dc.contributor.author | Yağmur, Ahmet | |
dc.date.accessioned | 2022-12-16T06:35:56Z | |
dc.date.available | 2022-12-16T06:35:56Z | |
dc.date.issued | 2022 | en_US |
dc.date.submitted | 2022-04 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/1423 | |
dc.description.abstract | This thesis discusses blockchain-based energy applications from the distribution
system operator (DSO) perspective. Blockchain has a potential impact on emerging
actors, such as electric vehicles (EVs), charging facility units (CFUs), Distributed Energy
Resources (DERs) and microgrids of the electricity grid. Although, blockchain offers
magnificent, decentralized solutions, owing to the reality of the existing grid structure,
the central management of DSOs still plays a significant, non-negligible role. Numerous
studies of proposed blockchain-based EV systems have investigated the energy costs of
EVs, fast and efficient charging, privacy and security, peer-to-peer energy trading,
sharing economy, selection of appropriate location for CFUs, and scheduling.
Additionally, blockchain in DERs, microgrids and energy market investigated in
literature. However, cooperation with DSO organizations has not been adequately
addressed. Blockchain-based solutions mainly suggest an entirely distributed and
decentralized approach for energy trading. However, converting the entire power system
infrastructure is considerably expensive. Building a thoroughly decentralized electricity
network is nearly impossible in a short time, particularly at the national grid level. In this
regard, the applicability of the solutions is as significant as their appropriateness,
especially from the DSO perspective, and must be examined closely. The blockchain
applicability of the essential DSO services such as SCADA and AMI are analyzed in this
study. Time series analysis applied to forecast future peak load of the grid in a pilot
region. Reducing the peak load by using BC based demand side management mechanism
scenario evaluated and total saving of grid investment is analyzed. We searched and
analyzed DSO-based requirements for potential blockchain applications in the energy
sector. | en_US |
dc.description.abstract | Blok zincirin elektrik şebekesinde yeni öne çıkan elektrikli araçlar, elektrikli araç
şarj istasyonları, dağıtık enerji üretim kaynakları ve mikro şebekeler gibi katılımcılar
üzerinde potansiyel etkileri vardır. Blok zincir merkeziyetsiz muhteşem bir çözüm
sunmasına rağmen, şebekenin mevcut yapısı ve elektrik dağıtım şirketinin merkeziyetçi
yönetim şekli, elektrik dağıtım şirketinin hala şebeke üzerinde gözardı edilemez görev ve
etkileri olduğunu göstermektedir. Literatürde blok zincir tabanlı birçok çalışmada,
elektrikli araçlar başta olmak üzere birçok şebeke paydaşı araştırılmıştır. Ancak dağıtım
şirketleri ile iş birliği konusu açık ve net şeklide ele alınmamıştır. Blok zincir tabanlı bu
çözümler genel olarak tamamen dağıtık ve merkeziyetsiz enerji ticareti yaklaşımı
öneriyor, ancak bütün bir elektrik şebekesi sistemini merkeziyetsiz yapıya dönüştürmek
oldukça pahalı olacaktır. Ancak yinede elektrik şebekesinin tam anlamı ile merkeziyetsiz
olması, özellikle bütün ulusal elektrik şebekesi seviyesinden bakıldığında, kısa vadede
neredeyse imkânsızdır. Bu bağlamda, özellikle elektrik dağıtım şirketi perspektifinden
bakıldığında, çözümlerin uygulanabilirliği kadar mevcut yapıya uygunluğu da önem
arzetmektedir ve daha yakından dikkatle gözden geçirilmelidir. Bu çalışmada, elektrikli
araçlar, elektrikli araç şarj üniteleri, dağıtık enerji kaynakları, mikro şebekeler, enerji
marketi, elektrik dağıtım şirketlerinin en önemli hizmet araçları olan SCADA ve akıllı
sayaçlar için blok zincir uygulanabilirlikleri elektrik dağıtım şirketleri perpetifinden
analiz edilmiştir. Ayrıca zaman serileri kullanılarak gelecek dönem puant gücü
hesaplanmış ve blockchain temelli talep tarafı yönetimi projesi uygulanırsa elde edilecek
tasarruf miktarları analiz edilmiştir | en_US |
dc.description.tableofcontents | TABLE OF CONTENTS
1. INTRODUCTION .................................................................................................... 1
1.1 AIMS and CONTRIBUTION of THESIS……………………………………….6
1.2 OUTLINE of THESIS…………………………………………………………...6
2. OVERVIEW OF BLOCKCHAIN………………………………………………...8
2.1 FEATURES of BLOCKCHAIN……………………………...……….………...9
2.1.1 Hash Function……………………………………………...………….………….9
2.1.2 Public & Private Key………………………………………………….…………9
2.1.3 Nonce………………………………………………………………….…………..10
2.1.4 Smart Contract………………………………………………………..…………10
2.1.5 Merkle Tree…………………………………………………………..…………..11
2.1.6 Lightning Network………………………………………………….….………..13
2.1.7 Immutability……………………………………………………………..……….13
2.1.8 Mining…………………………………………………………………….………14
2.1.9 Longest Chain Rule……………………………………………………………..14
2.1.10 Minting………………………………………………………………………….15
2.1.11 Inflation Problem……………………………………………………….……..15
2.1.12 Types of Blockchain Structures………………………………………………15
2.1.13 Benefits of Blockchain…………………………………………………..…....17
2.1.14 Downsides of Using Blockchain…………………………………………….17
2.2 CONSENSUS ALGORITHM…………………………………………………18
2.2.1 Several Consensus Algorithms In Energy Sector………………….………..21
2.2.1.1 Proof-Of-Work (PoW)…………………………………………….…….…21
2.2.1.2 Proof Of Stake (PoS)……………………………………………….……...23
2.2.1.3 Proof-Of-Benefit (PoB)…………………………………………….…….. 23
2.2.1.4 Delegated Proof-of-Stake (DPoS)……………………………….…….…24
2.2.1.5 Practical Byzantine Fault Tolerance (PBFT)………………….…….…24
2.2.1.6 Delegated Byzantine Fault Tolerance (DBFT)………………………….24
2.2.1.7 Directed Acyclic Graph (DAG)……………………………………………24
2.2.1.8 Proof-of-Authority (PoAu)…………………………………………………25
2.2.1.9 Byzantine Fault Tolerance (BFT)…………………………………………25
2.2.2 Blockchain Security…………………………………………………………….25
3. GRID STAKEHOLDERS AND BLOCKCHAIN ……………………………..27
3.1 USE OF ESSENTIAL DSO SERVICES AND BLOCKCHAIN……….……..27
3.1.1 SCADA ……………………………………………………………………………27
3.1.2 Advanced Metering Infrastructure (AMI) ………………………………….…28
3.2 ELECTRIC VEHICLES & ENERGY STORAGE SYSTEMS…………….…29
3.2.1 EVs & Blockchain-Related Works…………………………………………..…32
3.2.2 Future EV Usage and Its Problems…………………………………….….….35
3.2.3 Benefits of EV with the Help of Blockchain…………………………….…….36
3.3 USE OF BLOCKCHAIN IN DISTRIBUTED ENERGY RESOURCES (DERS)
AND MICROGRIDS……………………………………………………………….....37
3.4 BLOCKCHAIN IN A DECENTRALIZED ENERGY MARKET……………..39
3.5 BLOCKCHAIN APPLICATION IN OTHER DSO ASPECTS …...……….….43
3.5.1 Blockchain Contribution in Demand Response………………............……43
v
3.5.2 Blockchain for TSO/ DSO Interactions ……..………..……….…................44
3.5.3 Grid Capacity Investment Linkage with Blockchain……………................44
3.5.4 Blockchain for Environmentalism………………………………...................45
4. INVESTIGATION OF BLOCKCHAIN POTENTIAL FOR PILOT REGION:
DSM PERSPECTIVE…………………....................................………………….46
4.1 OVERVIEW OF THE PILOT REGION FROM THE POINT OF PEAK POWER
AND GRID INVESTMENT ………………………………………………...............47
4.2 METHOD 1- FORECASTING the PEAK POWER…………………………...50
4.2.1 Time Series Background………………………………………………………..50
4.2.2 ARIMA (Autoregressive Integrated Moving Average)……………………...50
4.2.2.1 Performance of ARIMA Model…………………………………………...52
4.2.3 ARIMAX …………………………..…………………………………………….52
4.2.3.1 Performance of ARIMAX …..…………..………………….....................53
4.3 METHOD 2- GENERALIZATION ……………………………………..........60
4.4 COST of MARKETING FEE of the REGION …………….………………….64
4.5 VARIABLE COSTS of APPLYING BLOCKCHAIN PROJECT…........….....64
5. ENERGY & BLOCKCHAIN IN TÜRKİYE..………………...................……..66
5.1 YEK-G (EXIST) ………………………………..……………………...............66
5.2 FOTON ENERGY & ENERGY WEB…………………………………...........68
5.3 BLOK-Z………………………………………………………………..............69
5.4 INAVITAS & ENERGY WEB…………………………………………..........70
5.5 FLEXIGRID & OEDAŞ……………………………………………….............71
5.6 AKEDAŞ………………………………………………………………............72
5.7 ARAS EDAŞ……………………………………………………………..........72
5.8 GDZ EDAŞ…………………………………………………………….............72
5.9 BAŞKENT EDAŞ……………………………………………………..........….73
5.10 SOME OTHER BLOCKCHAIN RELATED INSTITUTIONS……..........….73
5.10.1 Havelsan…………………………………………………………...........73
5.10.2 Tubıtak Research Laboratory……………………………………...........73
6. CONCLUSIONS & FUTURE PROSPECTS & DISCUSSION.………............75
5.1 DISCUSSION…………………………………………………………............75
5.2 SOCIETAL IMPACT AND CONTRIBUTION TO GLOBAL
SUSTAINABILITY………………………………………………………..............80
5.3 FUTURE PROSPECTS……………………………………………….............81
5.4 CONCLUSION………………………………………………………........…..82 | en_US |
dc.language.iso | eng | en_US |
dc.publisher | Abdullah Gül Üniversitesi, Fen Bilimleri Enstitüsü | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | AMI | en_US |
dc.subject | DERs | en_US |
dc.subject | DSO Blockchain | en_US |
dc.subject | EVs | en_US |
dc.subject | SCADA | en_US |
dc.title | Blockchain-based energy applications: DSO perspective | en_US |
dc.title.alternative | Elektrik dağıtım şirketleri perspektifinden blockchain temelli enerji uygulamaları | en_US |
dc.type | masterThesis | en_US |
dc.contributor.department | AGÜ, Fen Bilimleri Enstitüsü, Elektrik ve Bilgisayar Mühendisliği Ana Bilim Dalı | en_US |
dc.relation.publicationcategory | Tez | en_US |