Perfluoroalkyl-Functionalized Thiazole Thiophene Oligomers as N-Channel Semiconductors in Organic Field-Effect and Light-Emitting Transistors
View/ Open
Access
info:eu-repo/semantics/closedAccessDate
2014Author
Sheets, William ChristopherDenti, Mitchell
Generali, Gianluca
Capelli, Raffaella
Lu, Shaofeng
Yu, Xinge
Muccini, Michele
Facchetti, Antonio
Usta, Hakan
Metadata
Show full item recordAbstract
Despite their favorable electronic and structural properties, the synthetic development and incorporation of thiazole-based building blocks into n-type semiconductors has lagged behind that of other π-deficient building blocks. Since thiazole insertion into π-conjugated systems is synthetically more demanding, continuous research efforts are essential to underscore their properties in electron-transporting devices. Here, we report the design, synthesis, and characterization of a new series of thiazole–thiophene tetra- (1 and 2) and hexa-heteroaryl (3 and 4) co-oligomers, varied by core extension and regiochemistry, which are end-functionalized with electron-withdrawing perfluorohexyl substituents. These new semiconductors are found to exhibit excellent n-channel OFET transport with electron mobilities (μe) as high as 1.30 cm2/(V·s) (Ion/Ioff > 106) for films of 2 deposited at room temperature. In contrary to previous studies, we show here that 2,2′-bithiazole can be a very practical building block for high-performance n-channel semiconductors. Additionally, upon 2,2′- and 5,5′-bithiazole insertion into a sexithiophene backbone of well-known DFH-6T, significant charge transport improvements (from 0.001–0.021 cm2/(V·s) to 0.20–0.70 cm2/(V·s)) were observed for 3 and 4. Analysis of the thin-film morphological and microstructural characteristics, in combination with the physicochemical properties, explains the observed high mobilities for the present semiconductors. Finally, we demonstrate for the first time implementation of a thiazole semiconductor (2) into a trilayer light-emitting transistor (OLET) enabling green light emission. Our results show that thiazole is a promising building block for efficient electron transport in π-conjugated semiconductor thin-films, and it should be studied more in future optoelectronic applications.