Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorLi, Mengzhen
dc.contributor.authorCoskun, Mustafa
dc.contributor.authorKoyuturk, Mehmet
dc.date.accessioned2022-10-10T12:24:38Z
dc.date.available2022-10-10T12:24:38Z
dc.date.issued2022en_US
dc.identifier.issn2050-1242
dc.identifier.issn050-1250
dc.identifier.urihttps://doi.org/10.1017/nws.2022.17
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1385
dc.description.abstractMachine learning applications on large-scale network-structured data commonly encode network information in the form of node embeddings. Network embedding algorithms map the nodes into a lowdimensional space such that the nodes that are “similar” with respect to network topology are also close to each other in the embedding space. Real-world networks often have multiple versions or can be “multiplex” with multiple types of edges with different semantics. For such networks, computation of Consensus Embeddings based on the node embeddings of individual versions can be useful for various reasons, including privacy, efficiency, and effectiveness of analyses. Here, we systematically investigate the performance of three dimensionality reduction methods in computing consensus embeddings on networks with multiple versions: singular value decomposition, variational auto-encoders, and canonical correlation analysis (CCA). Our results show that (i) CCA outperforms other dimensionality reduction methods in computing concensus embeddings, (ii) in the context of link prediction, consensus embeddings can be used to make predictions with accuracy close to that provided by embeddings of integrated networks, and (iii) consensus embeddings can be used to improve the efficiency of combinatorial link prediction queries on multiple networks by multiple orders of magnitudeen_US
dc.language.isoengen_US
dc.publisherCAMBRIDGE UNIV PRESS32 AVENUE OF THE AMERICAS, NEW YORK, NY 10013-2473en_US
dc.relation.isversionof10.1017/nws.2022.17en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectconsensus embeddingen_US
dc.subjectdimensionality reduction methodsen_US
dc.subjectlink predictionen_US
dc.titleConsensus embedding for multiple networks: Computation and applicationsen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-2266-4313en_US
dc.contributor.institutionauthorCoşkun, Mustafa
dc.identifier.volume10en_US
dc.identifier.issue2en_US
dc.identifier.startpage190en_US
dc.identifier.endpage206en_US
dc.relation.journalNETWORK SCIENCEen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster