dc.contributor.author | Çinkir. Zübeyir | |
dc.date.accessioned | 2022-08-02T13:32:05Z | |
dc.date.available | 2022-08-02T13:32:05Z | |
dc.date.issued | 2015 | en_US |
dc.identifier.issn | 00255718 | |
dc.identifier.uri | http://dx.doi.org/10.1090/mcom/2981 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/1340 | |
dc.description.abstract | Several invariants of polarized metrized graphs and their applications in Arithmetic Geometry have been studied recently. In this paper, we give fast algorithms to compute these invariants by expressing them in terms of the discrete Laplacian matrix and its pseudo inverse. The algorithm we give can be used for both symbolic and numerical computations. We present various examples to illustrate the implementation of these algorithms. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | American Mathematical Society | en_US |
dc.relation.isversionof | 10.1090/mcom/2981 | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Invariants of polarized metrized graphs | en_US |
dc.subject | Metrized graph | en_US |
dc.subject | Polarized metrized graph | en_US |
dc.subject | Pseudo inverse and relative dualizing sheaf | en_US |
dc.subject | Resistance function | en_US |
dc.subject | The discrete Laplacian matrix | en_US |
dc.subject | The tau constant | en_US |
dc.title | Computation of polarized metrized graph invariants by using discrete laplacian matrix | en_US |
dc.type | article | en_US |
dc.contributor.department | AGÜ, Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü | en_US |
dc.contributor.institutionauthor | Çinkir, Zübeyir | |
dc.identifier.volume | 84 | en_US |
dc.identifier.issue | 296 | en_US |
dc.identifier.startpage | 2953 | en_US |
dc.identifier.endpage | 2967 | en_US |
dc.relation.journal | Mathematics of Computation | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |