Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorTemiz, Mustafa
dc.contributor.authorBakir-Gungor, Burcu
dc.contributor.authorSahan, Pinar Guner
dc.contributor.authorCoskun, Mustafa
dc.date.accessioned2023-06-21T09:10:45Z
dc.date.available2023-06-21T09:10:45Z
dc.date.issued2023en_US
dc.identifier.issn2167-8359
dc.identifier.otherWOS:000996172800001
dc.identifier.urihttps://doi.org/10.7717/peerj.15313
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1610
dc.description.abstractGraph or network embedding is a powerful method for extracting missing or potential information from interactions between nodes in biological networks. Graph embedding methods learn representations of nodes and interactions in a graph with low-dimensional vectors, which facilitates research to predict potential interactions in networks. However, most graph embedding methods suffer from high computational costs in the form of high computational complexity of the embedding methods and learning times of the classifier, as well as the high dimensionality of complex biological networks. To address these challenges, in this study, we use the Chopper algorithm as an alternative approach to graph embedding, which accelerates the iterative processes and thus reduces the running time of the iterative algorithms for three different (nervous system, blood, heart) undirected protein-protein interaction (PPI) networks. Due to the high dimensionality of the matrix obtained after the embedding process, the data are transformed into a smaller representation by applying feature regularization techniques. We evaluated the performance of the proposed method by comparing it with state-of-the-art methods. Extensive experiments demonstrate that the proposed approach reduces the learning time of the classifier and performs better in link prediction. We have also shown that the proposed embedding method is faster than state-of-the-art methods on three different PPI datasets.en_US
dc.language.isoengen_US
dc.publisherPEERJ INCen_US
dc.relation.isversionof10.7717/peerj.15313en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectGraph embeddingen_US
dc.subjectMachine learningen_US
dc.subjectLink predictionen_US
dc.subjectProtein-protein interactionen_US
dc.subjectFeature generationen_US
dc.titleTopological feature generation for link prediction in biological networksen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-5736-5495en_US
dc.contributor.authorID0000-0002-2272-6270en_US
dc.contributor.authorID0000-0001-5979-0375en_US
dc.contributor.institutionauthorTemiz, Mustafa
dc.contributor.institutionauthorBakir-Gungor, Burcu
dc.contributor.institutionauthorSahan, Pinar Guner
dc.identifier.volume11en_US
dc.identifier.startpage1en_US
dc.identifier.endpage18en_US
dc.relation.journalPEERJen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster