this point, magnetic nanoparticles 

can provide effective treatment while enhancing the safeness of surrounding 

healthy tissue. These nanoparticles have potential accumulate and produce 

sufficient heating to irregular or deep-seated tumor sites when they are exposed 

to AC magnetic field at proper magnetic strength  [86]–[90]. Researchers often 

use about 100 kHz frequency and 8-16 kA/m magnetic field (H). 

However, selecting metal core is a significant factor for reducing health 

risks of the patient because of toxic considerations. Therefore, iron and 

manganese are favourable magnetic metals for biomedical applications [91]. 

However, various metals to utilize as the core of magnetic nanoparticle have been 

investigated widely.  

Previous studies have focused on fabrication of nanoparticle structures and 

their tuneable compositions. The superiority of nanoparticles on improving the 

image quality of CT has been indicated through their capability of contrast 

generation in related papers.  According to researchers, the potential of magnetic 

nanoparticles from the intrinsic physical and chemical properties offers their 

successful utility on drug delivery and cancer treatment. 
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4.3 Investigating Contrast Efficacy of Novel 

Magnetic Nanoparticles for CT Imaging  

 

 

The present study is intended to investigate the efficiency of novel magnetic 

nanoparticles as contrast agents for CT imaging. In order to realize this, the 

experimental setup was designed. In experimental setup, synthetetic CT phantom 

was formed using agarose gel since it  has been used in similar nanoparticle 

studies. Then, the different ferrofluids containing magnetic nanoparticles (MNPs) 

were injected to the agarose gel individually. Agarose is a biphasic viscoelastic 

solid and previous experimental studies showed that higher concentration agarose 

gels have a structure similar to hard tissue and low concentrations similar to soft 

tissue [92] thus it is able to mimic biological tissue [93].  

 The MNPs were fabricated in Mechanical Engineering Department at 

Istanbul Technical University. MNPs were synthesized as super-paramagnetic 

NPs (SPIONs) which leads to enable their usage both for contrast enhancement 

and hyperthermia applications. The MNPs were synthesized with five different 

cores (SrFe Ox y , BaFe Ox y , MnFe Ox y , MgFe Ox y , and Fe Ox y ).  

  

4.3.1 Experimental Protocol 

 

 The steps of the experiment are given in Figure 4.3.1.1. For every sample 

the same amount of nanofluid (0.1 cc) was injected. After preparation of samples, 

the coronal CT images were obtained with two different slice thicknesses. Then, 

the images were displayed using Radiant and MATLAB programs. In order to 

compare pixel index numbers of reference images (without injection of nanofluid) 

and different type of MNPs, a pre-processing step was applied.  
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4.3.2 Pre-processing of CT Images  

 

This procedure helped to find the region that includes only agarose gel 

combined with nanofluid while getting rid of redundant components existing in 

DICOM images. A result of the pre-processing step is provided in Figure 4.3.2.1. 

Firstly, each individual image was converted into grayscale. Then, morphological 

opening operations were applied with the proper structural element to remove 

protrusions and other redundant components in the images. Morphological 

operations such as opening and closing are commonly performed in image 

processing field for noise suppressing, smoothing and filling gaps purposes [94]. 

 

 

                                                             
 

 

 

 

 

 

 

 

 

 
 

Figure 4.3.1.1 The flow of experiment’s steps. 

 

 Agarose gel was prepared by dispersing 1.5 gr agarose 

powder in 75 ml distilled water 

 The mixture was heated until agarose powder completly 

dissolved using microwave (1.5 minutes) 

 Agarose gel was cooled at room temperature (approximately 

25°C for 5 minutes) 

 Nanofluid is mixed softly and 0.1 cc was injected to agarose 

gel and blended to have homogenous gel and MNPs mixture 

 

 

The mixture was cooled further at room temperature 

(approximately 25°C) until solidification  

 The coronal CT images of samples were acquired with two 

different slice thickness (1mm and 2 mm) 

 



73 

 

Then, the result of morphological operation image was converted into a binary 

image using proper threshold. The threshold was calculated by using well-known 

Otsu’s global thresholding method [94]. Finally, original DICOM images were 

multiplied by their binary image to have pure agarose gel and nanofluid mixture 

region. 

 

 

4.3.3 Results  

 

In this study, we aim to evaluate the utility of different type MNPs as 

contrast agents for CT imaging. In order to execute this, the mean pixel intensity 

values and horizontal pixel intensity profiles were calculated. The total slice 

        

     
 

Figure 4.3.2.1 (a) The main steps of pre-processing beginning with original DICOM 

image, (b) generated binary image after morphological and thresholding operations 

and (c) pre-processed image. 

 

(a) (b) 

(c) 
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numbers and slices used in the calculation of mean pixel intensity value are 

provided in Table 4.3.3.1. 

The result of mean pixel intensity values is given in Figure 4.3.3.1. The 

results confirm that adding nanoparticles in agarose gel increases the pixel index 

number and the MNPs appears brighter in the CT images. According to mean 

intensity values, Mn and Mg NPs have better X-ray attenuation property and Sr 

is the second, then respectively Ba and Fe NPs. As expected, the mean intensity 

value of reference is the lowest while close to Fe NPs. 

 

Figure 4.3.3.2 illustrates the effect of nanoparticle-fluid on pixel index 

number along with the horizontal direction at middle same row. The lines of 

profiles permit to understand how the nanoparticle type affects the pixel index 

numbers at same slice and at the same row.   Despite the same volume of nanofluid 

was used in each specimen, the horizontal profiles and mean intensity values are 

quite different. As is seen in the figure, after injection nanofluid the pixel intensity 

values are increased. The superiority of Sr and Ba NPs are validated against Fe 

NPs due to their higher pixel index number enhancement. Surprisingly, the 

Samples 

Total 

number of 

slices 

Slices used in 

calculation of mean 

pixel intensity values 

Reference 

 
32 15, 16, 17 

Ba 47 23, 24, 25 

 

Fe 
35 16, 17, 18 

Mg 39 19, 20, 21 

Mn 47 23, 24, 25 

Sr 38 18, 19, 20 

 

Table 4.3.3.1: The total slice numbers and the slices used in the calculation of mean 

intensity value. 
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increment of pixel numbers using Fe nanofluid is not as well as other types of NPs 

while Fe based NPs are commercially used in clinical applications. 

 

 

Figure 4.3.3.1 The mean intensity values of the different samples. 

   

Figure 4.3.3.3 illustrates the greatest contrast enhancement of both Mg and 

Mn-based nanofluids in pixel numbers. Additionally, the profile lines of Mg and 

Mn are compared with Fe to approve the strongest contrast enhancement 

capability of both Mg and Mn NPs against to commercially used Fe-core NPs.  
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(c) 

 

Figure 4.3.3.2 Horizontal intensity profile comparisons at central slice in between 

reference and (a) Ba MNPs, (b) Fe MNPs, (c) Sr MNPs at central slice. 
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(b) 

 

(c) 

Figure 4.3.3.3 Horizontal intensity profile comparisons at central slice in between 

reference and (a) Mg MNPs, (b) Mn MNPs, (c) Fe, Mg, Mn MNPs at central slice. 
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4.3.4 Discussion and Outlook 

 

 As is discussed in this Chapter, there have been great advances in 

nanoparticle contrast agents for CT imaging in recent years. The fascinating 

features of nanoparticle contrast agents against to traditional molecular contrast 

agents permit to improve accuracy of CT imaging. Moreover, specific forms of 

NPs have been developed such as magnetic-core based nanoparticles recently. 

With current advancements, MNPs have been utilized as “theranostics” by 

combining their usage in cancer diagnosis and hyperthermia.  

The study attempts to shed light improving CT sensitivity and imaging 

accuracy using novel MNPs contrast agents. Under the experimental setup as 

described in the present Chapter, the MNPs are investigated as contrast agents for 

CT imaging. Since the contrast effect is usually associated with HU numbers for 

CT imaging, we expect increment on pixel index numbers after injection of the 

novel MNPs to the agarose gel. The MNPs contrast agents show high X-ray 

absorption by increasing HU numbers and their performances are superior to Fe 

NPs which are commercially used.  It is found that Mn and Mg cores have 

superiority in all comparisons. Although the reason behind performance 

differences of five different core types cannot be explained completely, the MNPs 

can be suitable choices for more detailed CT images to increase diagnosing 

accuracy.  

However, a few MNPs formulations approved by FDA due to 

biocompatibility and considerations of possible side effects that can be observed 

from the administration of MNPs to patient. Since detailed knowledge about 

degradation, toxic and metabolism process of heavy metals in the human body are 

not well known, intensive assessment of these procedures is needed.  

As the limitations of MNPs contrast agents are addressed, nano-scale 

contrast agents will be a key component in the field of improving diagnostic 

imaging capabilities by incorporating active and passive targeting methods. 

Moreover, their unique properties under proper magnetic field push the MNPs 

into cancer treatment applications. 
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Chapter 5 

 

Conclusion and Future Work  

 

 

In this dissertation, we aimed to improve CT image quality by developing 

new reconstruction algorithm and increasing the contrast sensitivity of CT 

imaging system using the novel contrast agents in order to diagnose cancerous 

tissues more accurately with acceptable radiation dose.  

Indeed, there is a trade-off between the image quality and radiation dose. 

The current CT systems employ traditional FBP that has the ability to reconstruct 

images at sufficient quality using a high number of projections. However, the high 

radiation exposure may result in cancer in long-term. Thus, the advanced methods 

need to be developed to overcome data insufficiency problems. Most of the 

researchers have been suppressing the image quality degradation by using 

iterative methods. Iterative methods estimate the image through generating the 

projection data from the estimated image and comparing it with real projection 

data. Then, the error term is back propagated to the previous estimated image. The 

practical application of iterative methods is restricted because of high 

computation complexity of these methods.  

The first contribution of the present thesis is the proposed algorithm for 

increasing the quality of reconstructed images by using FBP based method to 

decrease required computation time. However, the major problem in low dose CT 

imaging is data incompleteness thus FBP significantly degrade image quality. In 

this case, TV minimization is able to suppress several artifacts arose from a 

limited number of projections while preserving boundaries of objects in the 
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image. The developed method combines striking features of these two methods as 

powerful reconstruction algorithm in order to solve data insufficiency and time 

limitation problems. The performance of the proposed method was investigated 

using well known 2D Modified Shepp-Logan phantom. The visual comparisons 

such as horizontal and vertical profiles have been used. We also informed four 

quality metrics as RMSE, SNR, CNR, and SSIM to measure numerically the 

accuracy of the proposed method. The results indicate the superiority of the 

proposed method against to traditional FBP. Moreover, the outputs of the 

proposed method are comparable with ART [59] whereas the proposed method 

reduces computation time greatly. Since FBP is still used in commercial CT 

scanners, our proposed algorithm can be applied to practice.  

The selection of FBP reconstruction parameters has a significant impact on 

the image quality. The development of adaptive selection of parameters will be 

one of the future work. The other future work is to test our algorithm with real 

phantoms.  

The second contribution of the thesis centers on approving the usage of 

novel MNPs as contrast agents for CT imaging. The use of contrast agents in CT 

imaging has been increased due to inability to differentiate soft tissues from 

surrounding tissue accurately. This limits the diagnosing accuracy of CT imaging 

system. Thus, administration of contrast media to enhance the contrast of CT 

images can help to have more detailed images. In accordance with this purpose, 

we investigated the contrast efficiency of novel MNPs for CT imaging. MNPs 

have been studied widely in biomedical applications due to their unique physical 

and chemical properties. In addition to their superior features against to traditional 

iodine-based contrast agents, they have therapeutic characteristics.  

In order to examine contrast ability of the five different core types MNPs, 

the experimental protocol was designed. The results of image processing steps 

indicate the superiority of Mg and Mn magnetic core NPs against to Sr, Ba, and 

Fe respectively.  

Since the MNPs have a theranostic characteristic, they can produce 

acceptable heating to the cancerous site to remove a tumor utterly from the body 
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without any damage to surrounding healthy tissues. The utilizing MNPs for 

hyperthermia will be another future direction of this study.  
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