Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAdige, Sevim
dc.contributor.authorKurban, Rifat
dc.contributor.authorDurmus, Ali
dc.contributor.authorKarakose, Ercan
dc.date.accessioned2023-07-17T10:12:25Z
dc.date.available2023-07-17T10:12:25Z
dc.date.issued2023en_US
dc.identifier.issn0941-0643
dc.identifier.issn1433-3058
dc.identifier.urihttps://doi.org/10.1007/s00521-023-08340-3
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1631
dc.description.abstractOne of the most important problems for farmers who produce large amounts of apples is the classification of the apples accordingtotheir typesinashorttimewithouthandlingthem. Supportvectormachines(SVM) anddeepresidualnetworks (ResNet-50) are machine learning methods that are able to solve general classification situations. In this study, the classification of apple varieties according to their genus is made using machine learning algorithms. A database is created by capturing 120 images from six different apple species. Bag of visual words (BoVW) treat image features as words representing a sparse vector of occurrences over the vocabulary. BoVW features are classified using SVM. On the other hand, ResNet-50 is a convolutional neural network that is 50 layers deep with embedded feature extraction layers. The pretrained ResNet-50 architecture is retrained for apple classification using transfer learning. In the experiments, ourdataset is divided into three cases: Case 1: 40% train, 60% test; Case 2: 60% train, 40% test; and Case 3: 80% train, 20% test. As a result, the linear, Gaussian, and polynomial kernel functions used in the BoVW? SVM algorithm achieved 88%, 92%, and 96% accuracy in Case 3, respectively. In the ResNet-50 classification, the root-mean-square propagation (rmsprop), adaptive moment estimation (adam), and stochastic gradient descent with momentum (sgdm) training algorithms achieved 86%, 89%, and 90% accuracy, respectively, in the set of Case 3.en_US
dc.description.sponsorshipKayseri University Scientific Research Projects Unit FYL-2022-1059en_US
dc.language.isoengen_US
dc.publisherSPRINGERen_US
dc.relation.isversionof10.1007/s00521-023-08340-3en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSupport vector machinesen_US
dc.subjectDeep residual networksen_US
dc.subjectApple classificationen_US
dc.titleClassification of apple images using support vector machines and deep residual networksen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-0277-2210en_US
dc.contributor.institutionauthorKurban, Rifat
dc.identifier.volume35en_US
dc.identifier.issue16en_US
dc.identifier.startpage12073en_US
dc.identifier.endpage12087en_US
dc.relation.journalNEURAL COMPUTING & APPLICATIONSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster