dc.contributor.author | Dogan, Abdulkadir | |
dc.date.accessioned | 2023-04-04T06:11:53Z | |
dc.date.available | 2023-04-04T06:11:53Z | |
dc.date.issued | 2015 | en_US |
dc.identifier.issn | 1056-2176 | |
dc.identifier.issn | 1879-0224 | |
dc.identifier.other | WOS:000366947700005 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/1552 | |
dc.description.abstract | In this paper, we study the following p-Laplacian boundary value problems on time scales
{(phi(p)(u(Delta)(t)))(del) + a(t)f(t, u(t), u(Delta)(t)) = 0, t is an element of [0,T](T),
u(0) - B-0(u(Delta)(0)) = 0, u(Delta)(T) = 0,
where phi(p)(u) = vertical bar u vertical bar(p-2)u, for p > 1. We prove the existence of triple positive solutions for the one-dimensional p-Laplacian boundary value problem by using the Leggett-Williams fixed point theorem. The interesting point in this paper is that the non-linear term f is involved with first-order derivative explicitly. An example is also given to illustrate the main result. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | DYNAMIC PUBLISHERS, INC | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | BVPS | en_US |
dc.subject | DYNAMIC EQUATIONS | en_US |
dc.title | ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL p-LAPLACIAN BOUNDARY VALUE PROBLEMS ON TIME SCALES | en_US |
dc.type | article | en_US |
dc.contributor.department | AGÜ | en_US |
dc.contributor.institutionauthor | Dogan, Abdulkadir | |
dc.identifier.volume | 24 | en_US |
dc.identifier.issue | 3 | en_US |
dc.identifier.startpage | 295 | en_US |
dc.identifier.endpage | 303 | en_US |
dc.relation.journal | DYNAMIC SYSTEMS AND APPLICATIONS | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |