Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorGuner, Pinar
dc.contributor.authorBakir-Gungor, Burcu
dc.contributor.authorCoskun, Mustafa
dc.date.accessioned2023-07-20T12:55:06Z
dc.date.available2023-07-20T12:55:06Z
dc.date.issued2022en_US
dc.identifier.issn1303-6092
dc.identifier.issn1300-0152
dc.identifier.otherWOS:000783708700004
dc.identifier.urihttps://doi.org/10.3906/biy-2108-83
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1650
dc.description.abstractCancer is a disease in which abnormal cells grow uncontrollably and invade other tissues. Several types of cancer have various subtypes with different clinical and biological implications. Based on these differences, treatment methods need to be customized. The identification of distinct cancer subtypes is an important problem in bioinformatics, since it can guide future precision medicine applications. In order to design targeted treatments, bioinformatics methods attempt to discover common molecular pathology of different cancer subtypes. Along this line, several computational methods have been proposed to discover cancer subtypes or to stratify cancer into informative subtypes. However, existing works do not consider the sparseness of data (genes having low degrees) and result in an ill-conditioned solution. To address this shortcoming, in this paper, we propose an alternative unsupervised method to stratify cancer patients into subtypes using applied numerical algebra techniques. More specifically, we applied a label propagationbased approach to stratify somatic mutation profiles of colon, head and neck, uterine, bladder, and breast tumors. We evaluated the performance of our method by comparing it to the baseline methods. Extensive experiments demonstrate that our approach highly renders tumor classification tasks by largely outperforming the state-of-the-art unsupervised and supervised approaches.en_US
dc.language.isoengen_US
dc.publisherTUBITAK SCIENTIFIC & TECHNICAL RESEARCH COUNCIL TURKEYATATURK BULVARI NO 221, KAVAKLIDERE, ANKARA 00000, TURKEYen_US
dc.relation.isversionof10.3906/biy-2108-83en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCancer subtypeen_US
dc.subjectbioinformaticsen_US
dc.subjectmachine learningen_US
dc.subjectlabel propagationen_US
dc.subjectpersonalized medicineen_US
dc.titleDeveloping a label propagation approach for cancer subtype classification problemen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0001-5979-0375en_US
dc.contributor.authorID0000-0002-2272-6270en_US
dc.contributor.authorID0000-0003-4805-1416en_US
dc.contributor.institutionauthorGuner, Pinar
dc.contributor.institutionauthorBakir-Gungor, Burcu
dc.contributor.institutionauthorCoskun, Mustafa
dc.identifier.volume46en_US
dc.identifier.issue2en_US
dc.identifier.startpage145en_US
dc.identifier.endpage161en_US
dc.relation.journalTURKISH JOURNAL OF BIOLOGYen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster