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ABSTRACT

Objective: To determine the antileishmanial vaccine effectiveness of lipophosphoglycan
(LPG) and polyacrylic acids (PAA) conjugates on in vivo mice models.
Methods: LPG molecule was isolated and purified from large-scale Leishmania dono-
vani parasite culture. Protection efficacies of LPG alone, in combination with Freund's
adjuvant, in a physical mixture and in conjugate (consisting of various LPG concentra-
tions) with PAA, were comparatively determined by various techniques, such as culti-
vation with the micro-culture method, assessment of in vitro infection rates of peritoneal
macrophages, determination of parasite load in liver with Leishman-Donovan Units, and
detection of cytokine responses.
Results: Obtained results demonstrated that the highest vaccine-mediated immune pro-
tection was provided by LPG-PAA conjugate due to all parameters investigated. Ac-
cording to the Leishman-Donovan Units results, the sharpest decline in parasite load was
seen with a ratio of 81.17% when 35 mg LPG containing conjugate was applied. This
value was 44.93% for the control group immunized only with LPG. Moreover, decreases
in parasite load were 53.37%, 55.2% and 65.8% for the groups immunized with 10 mg
LPG containing LPG-PAA conjugate, a physical mixture of the LPG–PAA, and a mixture
of LPG + Freund's adjuvant, respectively. Furthermore, cytokine results supported that
Th1 mediated protection occurred when mice were immunized with LPG-PAA conjugate.
Conclusions: It has been demonstrated in this study that conjugate of LPG and PAA has
an antileishmanial vaccine effect against visceral leishmaniasis. In this respect, the present
study may lead to new vaccine approaches based on high immunogenic LPG molecule
and adjuvant polymers in fighting against Leishmania infection.
1. Introduction

Leishmaniasis, which is caused by the Leishmania species,
are intracellular parasites of mammals, and is one of the largest
public health problems in 98 countries and territories around the
world, including Turkey. It is known that nearly 350 million
people are at risk for this infection. Every year, approximately
1–1.5 million cases of cutaneous leishmaniasis and 500 000
cases of visceral leishmaniasis occur worldwide [1,2]. Visceral
leishmaniasis (VL), or kala-azar, is known as the most serious
form of leishmaniasis and is the second most deadly parasitic
infection, following malaria. Treatment with chemotherapy is
prolonged, costly, and toxic and requires frequent monitoring
and infrastructure that may be beyond the capacity of health
systems where VL is endemic [3–7]. There is currently no
vaccine available for any form of leishmaniasis [8]. Therefore,
development of a vaccine against leishmaniasis has been
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insistently advocated by the World Health Organization. One of
the basic reasons for this suggestion is the recognition of
vaccination as the only prevention strategy because of the
unquestionable role of the immune system in controlling
Leishmania infection. Hence, various vaccine approaches have
been pursued for many years [9].

To date, developed vaccines were investigated in three groups:
first-, second- and third-generation vaccines. Vaccinations with
live virulent parasites (termed leishmanization) or with killed
parasites are considered first-generation vaccines; vaccinations
with subunits, purified fractions, recombinant vaccines in heter-
ologous microbial vectors, and genetically or otherwise attenu-
ated live parasites are considered second-generation vaccines; and
DNA-based vaccines are considered third-generation vaccines
[10]. However, all of these vaccine trials had serious disadvantages
despite their advantages. Among first-generation vaccines, the
use of killed parasites is considered to be confident, but their ef-
ficacies were demonstrated to be low. The use of attenuated live
Leishmania parasites (called leishmanization) was suspended by
reason of the fact that parasites can achieve virulence again, even
many years later [11,12]. In recent times, genetically modified
Leishmania parasites have been used as live-attenuated vaccine
candidates. In general, genetically modified live Leishmania
parasites are obtained by the elimination of virulence genes such
as dyhydrofolate reductase, biopterin reductase, cystein proteases
or heat shock proteins and vaccination with these antigens ach-
ieved promising results in animal studies. However, safety con-
cerns are still an obstacle that prevents their use in clinical trials
[13–15]. Second-generation vaccines using antigen fragments of
parasites provide efficient protection against leishmaniasis
compared to other groups of vaccines. These vaccine candidates
are obtained in two different ways: one is isolation and purifica-
tion of native antigens from a parasite culture, the other one is
producing antigens by using recombinant DNA technology [11].
The success of subunit vaccines based on recombinant proteins
or peptides which are found in second-generation vaccines, has
been demonstrated, but was also variable to poor [16]. Despite the
fact that the immunogenicities of several recombinant antigens
were investigated on animal models, only a few of them
achieved progression to clinical trials that were performed on
primates, dogs and humans (preclinical studies) [17,18]. In one of
these efforts, recombinant A2 protein of Leishmania chagasi,
which was used in combination with saponin adjuvant,
provided partial (40%) protection against canine leishmaniasis
and this protection rate was found to be sufficient to develop a
licensed canine vaccine that is named Leish-tec® [19]. Clinical
trials of other recombinant proteins such as Leish-111F/MPL-
SE have been done on humans, however, there are currently no
licensed human vaccines based on recombinant antigens [20,21].

Recently, second generation-vaccine development studies
have also focused on the native surface glycoconjugates of
parasites. One of the important surface antigens of Leishmania,
which is called the Fucose-Mannose Ligand (FML) possess high
immunogenic features. By considering the antigenicity of FML,
researchers prepared a vaccine formulation including FML and a
saponin adjuvant that was isolated from Quillaja saponaria. This
vaccine candidate underwent Phase I-III clinical trials and has
been licensed as Leishmune® [22]. In different endemic regions
of the world, this vaccine is being used in humans with success
indicating that antigenic molecules isolated from Leishmanial
parasite surfaces have great potential to be formulated as
vaccine candidates and provide strong protection.
Like FML, lipophosphoglycan (LPG) is another important
surface glycoprotein of Leishmania parasites. LPG covers all
surfaces of parasites including flagella and plays an important
role in the survival of parasites, both in humans and in vector
organisms. The basic LPG structure in all Leishmania species
consists of a 1-O-alkyl-2-lyso-phosphatidyl inositol lipid anchor,
a heptasaccharide glycan core, a long phosphoglycan (PG)
polymer composed of (Galb1-4Mana1-PO4) n repeat units
(n = 10–40), and a small oligosaccharide cap [23].

In one study, it was shown that intranasal vaccination with
Leishmania amazonensis LPG was an important immunomodu-
latory molecule [24]. Other experiments have shown that LPG
provided protection to Leishmania major (L. major) infections
in BALB/c mice [25–27]. However, protection was demonstrated
to be dependent upon the use of adjuvants such as liposomes or
killed Corynebacterium parvum and the integrity of the
molecule. Therefore, LPG may be a good vaccine candidate
only when it is used with appropriate adjuvants.

As compared with whole-cell or virus-based vaccines, subunit
vaccines are poorly immunogenic and require the presence of ad-
juvants to stimulate protective immunity [28,29]. However, the most
effective adjuvants generally cause significant inflammation. This
may be essential for adjuvanticity, but their use in humans may be
precluded because of unacceptable side effects. For approximately
the past two decades, vaccine research has been focused on the
alternation of the alum type of an adjuvant in order to increase
immunogenicity. Biodegradable polymers are being used as
adjuvants and drug carriers, because of their biocompatible,
nontoxic nature and their biodegradable properties. Polymers that
are chosen as excipients (adjuvants) for parenterally administered
vaccines should meet some requirements, including being
biodegradable, safe, antigen compatible and permeable, stable
in vitro, easy to process and, ideally, inexpensive [30].

Polyacrylic acids (PAA) that are strongly negatively charged
compounds with high molecular weight demonstrate adjuvant ef-
fects for both humoral and cell-mediated immunity [31,32].
Previously, synthetic polymers of PAA and more hydrophobic
derivatives containing alkyl-esters significantly enhanced the anti-
body response against numerous inactivatedmodel protein antigens
[33,34]. These fully synthetic constructs are potentially safe in that
they have not induced adverse effects in animal models and
display potentially low cytotoxicity [35]. There are only a limited
number of vaccine studies in the extant literature demonstrating
the adjuvant properties of PAA against infectious diseases. In one
of these studies, PAA conjugate was reported as a sufficient
adjuvant for protection against haemorrhagic nephritis enteritis, a
disease caused by a polyomavirus, since it increased the antibody
response significantly in gooses [36]. However, to date, its efficacy
as an adjuvant has not been investigated against leishmaniasis.

Considering the high immunogenic properties of the LPG
molecule, adjuvant features of PAA and the convenience in
chemical structures of each molecule to compose a conjugation,
we suggest that a formulation that includes LPG-PAA conjugates
could be an important vaccine candidate against Visceral Leish-
maniasis. However, to the best of our knowledge, there are no
antileishmanial vaccine studies based on LPG-PAA conjugates in
the literature. Therefore, for the first time, this study aimed to
implement conjugation between PAA and the highly immuno-
genic LPG molecule found on the surface of Leishmania para-
sites, to investigate the effectiveness of LPG-PAA conjugates as a
vaccine candidate on animal models and to reveal their role in the
development of new vaccines against leishmaniasis.
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2. Material and methods

2.1. Parasite culture

Leishmania donovani (L. donovani) (HOM/IN/83/AG83)
promastigotes were cultured in RPMI 1640 medium with L-
glutamine (Sigma, St. Louis, MO) supplemented with 10% fetal
calf serum (FCS) (Sigma) and gentamicin (80 mg/mL) at 27 �C.
In order to obtain large scale cultivation, L. donovani parasites
grown in RPMI 1640 media were transferred into 75 cm2 culture
flasks with serum-free Brain Heart Infusion Medium, including
Hemin (Sigma, H9039) and Adenosine (Sigma, A9251). After
two weeks, parasites (25–30 million parasites/mL) were trans-
ferred into 250 mL of glass bottles on a shaker. The process
yielded 3–5 L of L. donovani culture with a volume of 25–30
million parasites/mL. Continuous L. donovani culture was
passaged once in a two week period.

2.2. Isolation and purification of LPG

In order to isolate the LPG molecule, chloroform-methanol
extraction and sonication processes were performed on a sta-
tionary phase Leishmania pellet. Initially, a chloroform-
methanol (1:2) mixture was added to a pellet containing tubes
with a 3.75 fold volume. A sonication process was then main-
tained in order to suspend the pellet. Following 1 h incubation at
room temperature, the tubes were centrifuged at 4 000 rpm
at +4 �C for 30 min and the supernatants were transferred into
volumetric flasks. Then the remaining pellet was re-suspended
with 4 mL 9% 1-Propanol and the tubes were sonicated again.
After a sonication process, homogenized solutions were centri-
fuged at 14 000 rpm for 20 min. All collected supernatants were
then evaporated, and 9% 1-Propanol was removed. Later, 1 mL
of the remaining isolate was frozen at −40 �C and then lyoph-
ilized overnight. The obtained sample was stored at −40 �C until
the column chromatography process.

2.3. Column chromatography

For purification of the LPG molecule, an octyl sepharose col-
umn was used in the chromatography. First, a lyophilized sample
was re-suspendedwith 2mLof distilledwater. Then 1-propanol as
a 4 fold volume of LPG isolate, was added into tubes. After that,
the sample was centrifuged at 18 000 rpm for 15 min and then the
supernatant was re-suspended with 0.1 M ammonium acetate.
Octyl sepharose was poured into the column and was packed with
100 mL of 5% 1-propanol/0.1 M ammonium acetate. Following
that, the LPG sample was loaded into a column and then was
incubated overnight at room temperature in order to increase the
LPG binding capacity of octyl sepharose. After incubation, the
columnwaswashedwith another 100mLof 5%1-propanol/0.1M
ammonium acetatemixture and the fractionswere collected as 120
drops for each tube. Finally, the column was washed with a
gradient starting from 5% 1-propanol/0.1M ammonium acetate to
60% 1-propanol/0.1 M ammonium acetate.

2.4. Thin layer chromatography method

In order to detect carbohydrate existence in fractions, thin layer
chromatography was performed. Paper pieces coated with silicate
were numbered.On each fraction, 2mLof the samplewas deposited
and the paper pieces were dried at room temperature. Afterward,
Orcinol was sprayed on the silicate paper and allowed to dry.
Following this, a 15% sulfuric acid solution was sprayed and
allowed to dry at 100 �C. Purple spots were regarded as positive.

2.5. Phenol sulphuric acid method

This method was used to determine the amount of LPG. To
obtain a standard curve, concentrations of 10, 20, 40, 60 and
80 mg/mL glucose solution were used. The amount of LPG
purified by the octyl sepharose column was determined by
reading absorbance values at 490 nm. According to the standard
curve prepared depending on the glucose solution, the amount of
sugar contained in LPG was calculated [37].

2.6. Conjugation of LPG and PAA

Hydroxyl groups of LPG were oxidized to aldehyde groups
with 5 or 10 mM NaIO4 in 0.02 M phosphate buffer for 6 h.
After the reaction, the solution was dialyzed against water for
24 h at 4 �C. Carbonyl groups of oxidized LPG were reductively
aminated by the reaction with ethylenediamine and NaCNBH3

in 0.02 M phosphate buffer for 12 h. The reaction was followed
by the dialysis against 0.02 M phosphate buffer for 24 h at 4 �C.

In the next step, LPG and PAA were conjugated by using
water soluble EDC in the concentration ratio of CPAA/CLPG = 0.5.
In this reaction, carboxylic acid groups of PAA (0.5 mg/mL) were
activated with water soluble EDC [(EDC]/[eCOOH) = 1] at pH
5.0 for 30 min. Under vigorous stirring at room temperature.
Aminated LPG, dissolved in the same volume of PAA solution,
was added to the activated PAA solution, and pH was adjusted to
7.0. The reaction solution was gently stirred overnight at 4 �C.

2.7. Gel permeation chromatography analysis

PAA and PAA-LPG conjugates were analyzed using gel
permeation chromatography with a triple detection system. Triple
detection consists of refractive index, right angle light scattering
and viscosimetry detectors, which were calibrated with a PEO
(22 kDa) standard solution. Gel permeation chromatography
analysis was performed with a Shimadzu Shim-Pack Diol-300
[(50 × 0.79) cm] column at room temperature. PBS (pH 7.1) was
used as a mobile phase, and the flow rate was 1.0 mL/min.

2.8. MALDI-TOF-MS analysis

Mass spectra of PAA, LPG and LPG-PAA conjugate were ac-
quired on a Voyager-DE™ PROMALDI-TOF mass spectrometer
(Applied Biosystems, USA) equipped with a nitrogen UV-laser
operating at 337 nm. Spectra were recorded in reflectron mode
with an average of 50 shots. Dithranol was used as a MALDI
matrix. Matrix and sample solutions were mixed to obtain a
Wsample/Wmatrix ratio of 1:10. OnemLof thematrix/samplemixture
was deposited on the sample plate, dried at room temperature and
analyzed. Results of characterization analysis for LPG-PAA con-
jugates were demonstrated in our previous paper [38].

2.9. Vaccine administration

Various vaccine formulations were prepared in the present
study: LPG-polymer conjugate, LPG-polymer physical mixture,
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and LPG + Freund's complete adjuvant. The LPG alone was also
used as a vaccine candidate for immunization. A vaccination dose
of 10 mg and a higher dose (35 mg) were selected for animal ex-
periments. The LPG-polymer physical mixture formulation was
prepared by mixing 10 mg and 35 mg of the LPG antigen together
with 20 mg and 70 mg of PAA, respectively. LPG-polymer con-
jugates were used at a concentration of 30 and 105 mg (containing
10 mg and 35 mg of LPG, respectively). Additionally, 10 mg and
35 mg of LPG were used together with 50 mL Freund incomplete
adjuvant. For each group, five BalB/c mice were used and the
animals were subcutaneously immunized with the mentioned
formulations.Vaccine formulationswere applied four times at 15 d
intervals. After two months from first immunization, mice in each
group were infected with stationary L. donovani promastigotes.

2.10. Infection of animals

The animals were intravenously infected with 1 × 107 sta-
tionary L. donovani promastigotes. The peripheral bloods were
obtained in weeks 1, 2, 3 and 4 after infection by cutting the tail
about 1 cm from the tip to permit a free flow of blood. Obtained
blood samples were used for parasite detection in PB with Gi-
emsa and Micro Culture Method (MCM).

2.11. Parasite detection in PB with Giemsa method and
MCM

After infection of the BALB/c mice with L. donovani pro-
mastigotes, blood samples were taken for four weeks. Smears
were prepared with 10 mL of these blood samples. After fixation
at room temperature for 5 min, the slides were stained with a
1:10 diluted Giemsa solution (Merck, 109204) for 25 min.
Washed and dried slides were observed under light microscope
with 100× magnification using immersion oil.

The parasite existence in test and control groups was also
detected by MCM that was described by Allahverdiyev et al.
[39]. Briefly, anti-coagulated 100 mL blood samples were trans-
ferred to capillary tubes and centrifuged at 3 000 rpm for 5 min.
After the centrifuge, the buffy coat was extracted and mixed
with RPMI 1640, which included 15% FCS. The mixed solution
was then transferred to micro capillary tubes, closed by sterile
wax and incubated at 27 �C. After a 24-h incubation period, the
micro capillary tubes were observed under inverted microscope
with 40× magnification.

2.12. Sacrifice of animals

Five mice from each immunized group and control group were
sacrificed at the 30th day after infection with L. donovani para-
sites. First, peritoneal exudate cells were extracted using an
injector and were then cultured on clean 24-well plates in
RPMI + 10% FCS. Peritoneal macrophages were used for in vitro
infection of peritoneal macrophages. The liver and spleen of each
animal were removed and weighed. The liver and spleen were
used for calculation of the Leishman-Donovan Unit (LDU).

2.13. Infection of peritoneal macrophages with L.
donovani promastigotes

Peritoneal macrophages were isolated from the BALB/c mice
in all experimental groups. The peritoneal macrophages were
grown in plastic 25 cm2 culture flasks in RPMI 1640 medium
(Sigma) containing L-glutamine, buffered with 10 mM HEPES,
and were supplemented with 10% heat inactivated FCS and
gentamicin (80 mg/mL) in a humidified incubator 5% CO2 at
37 �C and were subpassaged once a week.

The promastigotes of L. donovani in the stationary phase
were washed twice by centrifugation (3 000 rpm for 5 min) in
PBS, at pH 7.2, and their concentration was adjusted to 10 × 106

parasites/mL. The infection of macrophage cells was based on a
ratio of 10 parasites per macrophage, and this procedure was
used in triplicate for the strain. After 24 h of macrophage-
Leishmania interaction in culture, the coverslips were washed in
PBS, fixed in absolute methyl alcohol (5 min), and stained using
Giemsa's method to determine the infection index. The per-
centage of reduction of the infection index was evaluated as
follows:

100−

�
Infection index of immunised mouse

Infection index of control mouse
× 100

�

2.14. Assessment of parasite load

Mice from each immunized group and control group were
sacrificed on the 30th day after infection, and the liver and
spleen of each animal was removed and weighed. A cut section
of liver and spleen was rinsed in RPMI 1640 (pH 7.2), and
impression smears were made on clean slides by touching
homogenously the fragments of mentioned organs. The slides
that were prepared for livers and spleens were dried and then
fixed with methanol for 5 min. Following this, the slides were
stained with Giemsa (1:10) for 10 min at 37 �C, washed with
water and viewed by light microscopy under oil immersion
(100×). The number of amastigotes was determined by
analyzing 200 cells from each slide. Parasite loads were moni-
tored in LDU (LDU = number of amastigotes/number of liver
cells nuclei × mg organ weight). The results were assessed by
comparing the parasite burden of immunized animals with that
of the control animals. The percentage of the reduction in liver
parasite burden was evaluated as follows:

100−

��
LDU values of immunized groups
LDU values of Control groups

�
× 100

�

2.15. Evaluation of cytokine production in spleen

Spleen cells isolated from the vaccinated and control mice
were cultivated in RPMI 1640 medium for evaluation of cyto-
kine responses. Spleen cells that were isolated from immunized
mice were stimulated with 10 mg LPG for 72 h. Supernatants of
cultured spleen cells belong to all experimental and control
groups mice were used for cytokine analysis. Briefly, the
captured antibody was diluted with PBS, and 100 mL from this
dilution was added into a 96-well microplate. The plate was
incubated at room temperature overnight. The following day, the
wells were rinsed three times with a cleaning solution. Non-
specific binding was prevented due to the addition of a block-
ing solution, and the plate was incubated for 1 h at room tem-
perature. This was followed by another washing process, after
which 100 mL of samples diluted in reaction solution and
standards were added, and the microplate was again incubated
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for 2 h at room temperature. Following the binding into anti-
bodies, another washing process was performed, and detection
antibody was added. After a 2-h incubation period, 100 mL 97
Streptavidin-HRP was added into all of the wells, and the plate
was again incubated for 20 min at room temperature. Following
another washing process, 100 mL substrate solution was added to
all of the wells. After a 20-min incubation period, 50 mL of
stopping solution were added, and the plate was read at a 450 nm
wavelength.

2.16. Ethics statement

Inbred, five to six-week-old BALB/c mice were used for this
study. The ethical clearance and approval of the animal protocol
for conducting experiments on animals was granted from
Yeditepe University in Turkey by the Yeditepe University
Experimental Animal Ethics Committee.

2.17. Statistical analysis

The results were expressed as mean ± SD. Statistical Pack-
ages of Social Sciences (SPSS 16.0 version for Windows)
software with parametric tests (paired samples t-test, analysis of
variance, and Tukey's post-hoc test) was used for statistical
analysis. A P < 0.05 value was considered statistically
significant.

3. Results

3.1. Effect of different vaccine formulations on parasite
load in blood

Parasite loads in BALB/c mice immunized with different
vaccine formulations were detected by Giemsa and MCM. No
parasite was detected by the Giemsa staining method in any of
Table 1

Evaluation of parasite loads in mice peripheral blood by Giemsa and MCM.

Group Giemsa

1st week 2nd week 3rd week

Control 0 2+ 2+
LPG 0 0 0
LPG + PAA (conjugate) 0 0 0
LPG + Freund's adjuvant 0 0 0
LPG + PAA (physical mixture) 0 0 0

Table 2

Infection index values decrease (%) of peritoneal macrophages immunized w

reduction (%) in liver and spleen parasite burdens of the mice vaccina

promastigotes.

Group LPG dose (mg) Decrease in per
infec

LPG 10 40.
35 43.

LPG + Freund's adjuvant 10 46.
35 43.

LPG + PAA (physical mixture) 10 65.
35 67.

LPG + PAA (conjugate) 10 87.
35 89.
the immunized groups (Table 1). Only in the control group
starting from the second week of the infection was the existence
of parasites determined by the Giemsa method (Table 1). In
comparison, MCM yielded positive results and detected the
existence of parasites in all blood samples taken from each
immunized group during all of the experimental periods, and
was in contrast to the Giemsa results (Table 1). The parasite
intensity in the control group was much greater than in each
vaccinated group. Moreover, a very low amount of parasites was
detected in the blood of animals vaccinated with LPG-PAA
conjugates. It was also demonstrated that parasite numbers
were again low in samples of other immunized groups, contrary
to the control group, when they were analyzed with MCM.

3.2. Infection of peritoneal macrophages with L.
donovani promastigotes

According to the infection index results, there was a massive
reduction in infection rates of peritoneal macrophages isolated
from immunized animals when compared to non-immunized
animals. The maximum reduction in infection rate was seen in
mice immunized with LPG-PAA conjugates (87.4% with 10 mg
LPG; 89.3% with 35 mg LPG). This was respectively followed
by the LPG-PAA physical mixture (65.1% with 10 mg LPG;
67.2% with 35 mg LPG), LPG + Freund's adjuvant group (46.2%
for 10 mg LPG; 43.1% for 35 mg LPG) (Table 2). As seen, the
LPG-PAA conjugation demonstrated meaningful efficacy in
reducing the number of parasites in peritoneal macrophages in
contrast to other immunized mice (P < 0.01) (Table 2).
Furthermore, there was no significant difference between the
LPG and LPG + Freund's adjuvant group in terms of infection
indexes, indicating that protection against the infection is due to
conjugation of LPG with PAA (P < 0.01).

Reduction of parasites was also clearly seen in microscopic
examination following Giemsa staining of peritoneal macro-
MCM

4th week 1st week 2nd week 3rd week 4th week

3+ 6+ 6+ 6+ 6+
0 2+ 2+ 2+ 3+
0 2+ 2+ 1+ 1+
0 2+ 2+ 3+ 3+
0 2+ 2+ 2+ 2+

ith different vaccine formulations including 10 and 35 mg LPG, and th

ted with different formulations following infection with L. donovan

itoneal macrophages
tion index

Reduction in liver
parasite burdens

Reduction in spleen
parasite burdens

7 ± 1.2 33.5 ± 1.4 34.3 ± 0.8
4 ± 0.9 44.9 ± 1.6 48.7 ± 1.1
2 ± 1.8 24.8 ± 1.0 41.3 ± 1.5
1 ± 1.4 65.8 ± 1.5 53.3 ± 1.3
1 ± 2.0 36.2 ± 1.9 38.8 ± 1.0
2 ± 0.8 55.2 ± 1.1 51.3 ± 1.5
4 ± 2.3 53.4 ± 1.5 60.1 ± 2.3
3 ± 1.9 81.2 ± 2.4 73.4 ± 1.7
e

i



Table 3

IFN-g and IL-10 levels of Balb/c mice immunized with various vaccine

formulations after 21 d following to parasite infection (pg/mL).

Group IFN-g IL-10

Control 123.4 ± 17.2 89.3 ± 4.8
LPG 347.2 ± 31.3 58.7 ± 3.4
LPG + Freund's adjuvant 621.4 ± 44.6 71.3 ± 2.8
LPG + PAA (physical mixture) 490.3 ± 38.9 56.5 ± 3.0
LPG + PAA (conjugate) 743.8 ± 52.7 22.4 ± 2.4
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phages (Figure 1). In Figure 1A, it was observed that macro-
phages isolated from immunized mice resisted infection with L.
donovani promastigotes since the number of parasites in the
vacuoles of macrophages was very low. In comparison, L.
donovani promastigotes successfully infected macrophages iso-
lated from non-immunized mice (Figure 1B). This result indi-
cated that parasites could not survive within macrophages
activated by LPG-PAA conjugates and this is a sign of strong
protection.

3.3. Parasitic load

The reduction of parasitic load in the liver following each
LPG vaccine formulation is shown in Table 2. Immunization
with the LPG + PAA conjugate that contains 35 mg LPG antigen
significantly (P < 0.05) reduced the parasite load at the rate of
81.2% in all immunized animals as compared to control animals.
In comparison, the LPG + PAA conjugate that contained 10 mg
LPG antigen reduced the parasite load at the rate of 53.4%.

Additionally, the effects of vaccine formulations including
35 mg LPG alone, its combination with Freund's adjuvant, and
its physical mixture with PAA on the reduction of parasite load
were also determined. Reduction rates for LPG + Freund's
adjuvant vaccine, a physical mixture of LPG + PAA vaccine,
and an LPG containing vaccine alone were 65.8%, 55.2% and
44.93%, respectively (Table 2). Once again, protection rates
were low in groups immunized with different vaccine formula-
tions, including 10 mg LPG.

In contrast, the reduction rates in spleen parasite burdens of
immunized and non-immunized mice are given in Table 2. As
seen, the most significant reduction in parasite load was in
groups that were vaccinated with LPG-PAA conjugates. Ac-
cording to LDU analysis, vaccination with LPG-PAA conjugates
including 35 mg LPG lead to a 73.4% reduction in parasite load
for spleens in contrast to control group (P < 0.01). In compar-
ison, the reduction in parasite loads of spleens were evaluated as
60.1% when mice were immunized with LPG-PAA conjugates
including 10 mg LPG. In addition, for formulations including
35 mg LPG, the parasite reduction rates in spleen of mice
immunized with the LPG + PAA physical mixture,
Figure 1. In vitro infection of peritoneal macrophages isolated from immuniz
(A) peritoneal macrophages of immunized mice with LPG-PAA conjugates (B
LPG + Freund's adjuvant combinations and LPG alone were
determined as 51.3%, 55.3% and 48.7%, respectively
(P < 0.05). In contrast, the impact of formulations including
10 mg LPG on spleen parasite load was very low when compared
with the LPG-PAA conjugate. For these formulations, the
parasite reduction rates in spleen of mice immunized with
LPG + PAA physical mixture, LPG + Freund's adjuvant com-
binations and LPG alone were determined as 38.8%, 41.3% and
34.3%, respectively (P < 0.05). These results indicate that
conjugates of LPG with PAA reduce parasite loads in livers and
spleens much more than other formulations and the anti-
leishmanial vaccine effect of the conjugate improves with an
increase in the concentration of LPG.

3.4. Evaluation of cytokine production in spleen

Table 3 showed the IFN-g levels of mice immunized with
different vaccine formulations. The highest IFN-g levels were
detected in mice immunized with the conjugate. There was a
remarkable difference between the control group and the con-
jugate group.

In comparison, Table 3 showed that IL-10 levels were
significantly lower in mice immunized with the LPG-PAA
conjugate in contrast to the control group. Furthermore, IL-10
levels were also at low values in mice immunized with
LPG + Freund's adjuvant, but the difference between this group
and the control group was not as significant as the difference
between the LPG-PAA conjugate group and the control group.
ed or non-immunized mice with L. donovani promastigotes.
) peritoneal macrophages of control group (any vaccination).
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4. Discussion

In this study, the protective efficacy and immunogenicity of
LPG-PAA conjugates were investigated in L. donovani-infected
BALB/c mice by evaluation of parasite burden in peripheral
blood, spleen and liver, assessment of cytokine levels in spleen
and analysis of in vitro infection rates of macrophages isolated
from immunized mice. The results showed that the parasite load
in the sacrificed organs of immunized mice were meaningfully
reduced in contrast to control. Especially in livers, the reduction
of parasite load reached 80%. Additionally, following in vitro
infection of peritoneal macrophages with L. donovani promas-
tigotes, we determined that the infection index decreased at a
rate of 83% in macrophages that were obtained from immunized
mice with LPG-PAA conjugates. Furthermore, an enhanced Th1
immune response was detected in immunized mice against VL
via evaluation of cytokine responses. IFN-g levels significantly
increased, while IL-10 cytokine levels sharply decreased.
Therefore, all results reveal that vaccination with LPG-PAA
conjugates resulted in significant protection against a progres-
sive infection with L. donovani.

In reviewing the literature, despite the fact that LPG is one of
the most important surface glycoproteins of Leishmania para-
sites, there are only a limited number of studies investigating its
use as a vaccine candidate. This limitation may be dependent on
the complexity of the LPG isolation process from Leishmania
parasites and the absence of its commercial sale. There are only
a few studies in the extant literature examining its efficacy alone
and with several adjuvants in protection against CL [40–42].
There are currently no studies about its use as a vaccine
candidate against VL. In mentioned studies, it has been
suggested that LPG had good immunogenicity and could be
an important vaccine candidate when it is used together with
an appropriate adjuvant.

In recent years, various types of polymers have been intro-
duced for vaccine development research for different kinds of
infection and other diseases [43,44]. For this purpose, the adjuvant
features of PAA, which are found in the polyelectrolyte groups of
polymers, have recently been indicated.When delivered to primed
chickens, PAA enhanced secondary immune response to
inactivated Newcastle disease virus, and immune-modulating
activities of polyelectrolytes, including polyanions [45,46]. Early
experiments carried out using polyacrylic acid in mice
immunized with the red blood cells of sheep demonstrated
higher specific antibody responses and general immune
activation than with antigen alone.

Carbomers, a species of cross-linked polyacrylic acid, have
been evaluated as adjuvants in veterinary vaccines against swine
parvovirus [47] and circovirus type 2 [48], Staphylococcus aureus
in sheep [49], and in an experimental contraceptive vaccine [50]

and an equine influenza virus vaccine in horses [51]. These
reports suggest that carbomers such as carbopol are not
harmful in mammals and stimulate a more robust immune
response than antigens alone [52]. However, PAA has not been
applied alone or within a conjugate in vaccine development
studies against any form of leishmaniasis, despite its potential
ability to improve the immunogenicity of a molecule related to
parasites and to provide concise protection. In addition to
specific features of LPG and PAA, the most important factor
that supports the basis of this study is the easy and strong
interactions between the NH2 group of LPG and COOH
groups of PAA in order to generate a conjugate [38]. Taking
all information into account, for the first time in this study, we
investigated the efficacies of LPG-PAA conjugate formulations
as vaccine candidates against VL.

In order to reach this goal, we applied methods that are
generally used in vaccine studies, such as assessment of parasite
load by the LDU [53], evaluation of infection rates of peritoneal
macrophages [54] and detection of parasites in peripheral blood
by Giemsa staining [55]. In addition to these methods, the
MCM that was previously developed by our group was also
utilized to detect Leishmania parasites in peripheral blood.

The basic advantage of MCM is its capacity to diagnose VL
with high sensitivity, independent of the number of parasites
[56]. This method is being used in several endemic regions of the
world in order to diagnose VL and CL with high sensitivity and
specificity. Furthermore, the success of this method in detecting
parasite existence in donor blood and murine models with
asymptomatic leishmaniasis has been demonstrated in previous
studies [57–59].

In the present study, we investigated parasite existence in the
peripheral blood of infected immunized and non-immunized
mice by using the Giemsa method and MCM. Results demon-
strated that the sensibility of the Giemsa method is not sufficient
to assess parasite load, since it could not detect the presence of
parasites, especially in the blood of immunized animals. In
comparison, MCM demonstrated more clearly the differences in
parasite intensity between the groups, including infected animals
immunized with different vaccination processes and the non-
immunized control group.

The MCM results showed that parasite intensity was least in
the peripheral blood of infected mice vaccinated with the LPG-
PAA conjugate, in contrast to mice vaccinated with LPG alone,
LPG + Freund's adjuvant combination, the physical combination
of LPG-PAA, and the control group. These finding revealed the
first signals of protection of the LPG-PAA conjugate against
leishmaniasis. These results also demonstrate that the MCM
method can be used to monitor the effect of a vaccine candidate
in a in vivo model without using invasive techniques and the
sacrifice of animals.

The vaccine-induced protective immune response is associated
with a reduction in the parasitic number of peritoneal macrophages
and the parasite load in the liver and spleen of mice after a chal-
lenge infection. Macrophages play an important role in antigen-
presenting cells during infection by Leishmania. Macrophages
are also effector cells that kill Leishmania parasites when a pro-
tective Th1 type of immune response has been established [60].
Therefore, results obtained from in vitro infection of peritoneal
macrophages has importance in determining whether a vaccine
formulation activates peritoneal macrophages to inhibit
multiplication and the survival of L. donovani parasites. In a
previous study, Kavoosi et al. showed that in vitro stimulation of
murine macrophage cells with purified LPG isolated from L.
major significantly enhanced the production of nitric oxide,
which is an antileishmanial agent that macrophages use to kill
Leishmania parasites. Additionally, the authors also concluded
that LPG can be a good vaccine candidate since it has potential
to activate macrophages [61]. Similarly, in 2008, Bhomwick et al.
investigated the parasite clearance rates of peritoneal
macrophages that were immunized with free gp63 antigen and
gp63 encapsulated cationic liposomes in comparison with free
liposome following peritoneal macrophage isolation from mice
and their in vitro infection with L. donovani promastigotes. It
was determined that the number of surviving parasites within
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peritoneal macrophages were significantly lower in groups that
were immunized with free gp63 antigen and gp63 encapsulated
cationic liposomes in contrast to a group immunized with free
liposomes and the control group. The accumulation of gp63
molecules on surface receptors of peritoneal macrophages
prevented the entry of promastigotes into host cells. Furthermore,
it was suggested that activated macrophages with vaccine
formulations produced high amounts of IL-12 and IFN-g in or-
der to inhibit parasites and therefore parasite clearance of peritoneal
macrophages isolated from immunized mice following in vitro
infection could be associated with intensive secretion of these
cytokines [54]. In another study, Elcicek et al., demonstrated that
PAA exposure considerably increased nitric oxide production in
macrophages, in vitro [62].

In the present study, the infection index of peritoneal mac-
rophages isolated from mice immunized with LPG-PAA was
remarkably lower than for murine macrophages immunized by
other experimental groups and the control group. Since LPG is
one of the most important surface molecules that are responsible
for parasitic invasion into host cells, just like the gp63 molecule,
parasite clearance in immunized macrophages following in vitro
infection may be explained by the accumulation of LPG onto
macrophage receptors, which prevents entry and promastigotes
stimulation of macrophages. Additionally it can be assumed that
application of combinations including LPG and PAA produced
high amounts of nitric oxide and cytokines such as IL-12 and
IFN-g and this leads to strong inhibition of the parasites. Under
any circumstance, the prevention of intracellular Leishmania
survival by peritoneal macrophages represents another important
signal indicating the success of LPG-PAA conjugates as a
vaccine candidate.

The LDU is another significant parameter for detecting the
efficacies of vaccines [63]. Therefore, we applied this method in
our study in order to determine the parasite burden in
immunized mice after infection. The LPG-PAA conjugate
decreased parasite numbers at a rate of 81% in liver and 73% in
spleen. In comparison, vaccination with LPG alone resulted in a
40–50% reduction in parasite burdens of the liver and spleen. In
previous studies, it was shown that administration of LPG alone
lead to partial protection in susceptible BalB/c mice and its
combination with an appropriate adjuvant or polymers was
recommended. Similarly, in a recent study, Abdian et al.
investigated immunogenic features of recombinant LPG against
L. major infection in BalB/c mice and determined that LPG
vaccination provided partial protection, although a significant
increase was detected in antibody and cytokine levels in mice
after vaccination. In that study, the parasite burden in spleens of
mice immunized with LPG was found to decrease at a rate of
50% at most in contrast to control, thus indicating partial pro-
tection [64]. Therefore, the data in the present study representing
an approximately 50% reduction in parasite burden in visceral
organs when mice were vaccinated with LPG alone can be
considered consistent with the results of previous studies.
Furthermore, a 70%–80% reduction in parasite loads of the
liver and spleen of mice immunized with LPG-PAA conju-
gates elicited significant protection against a L. donovani
infection challenge and the antileishmanial vaccine effectiveness
of LPG-PAA conjugates. It may also be said that this effec-
tiveness is dose-dependent, and higher doses of conjugate may
provide complete protection.

Subsequently, we investigated cytokine response in spleens
against application of formulations including LPG-PAA
conjugates. As is known, immunity against leishmaniasis is T-
cell mediated, but T cells were not thought to recognize or
present non-protein antigens. Today, it is accepted that many
novel and interesting microbial antigens, including mycobacte-
rial glycolipids, can be recognized by T cells, and that these
antigens are presented to T cells by a special subset of MHC
class I proteins known as CD147. Therefore, it may be
rewarding to reevaluate the potential of LPG as a vaccine
candidate [65]. Alternatively, the Th1/Th2 paradigm is very
critical for the progression of leishmaniasis. Cytokine such as
IFN-g induce a Th1 immune response indicating a cure of the
infection, while IL-10 stimulates a Th2 response, which is a
sign of parasite survival and progression of the infection [66,67].
Therefore, in vaccine studies, the determination of cytokine
responses in spleens of immunized mice is very significant in
regards to demonstrating the efficacies of an applied vaccine
candidate.

In the present study, the results of cytokine analysis revealed
that an accurate Th1 cell response arises in mice immunized with
LPG-PAA conjugate. IFN-g levels in this group were signifi-
cantly diminished, while IL-10 levels considerably increased in
contrast to the control. These results also support the idea that
LPG would constitute a T-cell response.

Another significant result obtained from the current study was
improvement of the immune response in mice when they were
exposed to LPG-PAA conjugates in contrast to their exposure to a
LPG + PAA physical mixture. This may be explained by more
effective delivery of LPG antigens into antigen presenting cells in
conjunction with a PAA polymer. Kabanov et al. [68] demonstrated
that once polyelectrolyte-antigen conjugates interacted with B cells,
polyelectrolyte chains provided clustering of membrane proteins
while an antigen was presented to cell membrane receptors. Clus-
tering of cell membrane proteins leads to alterations in the ion flux
of cells and a signal is produced to trigger a cellular mechanism for
elevating the immune response to the antigen that is found within
the conjugate [68]. We propose that low immunogenicities of
LPG + PAA physical mixtures as compared to their conjugates is
associated with a lack of simultaneous and sufficient delivery of
antigen and adjuvants to immune competent cells. Alternatively,
conjugation with PAA is thought to provide sufficient
transportation of LPG to desired immune cells and this results in
a strong immune response against this antigen.

In conclusion, for the first time in this study, it was demon-
strated that a formulation, including a conjugate of LPG ob-
tained from L. donovani and PAA, has an antileishmanial
vaccine effect against VL. This study also for the first time
identifies the importance of polymer technology in vaccine
strategies for leishmaniasis. In this respect, the present study
may lead to new vaccine approaches based on high immuno-
genic LPG molecules and adjuvant polymers in the fight against
Leishmania infection.
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