Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorOrhan, Mehmet Emin
dc.contributor.authorDemirci, Yilmaz Mehmet
dc.contributor.authorSacar Demirci, Muserref Duygu
dc.date.accessioned2023-07-18T07:01:39Z
dc.date.available2023-07-18T07:01:39Z
dc.date.issued2023en_US
dc.identifier.issn0010-4825
dc.identifier.issn1879-0534
dc.identifier.otherWOS:000988971900001
dc.identifier.urihttps://doi.org/10.1016/j.compbiomed.2023.106861
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1635
dc.description.abstractMany supervised machine learning based noncoding RNA (ncRNA) analysis methods have been developed to classify and identify novel sequences. During such analysis, the positive learning datasets usually consist of known examples of ncRNAs and some of them might even have weak or strong experimental validation. On the contrary, there are neither databases listing the confirmed negative sequences for a specific ncRNA class nor standardized methodologies developed to generate high quality negative examples. To overcome this challenge, a novel negative data generation method, NeRNA (negative RNA), is developed in this work. NeRNA uses known examples of given ncRNA sequences and their calculated structures for octal representation to create negative sequences in a manner similar to frameshift mutations but without deletion or insertion. NeRNA is tested individually with four different ncRNA datasets including microRNA (miRNA), transfer RNA (tRNA), long noncoding RNA (lncRNA), and circular RNA (circRNA). Furthermore, a species-specific case analysis is performed to demonstrate and compare the performance of NeRNA for miRNA prediction. The results of 1000 fold cross-validation on Decision Tree, Naïve Bayes and Random Forest classifiers, and deep learning algorithms such as Multilayer Perceptron, Convolutional Neural Network, and Simple feedforward Neural Networks indicate that models obtained by using NeRNA generated datasets, achieves substantially high prediction performance. NeRNA is released as an easy-to-use, updatable and modifiable KNIME workflow that can be downloaded with example datasets and required extensions. In particular, NeRNA is designed to be a powerful tool for RNA sequence data analysis.en_US
dc.language.isoengen_US
dc.publisherPERGAMON-ELSEVIER SCIENCEen_US
dc.relation.isversionof10.1016/j.compbiomed.2023.106861en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectRNAen_US
dc.subjectNoncoding RNAen_US
dc.subjectData generationen_US
dc.subjectMachine learningen_US
dc.titleNeRNA: A negative data generation framework for machine learning applications of noncoding RNAsen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Yaşam ve Doğa Bilimleri Fakültesi, Biyomühendislik Bölümüen_US
dc.contributor.authorID0000-0002-1757-1374en_US
dc.contributor.authorID0000-0003-3802-4211en_US
dc.contributor.authorID0000-0003-2012-0598en_US
dc.contributor.institutionauthorOrhan, Mehmet Emin
dc.contributor.institutionauthorDemirci, Yilmaz Mehmet
dc.contributor.institutionauthorSacar Demirci, Muserref Duygu
dc.identifier.volume159en_US
dc.identifier.startpage1en_US
dc.identifier.endpage8en_US
dc.relation.journalCOMPUTERS IN BIOLOGY AND MEDICINEen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster