Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHumayun, Muhammad Hamza
dc.contributor.authorHernandez-Martinez, Pedro Ludwig
dc.contributor.authorGheshlaghi, Negar
dc.contributor.authorErdem, Onur
dc.contributor.authorAltintas, Yemliha
dc.contributor.authorShabani, Farzan
dc.contributor.authorDemir, Hilmi Volkan
dc.date.accessioned2022-02-27T11:12:41Z
dc.date.available2022-02-27T11:12:41Z
dc.date.issued2021en_US
dc.identifier.issn1613-6810
dc.identifier.issn1613-6829
dc.identifier.otherPubMed ID34510722
dc.identifier.urihttps //doi.org/10.1002/smll.202103524
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1200
dc.descriptionThe authors gratefully acknowledge the financial support in part from Singapore National Research Foundation under the programs of NRFNRFI2016-08 and the Science and the Singapore Agency for Science, Technology and Research (A*STAR) SERC Pharos Program under Grant No. 152-73-00025 and in part from TUBITAK 115F297, 117E713, and 119N343. H.V.D. also acknowledges support from TUBA. O.E. acknowledges TUBITAK for financial support through the BIDEB-2211 program. The authors also thank Mr. Huseyin Bilge Yagci for his assistance in taking the photocurrent measurements.en_US
dc.description.abstractSilicon is the most prevalent material system for light-harvesting applications; however, its inherent indirect bandgap and consequent weak absorption limits its potential in optoelectronics. This paper proposes to address this limitation by combining the sensitization of silicon with extraordinarily large absorption cross sections of quasi-2D colloidal quantum well nanoplatelets (NPLs) and to demonstrate excitation transfer from these NPLs to bulk silicon. Here, the distance dependency, d, of the resulting Forster resonant energy transfer from the NPL monolayer into a silicon substrate is systematically studied by tuning the thickness of a spacer layer (of Al2O3) in between them (varied from 1 to 50 nm in thickness). A slowly varying distance dependence of d(-1) with 25% efficiency at a donor-acceptor distance of 20 nm is observed. These results are corroborated with full electromagnetic solutions, which show that the inverse distance relationship emanates from the delocalized electric field intensity across both the NPL layer and the silicon because of the excitation of strong in-plane dipoles in the NPL monolayer. These findings pave the way for using colloidal NPLs as strong light-harvesting donors in combination with crystalline silicon as an acceptor medium for application in photovoltaic devices and other optoelectronic platforms.en_US
dc.description.sponsorshipTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 115F297 117E713 119N343 Turkish Academy of Sciences European Commission Turkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK)en_US
dc.language.isoengen_US
dc.publisherWILEY-V C H VERLAG GMBHPOSTFACH 101161, 69451 WEINHEIM, GERMANYen_US
dc.relation.isversionof10.1002/smll.202103524en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectcolloidal nanoplateletsen_US
dc.subjectdistance dependencyen_US
dc.subjectFRETen_US
dc.subjectnonradiative energy transferen_US
dc.subjectself-assemblyen_US
dc.subjectsemiconductor nanocrystalsen_US
dc.subjectsiliconen_US
dc.titleNear-Field Energy Transfer into Silicon Inversely Proportional to Distance Using Quasi-2D Colloidal Quantum Well Donorsen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümüen_US
dc.contributor.institutionauthorAltintas, Yemliha
dc.identifier.volumeVolume 17 Issue 41en_US
dc.relation.journalSMALLen_US
dc.relation.tubitak115F297 117E713 119N343
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster