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Abstract

The purpose of this study is to present an analytical based numerical solution for Jamming Transition Problem (JTP) using
Interpolated Variational Iteration Method (IVIM). The method eliminates the difficulties on analytical integration of expressions
in analytical variational iteration technique and provides numerical results with analytical accuracy. JTP may be transformed into
a nonlinear non-conservative oscillator by Lorenz system in which jamming transition is presented as spontaneous deviations
of headway and velocity caused by the acceleration/breaking rate to be higher than the critical value. The resulting governing
equation of JTP has no exact solution due to existing nonlinearities in the equation. The problem was previously attempted
to be solved semi-analytically via analytical approximation methods including analytical variational iteration technique. The
results of this study show that IVIM solutions agree very well with the numerical solution provided by the mathematical
software. IVIM with two different formulation according to governing equation is introduced. Required order of the solution
and number of time steps for a good agreement is determined according to the analyses performed using IVIM.
c⃝ 2019 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.
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1. Introduction

The traffic flow is a major interest of practical transportation applications based on the models introducing the
features of moving objects. Early on modeling of traffic flow was based on first order conservation laws of fluids
[33,44]. Prigogine [42] developed kinetic theory for traffic flow. Payne [40] and Whitham [58] derived second order
approximations of car-following equations. Daganzo [7] examined the flaws in higher order traffic flow models.
Zhang [63] proposed an improved non-equilibrium model by replacing traffic sound speed in PW model [40,58] by
a concentration dependent term. Aw and Rascle [2] developed a second order traffic model resolving nonphysical
effects existing in previous models. Models attempting to describe traffic flow phenomena on the basis of single
vehicle elements are called microscopic models while macroscopic models explain the traffic phenomena are with
collective traffic properties [31]. Kinetic models are based on the analogy to gas dynamics that lead to Boltzmann

∗ Corresponding author.
E-mail address: sb.coskun@kocaeli.edu.tr (S.B. Coşkun).
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type equations [55]. Kinetic models are suitable for the flows with lower or medium traffic densities while at
higher densities continuum models perform better [31]. For a continuous traffic flow, it is important to determine
the behavior of transported entities that may cause traffic congestion which occurs when the volume of traffic
flow exceeds the capacity of a node in a highway network where bottleneck occurs at these nodes. Many studies
exist related to traffic congestion. [4,49,64,61,3,52,5,50,57], microscopic models [6,9,32], macroscopic models
[39,30,29,23,54,22,62,48,8,28] and kinetic models [42,43,41,36,26,27,10] in literature. Some researchers focused on
the jamming transition problem (JTP) in various forms such as thermodynamic, hydrodynamic and kinetic theories
[34,14,15], car-following model [13,37,51,47] and cellular automaton model [35,60,53].

JTP is transformed into a nonlinear non-conservative oscillatory system with a restoring damping term, via
the Lorenz system [38,24,25]. The governing equation of the JTP is a highly nonlinear differential equation. The
equation was solved with different analytical approximate solution techniques such as the Homotopy Perturbation
Method (HPM) and the Variational Iteration Method (VIM) [12], the Differential Transformation Method (DTM)
[11], the Homotopy Analysis Method (HAM) [16] and the Adomian Decomposition Method (ADM) [46].

In this study, the governing equation of JTP is solved using Interpolated Variational Iteration Method (IVIM)
introducing two different formulations due to Lagrangian multiplier described in variational iteration method. VIM
is an analytical technique developed by He [17]. VIM has been successfully used in the solution of linear/nonlinear
ordinary/partial differential equations [18,19,21,56] and has great potential to be discovered [20,59]. A numerical
interpretation of VIM for initial value problems was derived by Salkuyeh and Tavakoli [45] named as IVIM. Later,
Atay et al. [1] applied IVIM for the solution of stiff differential equations. IVIM can be described as discretized
formulation of the VIM. Although the analytical derivation of the solution brings the expectation of more accurate
results, analytical integration process sometimes requires enormous time durations depending on the functions to be
integrated. IVIM reduces the integration time due to nonlinear terms existing in the equation that is a great advantage
over analytical approximation techniques such as VIM, HPM, DTM, ADM and HAM. This study investigates the
application of IVIM first time to the presented problem.

2. Governing JTP equation

JTP is converted to a nonlinear non-conservative oscillator by Lorenz system that presents the jamming transition
as spontaneous deviations of headway and velocity caused by the acceleration/breaking rate to be higher than the
critical value. The complex dynamics of traffic flow in the one-lane highway can be defined using Lorenz scheme
based on the car following model for which the formulation process is summarized below [38,24,25].

Suppose that ∆x is the headway between two observed vehicles. The absolute value of headway deviation is
introduced as

η ≡ |∆x − h| (1)

where h is optimal headway or safety distance. The velocity deviation due to variation of headway deviation from
optimal value v0 − V is

v ≡ ∆ẋ − (v0 − V ) (2)

where v0 = h/t0. Here, t0 is nominal time lag, v0 is optimal speed vehicle, V is actual velocity of observed vehicle
and x is vehicle coordinate.

Khomenko et al. [25] reported that in the equations of motion it is assumed that in the autonomous mode
headway deviation η, headway deviation velocity v and acceleration/braking time τ have dissipative behavior and
their relaxation to equilibrium state is governed by Debye type equations with corresponding relaxation times tη,
tv , and tτ .

Besides headway deviation η and its velocity deviation v should vary to prevent the growth of τ , since the
decrease of acceleration/breaking time support to the formation of stable traffic flow according to LeChatelier
principle. These issues are taken into account by the Lorenz system that describes the self-organization process.

Time rate of change of headway deviation is defined as the rate of change of headway deviation to its stationary
position.

η̇ =
0 − η

tη
+ v = −

η

tη
+ v (3)
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The rate of velocity deviation variation and the rate of acceleration/breaking time are supposed to have the following
forms.

v̇ =
0 − v

tv
+ gvητ = −

v

tv
+ gvητ (4)

τ̇ =
τ0 − τ

tτ
− gτηv (5)

In Eqs. (4)–(5), tv , tτ , gv and gτ are positive constants and dot mean differentiation with respect to time. In Eq. (5)
the stationary accelerating/braking time τ0 required to take characteristic velocity is assumed as a finite value.

In the set of equations, the fluctuation of acceleration/braking time is not considered. In Eqs. (3)–(5), the first
terms on the right-hand side of equations characterize the relaxation of each quantity to an equilibrium value
and the second term on the right-hand side of Eq. (4) provides a positive feedback of headway deviation η and
acceleration/breaking time τ on velocity deviation ν. The velocity deviation is increased due to the positive feedback
that leads to traffic jam formation.

There is no available analytical solution for the set of equations (3)–(5) and some simple assumptions introduced
to obtain an admissible solution such that tη ≫ tτ and tη ≈ tν , the relaxation time of acceleration/breaking is
too small when compared with the relaxation times for headway deviation and velocity deviation. According to
these conditions, coordination of acceleration/breaking time τ occurs through the variation of headway and velocity
deviations. The assumptions lead to the small parameter tτ τ̇ ≈ 0 and Eq. (5) turns into

τ = τ0 − gτ tτηv (6)

In order to form a one-parameter model, velocity deviation and time rate of velocity deviation in Eq. (4) are
determined from Eq. (3) are substituted in Eq. (4) simultaneously with Eq. (6).

η̈ +
η̇

tη
= −

1
tv

(
η̇ +

η

tη

)
+ gvη (τ0 − gτ tτηv) (7)

The velocity deviation in Eq. (6) now appears in Eq. (7) and it is again substituted in the expression determined
from Eq. (3).

η̈ +
η̇

tη
= −

1
tv

(
η̇ +

η

tη

)
+ gvη

[
τ0 − gτ tτη

(
η̇ +

η

tη

)]
(8)

Eq. (8) can be rearranged as

η̈ +
η̇

tη

(
1 +

tη
tv

+ gvgτ tηtτη2
)

= η

(
gvτ0 −

1
tvtη

)
−

gvgτ tτ
tη

η3 (9)

Multiplying both sides of Eq. (9) by t2
η produces the following equation.

t2
η η̈ + tηη̇

(
1 +

tη
tv

+ gvgτ tηtτη2
)

= η

(
gvt2

ητ0 −
tη
tv

)
− gvgτ tηtτη3 (10)

Introducing natural scale factors tη, ηm =
(
gvgτ tηtτ

)−1/2, vm = ηm/tη = t−3/2
η (gvgτ tτ )−1/2, τc =

(
gvt2

η

)−1

into Eq. (10) for time, headway deviation, velocity deviation and acceleration/braking time respectively give the
following form.

t2
η η̈ + tηη̇

(
1 +

tη
tv

+
η2

η2
m

)
= η

(
τ0

τc
−

tη
tv

)
−

η3

η2
m

(11)

Dividing both sides of Eq. (11) by ηm constitutes following normalized form.

