Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAltiner, Mahmut
dc.contributor.authorBouchekrit, Chafia
dc.contributor.authorTop, Soner
dc.contributor.authorKursunoglu, Sait
dc.date.accessioned2023-04-05T07:37:58Z
dc.date.available2023-04-05T07:37:58Z
dc.date.issued2022en_US
dc.identifier.issn0304-386X
dc.identifier.issn1879-1158
dc.identifier.otherWOS:000774287000007
dc.identifier.urihttps://doi.org/10.1016/j.hydromet.2021.105810
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1564
dc.description.abstractThe synthesis of Mn3O4 nanoparticles from a manganiferous iron ore through reductive leaching, precipitation, and calcination was investigated. The reductive leaching results showed that Mn (99.9%) was almost completely extracted into the leaching solution along with a substantial amount of Mg (99.9%), Al (99.5%), Ca (80%), and Fe (22.9%) under the following conditions: 30 g/L tartaric acid as a reducing agent, 1 M HCl solution, leaching temperature of 90 ◦C, and leaching duration of 3 h. In the first precipitation step, Fe and Al were expelled from the pregnant leach solution by the addition of NaOH prior to conducting the precipitation experiments for the production of manganese carbonate (MnCO3) particles from the purified solution. In the second precipitation step, MnCO3 particles were produced using sodium carbonate (Na2CO3) as the precipitating agent. The effects of parameters such as reaction temperature, Na2CO3 concentration, and experimental duration were investigated using the Taguchi approach. Manganse(II) was precipitated in the form of MnCO3 particles (97.4%) under the following conditions: a temperature of 30 ◦C, Na2CO3 concentration of 0.014 mol/L, and duration of 30 min. The precipitate was observed to have a structure similar to that of rhodochrosite (MnCO3). Thermogravimetric/ differential thermal analyses were subsequently performed in three different atmospheres (air, oxygen, and nitrogen) to select a suitable atmosphere for calcination. The experimental results indicated the formation of hausmannite (Mn3O4) with a purity of 97.5% Mn3O4, 0.42% MgO, 1.66% CaO, and 0.34% FeO. The specific surface area, particle size, Curie temperature, magnetisation, coercivity, and remanence ratio of the final product obtained via 3 h of calcination at 350 ◦C were estimated to be 133.3 m2 /g, <142.2 nm, 56 K, 10.10 Am2 /kg, 0.35 T, and 0.19, respectively. The characterisation results revealed the excellent low-temperature ferromagnetic properties of the produced Mn3O4 nanoparticles.en_US
dc.description.sponsorshipScientific and Techno-logical Research Council of Turkey [TÜBITAK ] 119M690 Cukurova University FBA-2020-13057en_US
dc.language.isoengen_US
dc.publisherELSEVIERen_US
dc.relation.isversionof10.1016/j.hydromet.2021.105810en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectManganiferous iron oreen_US
dc.subjectMn3O4 nanoparticlesen_US
dc.subjectReductive leachingen_US
dc.subjectPrecipitationen_US
dc.subjectCalcinationen_US
dc.titleProduction of Mn3O4 nanoparticles from a manganiferous iron ore via reductive leaching, precipitation, and calcinationen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Malzeme Bilimi ve Nanoteknoloji Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-3486-4184en_US
dc.contributor.authorID0000-0002-1680-5482en_US
dc.contributor.institutionauthorTop, Soner
dc.contributor.institutionauthorKursunoglu, Sait
dc.identifier.volume208en_US
dc.identifier.issue105810en_US
dc.identifier.startpage1en_US
dc.identifier.endpage14en_US
dc.relation.journalHYDROMETALLURGYen_US
dc.relation.tubitak119M690
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster