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The observation of old construction works confirms
that masonry domes can withstand tensile hoop
stresses, at least up to a certain level. Here, such
tensile resistance, rather than a priori assumed as a
property of the bulk material, is attributed to the
contact forces that are developed at the interfaces
between interlocked blocks under normal pressure,
specified by Coulomb’s friction law. According to
this rationale, the aspect ratio of the blocks, as
well as the bond pattern, becomes of fundamental
importance. To investigate the complex assembly of
blocks, supposed rigid, we present a non-smooth
contact dynamic analysis, implemented in a custom
software based on the Project Chrono C++ framework
and complemented with parametric-design interfaces
for pre- and post-processing complex geometries.
Through this advanced tool, we investigate the role
of frictional forces resisting hoop stresses in the
stability of domes, either circular or oval, under static
and dynamic loading, focusing, in particular, on the
structural role played by the underlying drum and the
surmounting tiburium.

1. Introduction
The analysis of architectural masonry structures stems
from the observation that they are usually massive. As
the stress is much lower than the compressive strength,
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it is the geometric form and the organized association of the constituent elements that governs
structural stability against the applied loads. A paradigmatic example is the segmental arch,
made by appropriately shaped stone blocks. Coulomb proved that moment failure occurs when
the thrust line can no longer be contained within the contouring surface of the arch. Kooharian
observed that limit theorems for perfectly plastic solids could also be applied to structures formed
by concrete voussoirs [1] under the hypotheses that the material is incapable of sustaining tension,
can carry infinite compressive stress and that no sliding occurs at the interface, so that the only
admissible motions are rotations about localized contact points or lines. Heyman [2] recognized
that this result could be extended to masonry structures under the aforementioned assumptions.

Accordingly, the analysis of an arch is reduced to predicting the ultimate mechanism of a
skeletal structure, usually two-dimensional, by using either graphical or analytical methods. A
first extension of the thrust line analysis to domes and vaults was proposed in [3] by ideally
interpreting the load-bearing mechanism as the composition of interacting arches in equilibrium,
which identify localized networks of compressive forces. This is the Thrust Network Analysis
of domes and vaults, which extends to the three-dimensional space the analogy between the
catenary arch and the hanging cable by employing simulated cable nets to describe equilibrium,
although from a computational point of view its implementation is very different from the
calculation of a cable net. The method was further developed by Ochsendorf [4] and Block [5],
using different operational approaches, either analytical or graphical [6]. Recently, Marmo &
Rosati [7] have reformulated the original version by abandoning the role of the dual grid,
elegantly employed in [5] to facilitate the use of this approach. The method reads for the
three-dimensional flow of forces within the domes but, as its two-dimensional counterpart, it
is conservative because it aims at finding at least one thrust net configuration where all the blocks
are under compressive stress.

A simple membrane calculation indicates that domes with cylindrical symmetry made of
no-tension material are biaxially compressed and thus remain sound from the crown down
to a certain parallel (related to the thickness), beyond which they crack into ‘slices’ that act
as flying buttresses [2]. This implies that the support structure (the drum) must resist to the
inclined actions transmitted by the dome, i.e. besides the vertical, there is a horizontal component
represented by the outward thrust. Such forces are often contained by one or more metal tension
rings, as those installed by Luigi Vanvitelli in Saint Peter in Rome. In other cases, the drum
is built so thick to contain the diagonal thrust, as in the Roman Pantheon. Such provisions
confirm the validity of the zero-tensile strength assumption, but they all discard the geometrical
and constitutive characteristics of the contact interfaces [8]. Indeed, many ancient domes over
drum still stand up even without abutments, while the ancient tension rings, when present,
often become slack over time, so that their action is negligible at least in the serviceability
limit state.

It is our opinion that in order to fully understand the statics of real masonry domes, it is
important to assume that a moderate tensile strength can counterbalance at least a part of the hoop
stresses. Such strength is sometimes admitted as a property of the bulk material in a facilitation
of the numerical analysis, rather than in an improvement of the accuracy of the response (see
Sect. 2.2 of [9]). In fact, even if the single block may have a noteworthy tensile strength, the
layered character of masonry and the fact that the mortar is not a sticky glue, suggest to neglect,
presumably on the safe side, the possibility of developing any kind of tensile stresses. However,
noteworthy shear forces of frictional nature can be generated at the interfaces. Therefore, the
resistance to horizontal tensile forces in domes can be attributed to an effect of this kind, which
depends on the vertical pressure in the way specified by Coulomb friction law.

A major difference between a theory that accounts for moderate tensile bulk strength and a
theory based on frictional sliding of the blocks, consists in the fact that, for the latter, the aspect
ratio and the bond pattern of the blocks forming the structure becomes of paramount importance
for the determination of the collapse mechanism. In general, frictional laws can be associative or
non-associative [10]. In the associative flow rule sliding is accompanied by a normal dilatancy,
which can be interpreted by an assumed roughness of the contact profiles [11]. Experiments
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have confirmed that also real dry frictional joints involve a moderate dilatancy [12], but in
general the response is highly nonlinear, implying interactions among shear, torsion and bending
moments [13].

In order to study the stability of complex arrangements, we assume that the blocks are rigid
and in frictional contact, and we adopt a non-smooth contact dynamic (NSCD) approach [14]
where the frictional flow rule is essentially non-associative à la Coulomb. Therefore, apart from
the friction coefficient, the model is independent of constitutive data, which are always difficult
to determine and subjected to a wide scattering. This results in a set-valued frictional contact
model which is expressed through a differential variational inequality formulation [15,16], relying
upon the theory of measure differential inclusion pioneered by Moreau [17,18]. In this setting,
velocities are functions of bounded variation so that accelerations (and forces) are measures, a
fact that accounts for the possibility of discontinuous events [19]. As in [20], we implement the
model in a custom NSCD simulator based on the Project Chrono C++ software library, equipped
with an optimized collision detection algorithm for convex and concave shapes. Moreover,
in order to provide pre- and post-processing functionalities for the simulator, we developed
custom tools within the Rhino CAD environment, using the Grasshopper parametric design
software. Other authors [21–23] have successfully applied NSCD using, as an alternative, the
LMGC90 software [24], which basically implements the same model, but here we prefer to rely
upon our own code because, as developers, we have a deep access to the customization of
the complementarity solver and of the collision detection engine. In detail, in order to solve
complex problems with a great number of blocks in mutual contact, ad hoc improvements to the
complementarity software and the collision detection engine had to be developed to speed up
the convergence. Similarly, a smooth flow of data was developed between the simulator and the
modelling tool. In any case, also the other results obtained with the LMGC90 software [25,26]
confirm that the NSCD approach is an efficient and reliable way to study the failure mechanisms
of masonry construction works. In fact, this approach can certainly analyse structures under
dynamic loads, like a moving truck on an arch bridge but, remarkably, it can also determine
the static state of block assemblies and provide information on the collapse mechanism under
increasing applied loads [20]. In particular, the model can account for shear failures, a possibility
that is ruled out in any approach based on the theorems of limit analysis, while the effective thrust
network can be obtained from computation.

The plan of the article is the following. In §2, we briefly recall the NSCD approach and its
formulation, detailing its numerical implementation. In §3, after discussing the role of frictional
contact in providing an effective tensile strength to masonry, the implemented NSCD method is
used to investigate the stability of various hemispherical domes, different in their aspect ratios
and in the bond pattern of the constituent blocks, as well as in the possible presence of a tiburium,
whose importance for the stability of the underlying drum will be discussed in detail. Section 4
discusses how the frictional contacts interfere with the geometric proportions, both at the local
level (aspect ratio of the constituent blocks) and at the global level (the shape of the dome, either
circular or oval). The overall achievements, drawbacks and hints for future work are discussed
in §5.

2. The non-smooth contact dynamics formulation
Apart from ad hoc improvements to the solver to speed up the convergence, the NSCD model
considered here is the same used in [20]. Referring to this for the details, here we just recall the
basic aspects, necessary for the physical interpretation of the numerical results presented in the
sequel. We recall that the NSCD formulation is characterized by non-smooth mechanics laws,
defined through convex but not necessarily differentiable potentials, for which sub-differentials
and measure differential inclusions [17,18] are basic tools [27]. To account for non-smooth
trajectories and jumps in speeds induced by hard contacts, the positions q(t) are functions
absolutely continuous with respect to the Lebesgue measure in time, but velocities v(t) are functions
of bounded variation.
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Figure 1. The contactmodel. (a) TheCoulomb friction cone for a single contact (local reference systemassociatedwith theupper
block). (b) Robust handling of contacts using sphere-swept surfaces. (Online version in colour.)

At the ith contact point of the generic block, define a local coordinate system by one
normal unit vector tn,i, directed inwards, and two mutually orthogonal tangent vectors tu,i, tv,i.
The contact force exerted on the block is defined by the force multipliers γ̂n,i for the normal
component, and γ̂u,i, γ̂v,i for the tangential forces caused by friction, so that the contact force reads

Fi = Fn,i + F‖,i = γ̂n,itn,i + γ̂u,itu,i + γ̂v,itv,i, (2.1)

where Fn,i and tF‖,i are the normal and tangential components, respectively.
The Coulomb–Amontons contact model introduces the friction coefficient μ and states that the

contact reaction is contained in the convex cone shown in figure 1a, defined by μγ̂n,i ≥
√

γ̂ 2
u,i + γ̂ 2

v,i

for γ̂n,i ∈ R
+. Moreover, the tangential relative velocity v‖ and the tangential contact force F‖ are

in opposite direction, i.e. 〈F‖, v‖〉 = −‖F‖‖‖v‖‖. No distinction is made here between static μs and
kinetic μk friction coefficients because, even if the formulation could support this, it would have
no significant outcome for incipient potential motions of masonry structures, being the sliding
either null (in static analyses) or moderate (in transient seismic analyses).

For active contacts, the De Saxcé bipotential [27] allows defining in a synthetic and elegant
form the conditions governing the frictional force as a cone complementarity problem, which
result in a convenient numerical implementation. Let f (q, v, t) denote the generalized forces,
including gravitational forces, external applied forces, gyroscopic forces, let M represent the mass
matrix, containing all the masses and inertia tensors of the rigid bodies, and let f c represent
set-valued contact forces, given by multipliers γ̂n,i, γ̂u,i and γ̂v,i. The equilibrium condition for
all blocks is stated by

M
dv

dt
= f (q, v, t) + f c. (2.2)

In an approach based on measure differential inclusions, one can allow for discontinuous
velocities (v(l+1) − v(l)) over a time step h, which are determined by the reaction impulses γ i =
∫t+h

t dγ i(dt) (see expressions (28–30) of [20]).
Because the integration process may be affected by various numerical inaccuracies (integration

error, finite precision of floating point, etc.), a peculiarity of the code is the introduction of a
stabilizing term, referred to as b in [20], which corrects the relative position of blocks at the
active contacts at each time step, so that possible compenetrations are always maintained within
a prescribed tolerance.

In extreme synthesis, time integration is performed with a stepping scheme; at each time step,
one must compute the unknown vector γ which collects contact impulses hγ̂n,i, hγ̂u,i and hγ̂v,i
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from (2.1). This represents the main bottleneck, as γ must be obtained by solving a difficult cone
complementarity problem γ ∈ Υ ⊥ ū ∈ Υ ∗, where Υ is the set of all friction cones, Υ ∗ is its dual,
and ū is a nonlinear term that, following the notation of [20] (see formula (35)), is given by

ū = Nγ + r + ũ(v), (2.3)

where N depends upon the mass matrix M and the configuration of contacts; r depends upon the
mass matrix, the stabilizing term b, the applied forces and the multipliers γ ; and finally ũ(v) is a
highly nonlinear function of the velocity field v.

To bypass the noteworthy numerical difficulties of solving such nonlinear complementarity
problem, one may neglect the ũ term of (2.3). This leads to a more treatable cone complementarity
of convex nature (expression (36) of [20]), at the cost of accepting that the frictional model becomes
associative. From a physical point of view, omitting ũ in (2.3) implies that a small gap proportional
to h‖vi,‖‖μ, where vi,‖ is tangential relative velocity at the active contact point, builds up during
sliding motion [28]. However, the introduction of the stabilizing term b annihilates this gap at the
end of the iteration. In other words, the solution of the problem relies on an associative frictional
model at the time-step level, but the dilatation effect remains limited to the magnitude associated
with one time step, so that in the long run the solution is equivalent to that of a non-associative
frictional model. The magnitude of the dilatation tends to zero for h ↓ 0 and becomes negligible as
the tangential sliding velocity vi,‖ tends to zero, as it is the case when the blocks are in equilibrium
under static loads, i.e. their movement is small and serves to provide the settlement of the system
in order to develop the frictional contact forces. This convex relaxation from the associated friction
law has clearly no importance in the cases in which v = 0 and consequently ũ vanishes, i.e. for
static problems or sticking or rolling contacts without slip.

Efficient numerical solution algorithms can be used to solve the convex cone complementarity
problem. Here, we employ a variant of the non-monotone spectral projected gradient method [29]
equipped with preconditioning and a fall-back strategy to ensure monotone convergence [30].
In order to decide if the set of blocks is in equilibrium under static loads with no appreciable
movements, one solves the cone complementary problem at step (l + 1) assuming that the relative
velocity field at step (l) is null, calculates the contact forces and verifies a posteriori if this solution
is compatible with null velocity at step (l + 1). If this is not the case, then the blocks shall move.

Another peculiarity of the code is the computation of the contact points, which can be
quite difficult in case of complex geometries, as considered in the following. The collision
pipeline is split in a broad phase, which sorts out, at low computational costs, only those pairs
of blocks that are close enough to potentially generate contact points, followed by a successive
narrow phase, which refines those pairs. For the broad phase filtering, we adopt the bounding
volume hierarchy implemented in [31] that, for structures of the kind analysed in the sequel,
provides a collision algorithm of quasilinear time complexity. The narrow phase stage is based
on the Gilbert–Johnson–Keerthi algorithm [32] that operates on convex surface (boxes, faceted
polytopes, cylinders, etc.). The geometries that we will consider are strongly characterized by
degenerate cases, i.e. where two faces are coplanar and there are infinite contact points. This
difficulty is solved by running the Gilbert–Johnson–Keerthi algorithm several times with small
perturbations on object rotations and keeping a persistent contact manifold, thus obtaining a set
of possible contact points from which those that maximize the contact patch are selected by a
heuristic collision filtering step.

A second problem is that the Gilbert–Johnson–Keerthi algorithm assumes shapes to be
separated, but time-step integration and numerical errors might involve slight interpenetration.
To overcome this problem, we consider the original shapes as sphere-swept surfaces, like the one
represented in figure 1b, obtained with the algorithm proposed in [33]. Offsetting the original
contours of the blocks of a quantity ε, one defines a tolerance distance for the contacts, i.e. two
blocks are assumed to be in contact if the interpenetration is less than ε, as schematically indicated
in figure 1b. This ensures the robustness of the contact detection algorithm.
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The model provides multiplicity of solutions for dual variables (the contacts), but gives a
unique solution in terms of primal variables (the velocities) [34]. This indeterminacy does not
affect the trajectories of falling blocks, but may be a problem for the iterative solver because
iterations may converge to different solutions especially when the blocks are in equilibrium,
showing a fluctuation of the contact forces. For these reasons, we regularize by adding a numerical
compliance for the contacts, here achieved by modifying the matrix N of (2.3) by adding a
diagonal part. Roughly speaking, regularization is somehow equivalent to introducing a fictitious
extensional spring between impinging bodies at each contact point. Our numerical tests [35]
showed that the higher the compliance parameter, the faster the convergence of the iterative
solver, but even a very low value of the compliance provides good stability even for large time
steps.

On the one hand, the fictitious compliance could be calibrated to model the presence of mortar
joints between the blocks. However, a precise calibration can be difficult to achieve because there
are various types of mortars with different mechanical properties, essentially nonlinear. Moreover,
in the following numerical experiments, we do not model the single bricks of the masonry works
(otherwise the presence of hundreds of thousands of elements would expand the computation
time too much), but rather we consider macro-blocks that simulate sets of smaller bricks, for
which the evaluation of the role of the mortar can be difficult. Therefore, we have decided
to consider a very low, non-physical value of the compliance, compatible with an engineering
assumption of pseudo-rigid contacts. We have verified that results do not sensibly change if the
selected value of the compliance is increased, or reduced, of one order of magnitude.

In any case, we observe that NSCD simulations might exhibit sensitivity to input data,
especially for large motions caused by seismic actions like those of §3c. For instance, when
simulating collapses, small changes in the geometry might give different outcomes in terms of
collapse configuration, especially when starting from complex shapes. This is not a drawback of
the numerical procedure, but a property inherent to the nature of the physical problem. In static
analysis, however, this sensitivity issue is less relevant, and is mostly associated with the problem
that the assumption of rigid blocks causes an indeterminacy of over-constrained contact forces;
hence small changes in the input data might cause slightly different networks of contact forces,
but still produce the same static outcome. We resolve this issue through the aforementioned
regularization, which avoids indeterminacy in the redundant contact constraints and, at the same
time, reduces the sensitivity of results to input data.

3. Experiments on hemispherical domes
Referring to the illustrative example of a hemispherical dome supported by a slender cylindrical
drum, the aim of this section is to show the significant role played by the frictional nature of the
contact interactions among the constituent blocks of the masonry work in providing an effective
tensile strength.

(a) A simple analytical approach
It is useful to refer to the simple analytical treatment of a hemispherical dome. Let R and s
represent the radius of the mid surface and the (constant) thickness of the dome, respectively.
Reference can be made to the membrane theory, first proposed by Schwedler in 1866 and
later developed by other authors including Rankine (1904) [2]. Besides geometric and loading
symmetry, the basic hypotheses are that the surface is so thin that its bending stiffness is negligible
and the internal forces are coplanar. Figure 2a shows the geometric parameters θ and ϕ for
a spherical cap, with 0 ≤ θ ≤ 2π and 0 ≤ ϕ ≤ α, which becomes hemispherical for α = π/2. If ρ

denotes the density of the material and g the gravity acceleration, it is a standard argument to
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Figure 2. Analytical treatment of a hemispherical dome. (a) Parameter definitions. (b) Schematic of the bond pattern: frictional
contact allows carrying hoop stresses. (Online version in colour.)

demonstrate that the meridian and hoop stress resultants, Nφ and Nθ , respectively, in units of
force per length, read

Nφ = −ρsg
R

1 + cos ϕ
and Nθ = ρsg R

(
1

1 + cos ϕ
− cos ϕ

)
. (3.1)

These expressions provide the well-known result that, whereas the meridian stress is always
compressive, the hoop stress becomes tensile when ϕ > ϕ̄ � 0.90 rad � 51.8◦.

Let us suppose that the dome is formed by layering successive rings in an interlocking bond
pattern, such that the ends of each block are approximately above the centre of the blocks beneath
it. With respect to the schematic of figure 2b, let the width and height of each block be b and h,
respectively, with b, h 
 R. Consider the equilibrium of a representative volume element of sides
b and 2h, as represented in the same figure. Taking into account that the hoop stress can only be
equilibrated through the frictional contact of the interfaces, if μ denotes the friction coefficient,
then from (3.1) the joint will not slide if

2hNθ ≤ μ(−bNφ) ⇒ μ
b

2h
≥ sin2 ϕ − cos ϕ. (3.2)

On the other hand, if σr denotes the tensile strength of the material forming the block, the
condition to avoid rupture is

2hNθ ≤ shσr ⇒ 2ρgR
sin2 ϕ − cos ϕ

1 + cos ϕ
≤ σr. (3.3)

In a hemispherical dome, the maximum tensile hoop stress is at the base, for ϕ � π/2.
Consequently, from (3.2) and (3.3), one finds that neither sliding nor rupture will occur provided
that conditions

2h
b

≤ μ and R ≤ σr

2ρg
(3.4)

are satisfied. The first condition poses a limitation on the aspect ratio of the blocks, whereas the
second one affects the size of the dome.

Setting as representative values σr = 2 MPa, ρ = 1.8 × 103 kg m−3 and g = 9.81 m s−2, one
obtains from (3.4)2 the condition R ≤ 56.6 m, which is verified in all cases of practical interest.
On the other hand, condition (3.4)1 is more difficult to be satisfied because, in general, the
friction coefficient is of the order of μ = 0.4 ÷ 0.6. This simplified approach shows that, at least
at the qualitative level, the wider the blocks, the higher is the hoop stress that can be sustained
via frictional contact. To this respect, it may be interesting to observe that the major masonry
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Figure 3. (a) The Baptistry of the Cathedral of Novara, Italy, an exemplary dome with drum and tiburium. (b) Cross section of
the model with evidence of the blocks fitting the base of the hemispherical dome, the drum and the tiburium.

constructions in Rome, from the imperial time to the baroque period, were made of bricks called
pianelle (flat tiles), about 16 cm long and 4 cm thick, so that 2h/b = 0.5.

It is certainly very important to recognize what the boundary conditions are at the springing of
the dome. If the support cannot move outwards, it confines and constrains the movement of the
first ring of blocks. On the contrary, if the contact between the dome and the support is frictionless
or, equivalently, the support cannot constrain outward movements, the frictional contribution at
the lower interface is missing and the no-sliding condition (3.4)1 becomes 4h/b ≤ μ. In order to
improve the performance of the dome, it is thus crucial to provide a sufficiently rigid support
and, possibly, to increase the meridian stress at the springing, to enhance the frictional strength at
the interfaces.

The above arguments indicate that a hemispherical dome is prone to loosen and open at the
base due to a partially unbalanced tensile hoop stress. However, the dome does not completely
crack into ‘slices’, forming flying buttresses, because a part of the hoop stress can be carried
through frictional contact, usually at the price of frictional sliding. Though the resulting state of
stress is quite complicated, it can be seen that, in the case of frictional sliding, a moderate outward
radial thrust may be transmitted to the underlying supporting structure.

(b) Numerical experiments: dome, drum and tiburium
In the assemblies of rigid blocks considered hereinafter, there are three main architectural
elements: the dome itself, the drum (or tympanum) supporting the dome and the tiburium, i.e.
a cylinder that ideally extends the drum upward, enclosing the dome. These are illustrated in
figure 3a through a section view of the Baptistry of the Cathedral of Novara, Italy, dating back to
the beginning of the fifth century. It is important to recall that the tiburium is usually considered
a mere architectural element, with its surrounding walls supporting a roof that hides the dome
from the outside,1 but its important static role has also been recognized with reference to a thrust
network analysis that considers the dome as composed of independent lunes [3]: the tiburium
adds weight, so that the thrust line of each lune, acting as a pie-shaped semi-arch, remains within
the section of the dome in the proximity of the base, where it curves downward. However, we
will show that another important effect of the tiburium is that of compressing the drum in such a
way that, for an interlocked bond pattern as in figure 2b, hoop stresses can be equilibrated thanks
to frictional contact.

The considered geometry is that of a hemispherical dome, of internal radius 7 m and thickness
0.3 m, composed of 10 rings and one keystone crown block, constructed in such a way that, in
the plan view, the parallels delimiting the rings are concentric circles. The dome is supported

1The tiburium should not to be confused with the lantern, which is a little cylindrical element atop the dome, providing
natural light inside.
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(a) (b) (c)

Figure 4. Domemade by a series of independent lunes, with a drum formed by independent slender columns and no tiburium.
(a) Section layout and conventional thrust line. (b) Collapsemechanism from the NSCD simulation and effective thrust line after
1 s. (c) Deformation at t = 2 s. (Online version in colour.)

by a drum of thickness 0.45 m and height about 5 m. The friction coefficient is set equal to μ =
0.4 in all simulations. The structure is supposed to be loaded by its own weight, with density
ρ = 1800 kg m−3. The dome may be enclosed, or not, by a tiburium, supposed of the same internal
diameter and thickness of the drum. The shape of the blocks fitting the junction among dome,
drum and tiburium is represented in the cross section of figure 3b.

In the NSCD simulations, the dead weight is instantaneously applied at the reference time
t = 0. This may seem quite unrealistic: all architects of the past were very careful in removing the
scaffoldings gradually in order to avoid undesired movements, waiting for a complete settlement
of each individual layer under its own weight. Moreover, when domes were built without
falsework by layering one ring above the other, the construction phase induced a particular
redistribution of stresses that is neglected here. If the blocks were perfectly rigid and in dry
contact, the time in which the dead load is applied would be of little importance provided that
the structure can withstand it without appreciable movements. However, as discussed in §2, the
regularization procedure is equivalent to the introduction of a compliance between the blocks that
somehow simulates the deformation of the mortar joints. On the one hand, a sensitivity analysis
for the consequent deformation of the dome, which may certainly influence its collapse, has not
been done. On the other hand, the very small value of the effective compliance that has been
used here leads us to conjecture that the effect is not substantial, as tentatively confirmed by the
comparisons of numerical simulations with different values of the compliance. In any case, as in
the following we will take the collapse time as a basic variable to measure the effectiveness of the
structure, the fact that the load is instantaneously applied gives to our analysis the character of
a first approximation.

The first considered case is a dome without tiburium made by a series of independent pie-
shaped semi-arches (lunes), supported by a drum clearly unable to withstand any hoop stress
because formed by independent, slender columns. In figure 4a, we draw over the cross section the
conventional thrust line, obtained with the classical method à la Méry. With a thickness over span
ratio less than 1/45, the conventional thrust line lays slightly outside the arch profile but, more
importantly, outward horizontal thrusts are transmitted by the arches to the drum. The NSCD
simulation shows that the structure collapses due to its inability to balance this action. Figure 4b
reports the deformed section from the NSCD simulation at t = 1 s, over which we have plotted the
effective thrust line at that instant, defined as the envelope of the resultants of the calculated forces
at each contact plane between adjacent blocks, as calculated by the numerical code. The failure
sequence is completed by figure 4c referring to t = 2 s.

To equilibrate the outward thrust, it is customary to insert a metal tension ring at the base of
the dome. For the same bond pattern of figure 4, a condition of this type has been simulated by
connecting any pair of adjacent blocks of the lowest masonry course with springs constraining the
opening of the meridian interfaces. Assuming a spring coefficient k = 103 kN mm−1, equivalent to
a steel chain of diameter φ = 25 mm, the NSCD analysis predicts that the structure is safe because
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(a) (b) (c)

Figure 5. Domewith interlocked bond pattern, supported by a drum formed by independent slender columns and no tiburium.
(a) Layout. Predicted mechanism at (b) t = 1 s and (c) t = 2 s. (Online version in colour.)

(a) (b) (c)

Figure 6. Dome with no tiburium made by a series of independent lunes, supported by an interlocked drum. (a) Layout.
Predicted collapse mechanism at (b) t = 1 s and (c) t = 2 s. (Online version in colour.)

the hoop stress from the chain can re-centre the thrust line. Without such a ring, one may wonder
if the dome can equilibrate the hoop stress thanks to frictional contact by interlocking the blocks
as in figure 5a. The deformations represented in figure 5b,c for t = 1 and t = 2 s, i.e. at the same
time steps of figure 4, indicate that there is no sensible improvement with respect to the previous
case. The reason is that for the blocks at the base of the dome, the aspect ratio is 2h/b = 4, so
that condition (3.2) is certainly not satisfied. The drum, formed by independent slender columns,
provides no confinement.

The complementary case, when the drum is interlocked (aspect ratio 2 h/b = 1) while the dome
is made of independent arches, is depicted in figure 6a. The outward collapse mechanism of the
drum, represented in figure 6b,c at the same time steps t = 1 and t = 2 s, indicates that the weight
of the dome is not able to impart to the drum, through frictional contact, a sufficient resistance to
hoop tensions. Nevertheless, the drum does not completely tip over.

The same conclusions are valid for the layout of figure 7a, where both dome and drum are
interlocked, even if the collapse snapshots at t = 1 and t = 2 s, represented in figure 7b,c, show that
the movement is slightly slower. It should be mentioned that, according to our interpretation of
the resistance against cracking and collapse from the friction between the dome’s layers, it makes
a difference whether the layers lay on conical surfaces perpendicular to the dome’s meridian lines,
as in all the cases considered here, or on horizontal planes, as for example in the trulli [36]. In fact,
in the first case, the tangential component of the applied force is lower than in the second case,
even if the difference tends to vanish for those rings close to the drum, i.e. where the resistance to
the hoop stress is determinant.

It may be useful to add a tiburium over the drum. What needs to be recognized now is whether
its main effect is that of centring the thrust line where it curves downward at the springing of the
dome, or that of increasing the capacity of the drum to withstand hoop stresses thanks to frictional
contact. Therefore, consider first the layout of figure 8a (some blocks are hidden for visual clarity),
identical to that of figure 4a except for the tiburium. Again, no hoop stress can be sustained by a



11

rspa.royalsocietypublishing.org
Proc.R.Soc.A474:20170740

...................................................

(a) (b) (c)

Figure 7. Dome and drumwith interlocked bond pattern and no tiburium. (a) Layout. Predicted collapsemechanism at (b) t =
1 s and (c) t = 2 s. (Online version in colour.)

(a) (b) (c)

Figure 8. Dome with independent lunes on a drum formed by independent slender columns and interlocked tiburium.
(a) Layout. Calculated collapse mechanisms at (b) t = 1 s and (c) t = 2 s. (Online version in colour.)

(b)(a) (c)

Figure 9. Interlocked dome and tiburium on a drumwith independent slender columns. (a) Layout. (b) Deformation at t = 1 s.
(c) Collapse mechanism at t = 6 s. (Online version in colour.)

drum formed by slender independent columns, so that the only function of the tiburium shall be
that of modifying the line of thrust in the independent lunes forming the dome. From the NSCD
simulations, represented in figure 8b,c at t = 1 s and t = 2 s, respectively, the main conclusion is
that the added weight is not sufficient to drive the thrust line within the profile of the dome and,
consequently, the structure collapses with no apparent benefit with respect to the case of figure 4c.

Figures 9 and 10 are the counterparts of figures 5 and 6 with the tiburium. The snapshots
of the NSCD simulations taken at t = 1 s, represented in figures 9b and 10b, indicate very small
displacements, but the former is not stable, while in the latter large cracks occur without collapse.
This is clear from figures 9c and 10c, showing the results at t = 6 s. Evidently, the dome becomes
much more stable when it is the drum, rather than the dome itself, to be formed with an
interlocked bond pattern. In fact, the increase of meridian stress produced on the dome by the
weight of the tiburium is relatively small as the greatest part of such weight flows directly to the
underlying drum (cf. figure 3b). The conclusion does not substantially differ when the blocks of
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(b)(a) (c)

Figure 10. Dome made by independent lunes, with interlocked drum and tiburium. (a) Layout. (b) Deformation at t = 1 s.
(c) Opening of cracks at t = 6 s without collapse. (Online version in colour.)

(a) (b) (c)

Figure 11. Dome drum and tiburium with interlocked bond pattern. (a) Layout. Deformation at (b) t = 2 s and (c) at t = 6 s.
(Online version in colour.)

the dome, the drum and tiburium, are all interlocked, as in figure 11a. The NSCD simulations
again at t = 2 s (figure 11b) and at 6 s (figure 11c) are comparable with those of figure 10. Indeed,
the dome is made by narrow blocks (2h/b � 4) so that the contribution of friction is limited.

These examples indicate that the role of the tiburium is not limited to redirecting the thrust
line, but also comprehends the activation of frictional forces by increasing the normal stress in the
drum, being the second contribution the more important the lighter the dome is. Observing the
elegant tiburium structures built over very slender domes by architects like Borromini, one may
wonder if the ancient masters had already recognized, albeit intuitively, this important effect.

(c) Dynamic response
The NSCD approach can model the dynamic effects due to the movement of the ground as during
an earthquake. The considered layout is identical with that of figure 11 (interlocked dome, drum
and tiburium), apart from a slight increase in height (8.5 m) of the tiburium. A global orthogonal
reference system is introduced such that x − z is the ground plane, and y the vertical axis. In
the simplest case, a sinusoidal motion is applied to the ground with amplitude A = 0.033 m and
frequency f = 1.5 Hz, so that the peak ground acceleration (PGA) is 0.3g. For a motion applied
in the direction x, figure 12a shows sequential pictures of the moving structure after 1, 3 and 5 s.
As the oscillations of the ground shake the structure, diminishing as well the frictional interface
forces due to internal collisions, the drum, able to balance the thrust from the dome in the static
case, looses part of this capability and opens up, carrying down the surmounting tiburium in this
motion. The dome, not any more confined at the base, collapses.

Figure 12b records the plots, as a function of time, of the displacement of the ground in x-
direction (dg,x), as well as the displacement of the centroid of a block of the dome located right
over the springing, marked with a dot in figure 12a (db,x and db,z components). Clearly, db,x −
dg,x is the displacement of the same block for an observer fixed on the ground. Looking at the
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Figure 12. Interlocked dome, drum and tiburium, under x-direction oscillatory ground displacement (PGA 0.3 g, f = 1.5 Hz).
(a) Failure steps t = 1 s, t = 3 s and t = 5 s. (b) Displacement of the ground (dg,x) and of the blockmarkedwith a dot in x (db,x )
and z (db,z) directions. (Online version in colour.)

location of such a block, it is not surprising that the db,z component is almost null, because in the z
direction, at right angle to the direction of the ground acceleration, the block is constrained by the
contact of the neighbouring elements. Along the x-direction, the graph of db,x shows oscillations
that follow the ground motion, but since the dome expands during collapse, the displacement
reaches the value corresponding to the case in which the block lies on the ground.

Because the tiburium usually supports a gabled roof spanning over the dome, it is worth
investigating if the capacity of the tiburium under horizontal actions can be increased by confining
it at the top by a horizontal diaphragm. The model is represented in figure 13a, where a monolithic
0.8 m thick block closes the tiburium. Comparing the snapshots from the NSCD simulations with
their counterparts of figure 12a, at the same time, one may deduce that, at the beginning, the
structure is apparently more efficient, because the movements are in general smaller. However,
although the cap imparts to the tiburium a box-like response, the snapshots at longer times make
evident the negative effects of the presence of a rigid heavy floor in long-duration earthquakes.
Under cyclic loading, the unbalanced thrust from the dome provokes the opening of the drum
and the consequent collapse of the surmounting tiburium. Not any more supported, the cap falls
down on the dome, which catastrophically collapses.

Comparing figure 13b with the previous figure 12b, one can note again that the db,z component
of displacement for the dot-marked block is almost null, while the db,x component is much less
than in the previous case and follows the oscillations of the ground, because the structure is much
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Figure 13. Interlocked dome, drum and tiburium closed by amonolithic cap, under x-direction oscillatory ground displacement
(PGA 0.3 g and f = 1.5 Hz). (a) Failure steps. (b) Comparison of the displacement of the ground (dg,x ) and of the marked block
in x (db,x ) and z (db,z) directions. (Online version in colour.)

stiffer. The displacement sharply increases in the latest stages of the simulation, when the drum
and tiburium fail and the cap collapses onto the dome.

In further simulations, not recorded here for brevity, the effects of the parameters of the ground
motion have been investigated. If the value of the PGA is kept fixed while the amplitude is varied,
diminishing the frequencies in general produces a quicker collapse. For example, by changing the
frequency from 1.5 to 0.5 Hz, the structure collapses in approximately one-third of the time.

4. Hoop stress and geometric proportions
We address here how the frictional forces interfere with the geometric proportions, both at the
local level (the constituent blocks) and at the global level (the shape of the dome).
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(a) (b) (c)

Figure 14. Dome with no tiburiummade by interlocked flat blocks, supported by a drum with independent slender columns.
(a) Layout and conventional thrust line. (b) Deformation at t = 1 s and effective thrust line. (c) Deformation at t = 6 s. (Online
version in colour.)

(a) Widening the blocks: flat tiles
As shown in §3a, the aspect ratio 2h/b of the blocks influences the possibility of sustaining hoop
stresses through frictional contact. The hemispherical dome of figure 14a, for the rest identical
to that of figure 5a, differs because now the interlocked blocks, with b = 3 m and h = 0.5 m, have
geometric proportions 2h/b = 1/3. For a friction coefficient μ = 0.4, this respects condition (3.4)2.
Superimposed to the section, the same figure also shows the conventional thrust line, obtained as
if the dome were made by a set of non-interacting lunes, which obviously coincides with that of
figure 4a and slightly exceeds the profile of the dome. On the other hand, figure 14b illustrates the
effective thrust line at t = 1 s, derived from the NSCD simulation as the envelope of the resultants
of interface contact forces. Remarkably, this is within the dome profile, and this can only be due
to the confining action of the hoop stress from the parallels that produces its centring. Stability is
confirmed by the simulation of figure 14c that shows the deformation after 6 s.

Some cracks are visible along the meridians and the output of the contact forces confirms
that the required hoop stress is only partially equilibrated: a little sliding occurs and the frictional
contact reactions cannot exceed the theoretical limit. Further lowering the ratio 2h/b could provide
a better exploitation of the potentiality of the frictional effects. In any case, this analysis confirms
the importance of the correct dimensioning of the bond pattern.

(b) Oval domes
In §3a,b, we have considered spherical domes, illustrating how their horizontal outward thrust,
in the occurrence of meridional cracks, can be balanced by the confining action of the drum acting
as a chain. As the structure and the weight have cylindrical symmetry, the horizontal outward
thrust shares this property, so that the ovalization of the drum is prevented. An oval dome is
a dome whose plan has an oval form. In an oval dome, the pie-shaped arches that virtually
compose its geometry, when isolated by meridional cracks, have different span-rise ratios, so that
their thrusts are different. Therefore, the top of the drum sustaining an oval dome is subjected to
non-uniformly distributed horizontal forces.

Figure 15a represents the layout of an oval dome obtained by stretching 1.5 times in one
horizontal direction the geometry of figure 11, so that its plan2 is an ellipse, with diameters 14
and 21 m, while height is 7 m for both drum and dome. The interlocked blocks have thickness of
45 cm for the dome (2h/b = 4), and 60 cm for both drum and tiburiua (2h/b = 3). As the slenderness
of the blocks forming the dome prevents its full ability to equilibrate tensile hoop stresses, the
dome transmits relevant horizontal forces to the top of the drum. In the NSCD simulations, one

2These are the basic geometric parameters of the Sant’Andrea al Quirinale church in Rome by G. Bernini, even if there the plan
is not a perfect ellipse.
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(a) (b) (c)

Figure 15. Oval domemade of slender blocks (h/2b= 4) and interlocked bond pattern, with 5.8 m high tiburium. (a) Layout.
(b) Formation of the mechanics after 1 s. (c) Collapse after 2 s. (Online version in colour.)

(a) (b) (c) (d)

Figure 16. Oval dome with slender blocks (b/h= 0.5) and interlocked bond pattern with a 48 m high tiburium. (a) Layout.
Deformation at (b) t = 1 s, (c) t = 2 s and (d) t = 16 s. (Online version in colour.)

notes from figure 15b that, just after 1 s from the application of the self-weight, a mechanism starts
to form: the oval drum is projected outward by the horizontal forces at those portions where the
curvature of its cross section is the lowest (the flattest parts). This is not surprising because the
capacity of supporting outward forces in an element with small bending stiffness is proportional
to the curvature. Figure 15c shows that the dome implodes inwards after 2 s.

A noteworthy improvement can be obtained by increasing the height, and consequently the
weight, of the tiburium. To illustrate this, figure 16a shows the layout of a purely theoretical case,
in which the height of the tiburium is 48 m. Figure 16b,c shows again the deformation at t = 1 and
t = 2 s, with some cracks but overall stability. The compression forces transmitted by the tiburium
on the drum increase not only its effective hoop strength due to frictional contact, but also its
resistance to bending actions. As represented in figure 16d, it takes about 10 s to reach a collapse
mechanism qualitatively similar to that of figure 15c, where the drum is pushed outwards at those
portions with the lowest curvatures.

The thickness of the dome may also be varied, to produce the desired thrust at the base
of the drum. If a1 = 10.5 m and a2 = 7 m are the axes of the ellipse in plan, the curvature in
correspondence of the axes is accordingly κ1 = a1/a2

2 and κ2 = a2/a2
1. If p1 and p2 are the weights

per unit area of the dome in correspondence of the a1 and a2 axes, respectively, one may roughly
estimate the thrust per unit length here transmitted as H1 = p1a2

1/(8f ) and H2 = p2a2
2/(8f ), with

f = 7 m being the dome height. By requiring that the horizontal thrust is proportional to the
curvature, i.e. H1/κ1 = H2/κ2, one obtains p1/p2 = a1/a2. Following this, we have diminished
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S1

S2

S1

(a) (b) (c)

Figure 17. Interlocked oval dome with slender blocks (2h/b= 4), with lunes of variable thickness. (a) Layout. (b) Formation
of the mechanism after 1 s. (c) Collapse at t = 2 s. (Online version in colour.)

(a) (b) (c)

Figure 18. Interlocked oval dome with slender blocks (2h/b= 4), drum and tiburium with flat blocks (2h/b= 1/3) except
at the springing. (a) Layout. (b) Mechanism after 2 s. (c) Collapse at t = 6 s. (Online version in colour.)

(from 45 to 30 cm) the thickness of the dome in two opposite lunes labelled with S1 in the plan of
figure 17a, which are symmetric with respect to the vertical plane containing the minor axis a2 of
the ellipses and form a dihedral angle of approximately 90◦. The beginning of the formation of a
mechanism after 1 s, as shown in figure 17b, is evidenced by localized cracking in the drum. What
is remarkable is that a (slightly) better performance is obtained by removing some material. With
respect to figure 15b, the dome is in fact slightly more stable, but the localized weight reduction
is not yet sufficient as figure 17c shows the collapse after 2 s. Evidently, it is difficult to achieve a
perfect distribution of the thrust forces at the base of the dome, and this is even more complicated
by construction tolerances. In any case, the performance could be even better, if the local effect due
to the discontinuity of the thickness were eliminated, for example, by smothering the singularity
with the introduction of trapezium-shaped blocks.

In order to enhance the effects of frictional forces, one can attempt at enlarging the blocks. In
the layout of figures 18a and 19a, the aspect ratio of the blocks in drum and tiburium has been
reduced to 2h/b = 1/3 to satisfy condition (3.4)1. The models are different at the horizontal band
in correspondence with the dome springing, which is the same as before in the former layout,
subdivided into smaller blocks in the second case. Not much improvement can be achieved,
because figures 18b and 19b prove that after 2 s a collapse mechanism is forming. Both structures
collapse after 6 s, as shown in figures 18c and 19c.

To obtain a stable oval dome, our model predicts that flat blocks should be used for the
dome. Figure 20a shows blocks with aspect ratio 2h/b = 1/3, no tiburium and a drum formed by
independent columns. From figure 20b, representing the situation after 1 s, one can observe that
meridional cracks start to form in the bond pattern. However, the structure does not collapse,
even if the cracks become larger as indicated by figure 20c, corresponding to t = 30 s.
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(a) (b) (c)

Figure 19. Interlocked oval domewith slender blocks (2h/b= 4), drum and tiburiumwith flat blocks (2h/b= 1/3) including
the springing. (a) Layout. (b) Mechanism after 2 s. (c) Collapse at t = 6 s. (Online version in colour.)

(a) (b) (c)

Figure 20. Interlocked oval domewith flat blocks (2h/b= 1/3), drum formed by slender columns and no tiburium. (a) Layout.
(b) Deformation after 1 s. (c) Cracking but no collapse at t = 30 s. (Online version in colour.)

The aforementioned observations are confirmed in the practical example of the elliptical dome
of a run-down Orthodox church in Germin (Kayseri, Turkey), represented in figure 21a. The
internal view from figure 21b evidences the sliding of the constituent blocks. The opening of
the joints is higher in the lower rings of the dome, where the hoop stress is tensile, and in
correspondence of those blocks that are not properly interlocked, i.e. where the end of a block
is not above the centre of the block beneath it. Moreover, cracks appear wider at those portions of
the drum where the curvature is small.

The dome is a double curvature surface that cannot be deformed when the base is constrained
to lay on the horizontal plane represented by the top of the drum. On the other hand, the drum
and the tiburium, single-curvature (developable) surfaces, can be easily bent by radial forces.
Therefore, it is not surprising that in most oval domes of the past, the drum and the tiburium
are stabilized by strong buttresses to limit their distortion. To investigate this possibility, consider
the dome illustrated in the cut-out and the plan of figure 22a,b, identical to that of figure 19
except for the fact that the less curved portions of the drum are strengthened by six buttresses
simply laid on the ground, here modelled as rigid prismatic blocks with the same weight per
unit volume of the rest. As results from figure 22c showing the deformation after 6 s, the dome
is stable because the bulging of the drum, evident in figure 19c, is now constrained by the
adherent buttresses.

The numerical experiments confirm that the construction of oval domes presents difficulties
with respect to domes with cylindrical symmetry, because an oval drum has to resist a distribution
of thrusts from the dome that can provoke its bending. The required bending stiffness and
strength can be obtained by noteworthy compression, in figure 16, or by adding buttresses as
shown in figure 22. In any case, the blocks composing the dome should have a high aspect ratio
b/h, to increase their frictional connection. The potential benefit from this interlocking is higher in
the dome than in the drum, because the former is a synclastic double curved surface, whereas the
latter is a deformable developable surface.
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(a) (b)

Figure 21. Oval dome of a run-down Orthodox church in Germin (Kayseri, Turkey). (a) External and (b) internal views. (Online
version in colour.)

(c)(b)(a)

Figure 22. Interlocked oval dome with slender blocks (2h/b= 4), drum and tiburium with flat blocks (2h/b= 1/3) and
buttresses. (a) Cut-out, (b) plan and (c) deformation after 6 s. (Online version in colour.)

5. Conclusion
In order to assess the stability of masonry constructions, an NSCD model has been used to discuss
the stability of complex assemblies of rigid blocks in frictional contact. The cases considered here
are domes, either oval or hemispherical, built on an underlying drum, under static and dynamic
loading. We have shown that the stability of these constructions depends on the capacity of the
dome and the drum to carry hoop stresses. Unlike the classical approaches, which assume a
moderate tensile strength of the bulk material, in our model the resistance to horizontal tensile
forces is attributed to the frictional contact between the blocks, which depends on the vertical
pressure according to Coulomb’s friction law. Because of this, the aspect ratio (height to width) of
the constituent blocks plays a crucial role. A tiburium built over the drum may further contribute
to stabilize the assembly according to two complementary effects: re-centring the line of thrust
in the dome and increasing the vertical compression in the drum. This second contribution is
important because it can increase the bearing capacity of the drum with respect to hoop stress
with the aforementioned frictional mechanism, thus enhancing the stability of the dome. This is
particularly effective in the case of oval domes, for which the loss of circular symmetry requires
additional stiffness and strength of the drum to equilibrate the uneven thrust forces.

We believe that the present novel approach based on rigid body mechanics and frictional
sliding represents a useful complement to the classical no-tensional material modelling. The
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capability of investigating the effects of the bond pattern will allow a deeper understanding of
the response of complex structures, like for example Brunelleschi’s dome in Santa Maria del
Fiore, where the role of the herringbone pattern, ingenious from a constructional viewpoint, is
still waiting for a reliable structural interpretation. Certainly, the potentiality of the method is yet
to be fully explored.
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