η̈

ηm/t2
η

+
η̇

ηm/tη

(
1 +

tη
tv

+
η2

η2
m

)
=

η

ηm

(
τ0

τc
−

tη
tv

)
−

η3

η3
m

(12)

Introducing nondimensional constants σ ≡ tη/tv and ε ≡ τ0/τc and redefining η as normalized headway deviation,
following nondimensional governing equation for one-parameter model is developed for JTP.

η̈ + η̇
(
1 + σ + η2)

− η (ε − σ) + η3
= 0 (13)
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Eq. (13) is a third order nonlinear differential equation possessing no analytical solution due to highly nonlinear
terms existing in the equation. In such problems, numerical, variational or analytical approximate solution techniques
may be employed to provide a solution.

3. Interpolated variational iteration method (IVIM)

Salkuyeh and Tavakoli [45] developed IVIM to solve a one-dimensional initial value problem.

u′ (t) = f (t, u(t)) u (a) = ua t ∈ [a, T ] (14)

VIM formulation for the problem given in Eq. (14) may be written according to He [17] as follows:

um+1 (t) = um (t) +

∫ t

a
λ (ξ, t)

(
u′

m (ξ) − f (ξ, um (ξ))
)

dξ (15)

Salkuyeh and Tavakoli [45] applied integrating by parts to Eq. (15) assuming u0 (a) = 0 to obtain following
procedure.

um+1 (t) = Gm (t) −

∫ t

a
Hm (ξ, t) dξ (16)

where

Gm (t) = (1 + λ (t, t)) um (t) − λ (a, t) um(a) (17)

Hm (ξ, t) =
dλ(ξ, t)

dξ
um (ξ) + λ (ξ, t) f (ξ, um (ξ)) (18)

IVIM was applied to Eq. (16) dividing the interval [a, T ] into n − 1 subintervals, which discretized the solution
domain with the following nodes.

ti = a + (i − 1) h, i = 1, 2, . . . , n h =
T − a
n − 1

(19)

At this step, Salkuyeh and Tavakoli [45] defined B-spline basis function of first order at the nodes and a numerical
integration procedure was obtained applying a piecewise linear interpolation to Hm (ξ, t) in Eq. (16). The method
leads to the following numerical equivalent of VIM formulation in Eq. (15).

um+1 (ti ) ≈ ûm+1 (ti ) = Gm (ti ) − h
i−1∑
r=2

Hm (tr , ti ) −
h
2

Hm (ti , ti ) (20)

where index m + 1 denotes m + 1st order solution.

4. IVIM for JTP

JTP was previously solved with different analytical approximation techniques [12,11,46] with the following initial
conditions.

η(0) = A η̇(0) = 0 (21)

JTP is governed by a system of two first order equations based on Eq. (13) as follows:

η̇ − χ = 0, η(0) = A (22)

χ̇ + χ
(
1 + σ + η2)

− η (ε − σ) + η3
= 0, χ(0) = 0 (23)

Lagrangian multiplier for Eq. (22) can be determined by imposing the variation and by considering the restricted
variation which reduces

δηm+1 (t) = δηm (t) + δ

∫ t

0
λ (ξ, t) η̇m (ξ) dξ (24)

δηm+1 (t) = δηm (t) + λ (ξ, t) δηm (ξ)|ξ=t −

∫ t

0
λ′ (ξ, t)

(∫ ξ

0
δη̇m (τ ) dτ

)
dξ (25)
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Thus, the equations below are obtained.

λ′ (ξ, t) = 0. 1 + λ (ξ, t)|ξ=t = 0 (26)

Hence, Lagrangian multiplier for Eq. (22) becomes

λη (ξ, t) = −1 (27)

However, two different Lagrangian multipliers may be used for Eq. (23) by assuming linear operator in two different
ways.

4.1. Formulation I

Assuming Lχ = χ̇ in Eq. (23) Lagrangian multiplier can be determined similarly like performed between
Eqs. (24)–(27) with Lη = η̇. Thus,

λχ (ξ, t) = −1 (28)

Then, IVIM for JTP would be obtained as follows:

Gχ
m (t) = 0 (29)

Hχ
m (ξ, t) = χm (ξ)

(
1 + σ + ηm (ξ)2)

+ η(ξ ) (ε − σ) − η(ξ )3 (30)

Gη
m (t) = A (31)

Hη
m (ξ, t) = χm (ξ) (32)

χ̂m+1 (ti ) = Gχ
m (ti ) − h

i−1∑
r=2

Hχ
m (tr , ti ) −

h
2

Hχ
m (ti , ti ) (33)

η̂m+1 (ti ) = Gη
m (ti ) − h

i−1∑
r=2

Hη
m (tr , ti ) −

h
2

Hη
m (ti , ti ) (34)

4.2. Formulation II

Assuming Lχ = χ̇ + (1 + σ )χ in Eq. (23) variational procedure would be maintained as follows:

δχm+1 (t) = δχm (t) + δ

∫ t

0
λ (ξ, t) [χ̇m (ξ) + (1 + σ )χm (ξ)] dξ (35)

δχm+1 (t) = δχm (t) + λ (ξ, t) δχm (ξ)| ξ=t −

∫ t

a
λ′ (ξ, t)

(∫ ξ

0
δχ̇m (τ ) dτ

)
dξ

+

∫ t

0
λ (ξ, t) (1 + σ) δχm(ξ )dξ (36)

δχm+1 (t) = δχm (t) + λ (ξ, t) δχm (ξ)| ξ=t −

∫ t

a

[
λ′ (ξ, t) − (1 + σ) λ (ξ, t)

]
δχm(ξ )dξ (37)

Thus, the following equations are obtained.

λ′ (ξ, t) − (1 + σ) λ (ξ, t) = 0. 1 + λ (ξ, t)| ξ=t = 0 (38)

Hence, Lagrangian multiplier for Eq. (23) may be determined as

λχ (ξ, t) = −e(1+σ)(ξ−t) (39)

Then, IVIM for JTP would be obtained as follows:

Gχ
m (t) = 0 (40)

Hχ
m (ξ, t) = e(1+σ )(ξ−t) (χm (ξ) ηm (ξ)2

− η (ξ) (ε − σ) + η(ξ )3) (41)

Gη
m (t) = A (42)

Hη
m (ξ, t) = χm (ξ) (43)

χ̂m+1 (ti ) and η̂m+1 (ti ) can be obtained using Eqs. (30)–(31).
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Fig. 1. The relative errors between IVIM and numerical solutions with Type I and Type II solutions of the IVIM for Mode 1.

Fig. 2. The relative errors between IVIM and numerical solutions with Type I and Type II solutions of the IVIM for Mode 2.

5. Results

In order to investigate the behavior of the IVIM solution, we select four different modes as different values of
the parameters in the governing JTP equation. The values of parameters for different modes are shown in Table 1.

The order of solution and number of subintervals in IVIM directly affect the accuracy and elapsed time of the
solution. To define the optimum order and subintervals, relative error values between IVIM and numerical solutions
have been tested with first to sixth order solutions and from 20 to 1000 subintervals for 4 modes. The results are
shown in Figs. 1–4. The figures show that a minimum of fifth or sixth order solution with 200 or more subintervals
is generally sufficient for an accurate solution. The relative error between IVIM and numerical solution is calculated
using Eq. (44).

Relative Error = |I V I M-numerical| / |numerical| (44)

IVIM results either of type 1 or type 2 were obtained from a MATLAB program coded by authors. Numerical
values were calculated using NSolve command in Wolfram Mathematica Software. Solutions for each mode are
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Table 1
Different values for parameters ε, σ and t.

Mode ε σ t

1 0.25 0.75 0.25
2 0.75 2.50 0.50
3 3.25 0.75 0.75
4 2.00 0.75 1.00

Table 2
Results of numerical, IVIM Type I and IVIM Type II solutions for different values of initial headways in Mode 1.

IVIM conditions
Type of solution

Initial headway

Order Subintervals 0.1 0.2 0.3 0.5 0.7 0.9 1.0

6

20
IVIM 1 0.098859 0.197589 0.296066 0.491778 0.685109 0.875322 0.969080
IVIM 2 0.098848 0.197568 0.296031 0.491707 0.684985 0.875127 0.968844

50
IVIM 1 0.098818 0.197502 0.295924 0.491479 0.684561 0.874407 0.967929
IVIM 2 0.098816 0.197499 0.295918 0.491467 0.684541 0.874375 0.967890

100
IVIM 1 0.098671 0.197193 0.295419 0.490433 0.682688 0.871347 0.964127
IVIM 2 0.098670 0.197192 0.295418 0.490430 0.682682 0.871338 0.964117

200
IVIM 1 0.098646 0.197140 0.295333 0.490254 0.682368 0.870825 0.963479
IVIM 2 0.098645 0.197139 0.295333 0.490253 0.682366 0.870822 0.963476

500
IVIM 1 0.098630 0.197107 0.295281 0.490145 0.682174 0.870509 0.963087
IVIM 2 0.098630 0.197107 0.295281 0.490145 0.682174 0.870508 0.963086

1000
IVIM 1 0.098625 0.197097 0.295263 0.490109 0.682109 0.870403 0.962956
IVIM 2 0.098625 0.197097 0.295263 0.490109 0.682109 0.870403 0.962955

Numerical 0.098620 0.197086 0.295246 0.490073 0.682044 0.870297 0.962824

Table 3
Results of numerical, IVIM Type I and IVIM Type II solutions for different values of initial headways in Mode 2.

IVIM conditions
Type of solution

Initial headway

Order Subintervals 0.1 0.2 0.3 0.5 0.7 0.9 1.0

6

20
IVIM 1 0.088080 0.175865 0.263067 0.434665 0.601014 0.760724 0.837769
IVIM 2 0.088042 0.175792 0.262967 0.434555 0.601024 0.761147 0.838612

50
IVIM 1 0.087498 0.174689 0.261276 0.431536 0.596364 0.754337 0.830433
IVIM 2 0.087537 0.174772 0.261409 0.431822 0.596935 0.755491 0.832093

100
IVIM 1 0.087303 0.174294 0.260673 0.430485 0.594800 0.752183 0.827951
IVIM 2 0.087355 0.174403 0.260848 0.430842 0.595479 0.753494 0.829801

200
IVIM 1 0.087204 0.174096 0.260371 0.429957 0.594015 0.751100 0.826702
IVIM 2 0.087261 0.174214 0.260559 0.430339 0.594733 0.752475 0.828633

500
IVIM 1 0.087145 0.173977 0.260189 0.429640 0.593542 0.750449 0.825949
IVIM 2 0.087204 0.174098 0.260383 0.430033 0.594281 0.751856 0.827925

1000
IVIM 1 0.087126 0.173937 0.260129 0.429534 0.593385 0.750231 0.825698
IVIM 2 0.087185 0.174059 0.260324 0.429930 0.594129 0.751649 0.827688

Numerical 0.087166 0.174021 0.260266 0.429830 0.593987 0.751472 0.827500

obtained for different values of initial headways changing in the interval [0, 1] with a step size of 0.1. The order of

solution is at most six and numbers of subintervals are selected as 20, 50, 100, 200, 500, 1000 for each pre-defined

initial headway. The results are shown in Tables 2–5.
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Fig. 3. The relative errors between IVIM and numerical solutions with Type I and Type II solutions of the IVIM for Mode 3.

Fig. 4. The relative errors between IVIM and numerical solutions with Type I and Type II solutions of the IVIM for Mode 4.

Maximum number of subintervals is selected as 1000 for each order of solution. However, it can be seen from
Figs. 1–4 that after approximately 200 subintervals the relative error becomes undistinguishable due to very small
changes in the result produced by the method. This behavior can also be observed from Tables 2–5 in which a
gradual convergence is still in progress. In Fig. 5, headway deviation is compared with time in η − t diagrams for
different modes with type 1 solution of IVIM and also numerical solution provided by Mathematica. The figures
depict that calculated headway deviations get better convergence with numerical solution while the order of solution
is increasing. Besides, it may be concluded that further improvement is still required for IVIM type 1 solution which
is two order higher than type 2 solution shown in Fig. 6.

In Fig. 6, numerical results are compared with IVIM type 2 solution. From the graphs one can conclude that
a fourth order solution is enough for acceptable accuracy in the solution of the problem. Better convergence is
observed for type 2 formulation of IVIM. This is an expected behavior due to the better representation of the linear
operator in type 2 formulation. Computed headway deviations have better agreement with the numerical solution
while the order of solution is increasing.
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Table 4
Results of numerical, IVIM Type I and IVIM Type II solutions for different values of initial headways in Mode 3.

IVIM conditions
Type of solution

Initial headway

Order Subintervals 0.1 0.2 0.3 0.5 0.7 0.9 1.0

6

20
IVIM 1 0.149669 0.296913 0.439515 0.703898 0.933957 1.128179 1.212830
IVIM 2 0.149372 0.296338 0.438693 0.702701 0.932562 1.126807 1.211541

50
IVIM 1 0.152861 0.303075 0.448231 0.715980 0.946872 1.139788 1.223208
IVIM 2 0.152343 0.302080 0.446830 0.714037 0.944756 1.137850 1.221449

100
IVIM 1 0.152186 0.301775 0.446399 0.713471 0.944227 1.137439 1.221119
IVIM 2 0.151676 0.300795 0.445022 0.711566 0.942161 1.135556 1.219414

200
IVIM 1 0.152514 0.302407 0.447292 0.714701 0.945533 1.138606 1.222159
IVIM 2 0.151988 0.301398 0.445873 0.712742 0.943412 1.136677 1.220414

500
IVIM 1 0.152712 0.302789 0.447831 0.715443 0.946319 1.139307 1.222783
IVIM 2 0.152178 0.301764 0.446390 0.713454 0.944168 1.137352 1.221016

1000
IVIM 1 0.152778 0.302917 0.448011 0.715691 0.946581 1.139541 1.222991
IVIM 2 0.152242 0.301887 0.446563 0.713693 0.944421 1.137578 1.221217

Numerical 0.152310 0.302013 0.446731 0.713915 0.944676 1.137780 1.221360

Table 5
Results of numerical, IVIM Type I and IVIM Type II solutions for different values of initial headways in Mode 4.

IVIM conditions
Type of solution

Initial headway

Order Subintervals 0.1 0.2 0.3 0.5 0.7 0.9 1.0

6

20
IVIM 1 0.139836 0.276427 0.406896 0.641338 0.834569 0.988111 1.052013
IVIM 2 0.139074 0.274979 0.404898 0.638779 0.832234 0.986653 1.051140

50
IVIM 1 0.140915 0.278468 0.409687 0.644790 0.837581 0.989904 1.053025
IVIM 2 0.140018 0.276768 0.407354 0.641848 0.834947 0.988289 1.052064

100
IVIM 1 0.141288 0.279172 0.410647 0.645970 0.838604 0.990511 1.053367
IVIM 2 0.140353 0.277401 0.408219 0.642915 0.835876 0.988842 1.052376

200
IVIM 1 0.141477 0.279529 0.411134 0.646566 0.839120 0.990817 1.053540
IVIM 2 0.140524 0.277725 0.408660 0.643457 0.836346 0.989120 1.052532

500
IVIM 1 0.141591 0.279744 0.411427 0.646925 0.839430 0.991001 1.053644
IVIM 2 0.140628 0.277921 0.408928 0.643785 0.836629 0.989287 1.052626

1000
IVIM 1 0.141629 0.279816 0.411525 0.647045 0.839534 0.991062 1.053679
IVIM 2 0.140663 0.277987 0.409017 0.643894 0.836724 0.989343 1.052657

Numerical 0.140700 0.278053 0.409103 0.644004 0.836798 0.989290 1.052570

6. Conclusion

In this study, Jamming Transition Problem (JTP) is solved using Interpolated Variational Iteration Method
(IVIM). JTP is modeled via Lorenz system that is a nonlinear non-conservative oscillator. In this model dissipative
dynamics of traffic flow can be represented within the framework of the Lorenz scheme. After some rearrangements
in Lorenz system a second order and highly nonlinear differential equation is obtained as the governing equation
of JTP. The problem was previously solved using analytical approximation methods which were cited in the text.
One of these methods is variational iteration method (VIM) based on variational theory. IVIM provides numerical
evaluations of the analytical integrations in the VIM formulation of the problem which reduce the solution time
significantly. In the study two different formulations are considered based on the two different assumptions of the
linear operator in governing system of equations. Results have shown that better convergence is obtained with
formulation type 2 which provides a better description of the linear operator. In this formulation all linear terms
are included in the linear operator. As expected better convergence is achieved in this analysis that is shown in
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Fig. 5. Variation of headway deviation with time for different modes with IVIM type 1 and numerical solutions.

Fig. 6. A simple definition for linear operator was assumed in formulation type 1. Hence, the solution converges
relatively slow when compared to the convergence provided with formulation type 2. For an accurate result some
additional iterations of the solution procedure are required with formulation type 1 which lead to a higher order
solution. An adequate evaluation of integrals in governing equation required at least 200 subintervals in the analysis
of JTP. Numerical integration in IVIM reduces time duration for integration drastically while the solution is still
based on an analytical derivation. As a result, IVIM is highly recommended for the solution of problems governed
by highly nonlinear differential equations for which there is no available analytical solution.
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