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1. Introduction
Ribonucleic acid (RNA) is a major player in many cellular 
processes and for some organisms it is the source of genet-
ic information. Not only the sequences but also the struc-
tures of the RNA molecules have great importance. There 
are three main levels of RNA structure: primary (base se-
quence), secondary (based on base pairs, e.g., hairpins or 
the cloverleaf structure of transfer RNA (tRNA)), and ter-
tiary (interactions between secondary structure elements) 
(Batey et al., 1999).

The RNA secondary structure is formed by hydrogen 
bonds between base pairs A–U and G–C (G–U pairing is 
often observed) (Varani and McClain, 2000). However, 
these bases and pairings do not have the same strength.  
The four bases can be divided into several classes, such 
as based on the strength of the hydrogen bond (weak H-
bonds (A, U) and strong H-bonds (G, C)), based on the 
amino group (A, C) and keto group (G, U), and according 
to chemical structures of purine (A, G) and pyrimidine (C, 
U). 

By using the properties of bases and pairing infor-
mation, various methods aiming to measure RNA simi-

larity have been proposed. Some of these approaches are 
based on graphical representation of RNA 2D structure, 
which might suffer from the loss of information (Zhang 
et al., 2016). On the other hand, methods developed for 
3D graphical representation of RNA secondary structures 
use sequence, chemical, and structural information. The 
method developed by Zhang et al. (2016) for dynamic 3D 
graphical representation for RNA structure analysis seems 
to be performing better than other approaches.

In recent years, the small, noncoding RNAs known as 
microRNAs (miRNAs) that regulate posttranscriptional 
gene expression have been studied extensively. There are 
various reasons for miRNAs’ popularity. For instance, a 
wide range of organisms produce miRNAs and there are 
some reports about their involvement in host–parasite in-
teractions (Saçar Demirci et al., 2016; Acar et al., 2018). 
Moreover, many disease phenotypes are associated with 
miRNAs, and it is possible to use miRNAs as disease mark-
ers and new therapeutic agents (Avci and Baran, 2014; 
Tüfekci et al., 2014). However, considering the capacity of 
a eukaryotic genome to produce miRNA precursors, it is 
a difficult task to distinguish new miRNAs experimentally. 
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As a result, designing and employing computational ap-
proaches for miRNA analysis have become essential sub-
jects.

In addition to the capacity of single-stranded RNAs 
forming secondary structures by self-folding, miRNAs 
have a characteristic hairpin structure so that they can be 
recognized and modified by miRNA biogenesis machinery 
elements (Kozlowski et al., 2008). Thus, miRNA prediction 
analyses usually require information from primary and 
secondary structures. Unfortunately, this hairpin structure 
is not a unique property of miRNAs (Roden et al., 2017). 

The majority of tools designed to determine if a given 
sequence is miRNA are based on the application of ma-
chine learning (ML) (Saçar Demirci et al., 2017). Although 
ML is quite powerful and advantageous for miRNA stud-
ies, there are some essential points to consider for an ef-
ficient analysis such as data quality, feature selection, 
and ML algorithm selection (Saçar Demirci and Allmer, 
2017a). 

In this paper, for the first time, a ML framework for 
miRNA prediction based on the 3D representation of 
known miRNA precursors and pseudohairpins is pro-
posed. The method is developed and tested based on hu-
man miRNA data, but it is possible to apply and/or extend 
it for other organisms as well. 

2. Materials and methods
Identification of miRNA hairpins is usually achieved by 
using 2-class classification-based ML approaches. In order 
to create models and test the effect of these models, differ-
ent datasets were obtained and various classification algo-
rithms were used in a workflow system.
2.1. Data
Sequence datasets that were used in training and testing 
were as follows:

- 1917 human precursors (miRBase Release 22) (Kozo-
mara and Griffiths-Jones, 2014) – learning data

- 587 human precursors (MirGeneDB 2.0) (Fromm et 
al., 2018) – learning data

- 7701 nonhuman precursors (MirGeneDB 2.0) 
(Fromm et al., 2018) – testing data

- 8492 pseudohairpins (Ng and Mishra, 2007) – learn-
ing data
2.2. 3D graphical representation of RNA secondary 
structures
Secondary structures of RNA sequences were obtained 
by using RNAfold (Hofacker, 2003) with default settings. 
The best structure for each sequence was selected based on 
minimum free energy values (Figure 1). According to the 
dot-bracket (nonbonding and bonding bases, respectively) 
representation of 2D structures, bases in the sequence were 

modified as uppercase and lowercase characters.  These se-
quences were then used as input to the RnaFeatureGenera-
tor software (Zhang et al., 2016) to produce 36D vectors 
characterizing RNA secondary structures (Figure 1). 
2.3. Data mining 
The Konstanz Information Miner (KNIME) (Berthold et 
al., 2008) platform was used for the data mining analysis. 
Datasets containing 36D vectors were loaded and used for 
classification. For learning, 3 classifiers, random forest, 
decision tree, and naïve Bayes, were trained with human 
miRNAs from miRGeneDB as positive and pseudohair-
pins as negative examples (Figure 2). To avoid class im-
balance, equally sized samples from both datasets were 
selected randomly, and 70% learning – 30% testing sets 
were applied with 1000-fold Monte Carlo cross-validation 
(Xu and Liang, 2001). The models from each classifier with 
the highest accuracy score were saved and used for further 
testing analysis. The same learning strategy was followed, 
where miRBase human precursor sequences were used as 
positive data. 

To test the performance of the model, nonhuman pre-
cursors from MirGeneDB were used. Datasets and the best 
models are available in the supplementary files (https://
data.mendeley.com/datasets/dms72w9ckc/1). 

3. Results
ML has been a popular choice for miRNA studies (Saçar 
Demirci et al., 2017). However, there are many factors af-
fecting the performance of ML-based approaches (Saçar 
Demirci and Allmer, 2017a, 2017b). Here, not only a new 
workflow for miRNA precursor prediction is proposed, 
but also some crucial points for reliable results are inves-
tigated. For instance, the effect of positive dataset selec-
tion on the accuracy of learners is shown in Figures 3 and 
4. The models trained with validated human miRNA se-
quences obtained from MiRGeneDB (Figure 3) have high-
er scores than models generated with miRBase (Figure 4). 
Graphs for other measures like precision, recall, specificity, 
sensitivity, and F-measure are provided in the supplemen-
tary files. 

Three classifiers were used simultaneously on the same 
datasets for learning. Among them, random forest showed 
better performance based on almost all of the measures 
(Figure 3 and 4; Supplementary Figures 1 and 2). Due to 
this clear difference, the random forest model with the 
highest accuracy score from Figure 3 was selected for fur-
ther analysis. 

The next step was analyzing the capacity of the model 
on new datasets. According to results shown in Table 1 and 
Supplementary Figure 3, among 7701 miRNA precursors 
from 32 nonhuman species listed in MirGeneDB, around 
4% were labeled as negative, meaning that even though the 



SAÇAR DEMİRCİ et al. / Turk J Biol

276

Figure 1. Representation of sequence and secondary structure of hsa-let-7a-1. mfe: Minimum free energy.

Figure 2. The basic workflow of the analysis. Hairpin sequences were folded into their secondary structures and based on the state of 
the bases (bonded or nonbonded) for each hairpin 3D features were calculated. Learning datasets were used for classification analysis 
with 1000-fold Monte Carlo cross-validation and the best models with the highest accuracy scores were applied to the test datasets for 
prediction.
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Figure 3. Accuracies of classifiers when positive dataset is MirGeneDB human precursors. DT: Decision tree, NB: 
naïve Bayes, RF: random forest.

Figure 4. Accuracies of classifiers when positive dataset is miRBase human precursors. DT: Decision tree, NB: naïve Bayes, RF: random 
forest.
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model was generated based on human data, it might also 
be applied to analyze miRNAs from other organisms. 

When the developed model was compared with some 
of the existing approaches using classification for miRNA 
prediction, as shown in Table 2, results showed that the 
prediction accuracy of our method was greater than the 

Triplet-SVM, MiPred, MicroPred, and izMiR. The perfor-
mance scores of sensitivity, specificity, and accuracy were 
taken from the articles of corresponding methods. Con-
sidering that all of these approaches were constructed by 
using differing parts such as types of classifiers, sampling 
methods, and datasets, comparison of their performances 

Table 1. Prediction results for other organisms’ miRNA hairpins. All 
organisms from MirGeneDB (except human) were included. MiRNA # 
shows total number of hairpins per species. Prediction column shows 
the number of miRNA and negative predictions, respectively. The table 
is sorted alphabetically for species. 

Species Acronym MiRNA # Prediction
Anolis carolinensis Aca 261 244, 17
Alligator mississippiensis Ami 272 259, 13
Ascaris suum Asu 95 94, 1
Branchiostoma floridae Bfl 90 88, 2
Bos taurus Bta 433 418, 15
Caenorhabditis elegans Cel 139 135, 4
Canis familiaris Cfa 444 427, 17
Crassostrea gigas Cgi 150 145, 5
Columba livia Cli 246 237, 9
Chrysemys picta bellii Cpi 290 278, 12
Cavia porcellus Cpo 397 384, 13
Capitella teleta Cte 102 96, 6
Drosophila melanogaster Dme 152 133, 19
Dasypus novemcinctus Dno 373 362, 11
Daphnia pulex Dpu 79 67, 12
Danio rerio Dre 385 369, 16
Eisenia fetida Efe 192 177, 15
Echinops telfairi Ete 339 328, 11
Gallus gallus Gga 262 248, 14
Ixodes sp. Isc 56 52, 4
Lottia gigantea Lgi 80 79, 1
Macaca mulatta Mml 498 488, 10
Mus musculus Mmu 448 428, 20
Oryctolagus cuniculus Ocu 366 361, 5
Ptychodera flava Pfl 83 81, 2
Patiria miniata Pmi 58 54, 4
Rattus norvegicus Rno 413 394, 19
Sarcophilus harrissii Sha 417 409, 8
Saccoglossus kowalevskii Sko 83 80, 3
Strongylocentrotus purpuratus Spu 57 51, 6
Tribolium castaneum Tca 188 186, 2
Xenopus tropicalis Xtr 253 241, 12
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cannot be achieved based on their reported performance 
measurements. Nevertheless, the values are presented here 
to provide a general idea.  

4. Discussion
The majority of tools developed for miRNA identifica-
tion are based on ML; thus, they are affected by the chal-
lenges of ML. For instance, one of the most important cri-
teria for a successful classification system is having high 
quality datasets (Saçar Demirci and Allmer, 2017b). For 
miRNA analysis, established miRNAs available in public 
databases, like miRBase and MirGeneDB, are used as posi-
tive data. Unfortunately, it is demanding to create a true 
negative dataset since it should have entries with similar 
characteristics to known miRNAs, but not too similar so 
that the algorithm can accurately discriminate between 
them. Hence, it is currently impossible to have a true vali-
dated negative dataset. The most popular negative dataset, 
known as pseudohairpins, was selected and used for this 
study. 

Not only negative datasets but also positive ones seem 
to need further improvement. Previously, it has been 
shown that some of the entries in miRBase are unlikely to 
be true miRNAs (Saçar et al., 2013). Moreover, the results 
presented here show that in terms of quality, human miR-
NAs listed in MirGeneDB are better than human miRNA 
entries in miRBase. Nevertheless, miRBase is the standard 
source providing miRNA sequence information from 286 
organisms (Release 22). 

Various classification algorithms have been used for 
miRNA precursor predictions. In this work, three of those 
classifiers, random forest, decision tree, and naïve Bayes, 
were trained and tested with the same datasets. Models of 
the random forest classifier produced higher performance 

scores of accuracy (Figures 3 and 4), F-measure, recall, 
precision, sensitivity, and specificity (Supplementary Fig-
ures 1 and 2), consistent with our previous research (Saçar 
Demirci and Allmer, 2017a).

For ML analyses, some parameters explaining the da-
taset are required. There are various features proposed 
and used for miRNAs and these features can be grouped 
into  structural, sequence-based, probability-based, and 
thermodynamic parameters. In earlier studies, we imple-
mented hundreds of such features but we found that about 
50 features are usually adequate for building an effective 
ML model (Saçar and Allmer, 2013a, 2013b). However, 
calculating such features is computationally expensive, 
especially for a genome-wide miRNA search. Moreover, 
the selection of informative features is an important step 
that has a large impact on the overall model performance 
(Yousef et al., 2016). Thus, an alternative approach like us-
ing 3D graphical representation of RNA secondary struc-
tures as features describing miRNAs seems like a promis-
ing method. 

2D and 3D representations of RNA sequences create a 
data matrix based on the structural information. Although 
such representations have been used for measuring RNA 
similarities and classifying viruses (Yao et al., 2005; Li et 
al., 2012), they are rarely applied for pre-miRNA analysis 
(Fu et al., 2018). The workflow developed in this study is 
the first example of application of 3D representations of 
RNAs for ML-based miRNA prediction. The results pre-
sented here imply that when these features are used on a 
high quality dataset, they are sufficient for building a suc-
cessful model for miRNA analysis. 

Table 2. Comparison of the model developed in this work with the existing classifiers. 
FN: Number of features used to build the classification model, ML: machine learning 
method, SE: sensitivity, SP: specificity, Acc: accuracy, SVM: support vector machine, 
NB: naïve Bayes, MLP: multilayered perceptron, RF: random forest, DT: decision tree.

Method FN ML SE SP Acc
Triplet-SVM (Xue et al., 2005) 32 SVM 93.30
MiPred (Jiang et al., 2007) 34 RF, SVM 98.21 95.09 96.68
MicroPred (Batuwita et al., 2009) 21 RF, SVM 90.02 97.28
izMiR (Saçar Demirci et al., 2017) ~900 SVM, NB, DT 91.98 91.98 91.25
3D model 36 RF, NB, DT 98.87 98.87 98.58
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Supplementary Figures
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Supplementary Figure 1. Boxplots of classification performance measures when positive dataset was selected from 
MirGeneDB human miRNA entries: F-measure, recall, precision, sensitivity, specificity (from top to bottom).
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Supplementary Figure 2. Boxplots of classification performance measures when positive dataset was selected from MiRBase human 
miRNA entries: F-measure, recall, precision, sensitivity, specificity (from top to bottom).
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Supplementary Figure 3. Prediction performances on MirGeneDB data. Gray indicates miRNAs while red shows negatives. X-axis lists 
the acronyms of the organisms. Y-axis shows the number of precursors.


