dc.contributor.author | Jung, Jaesung | |
dc.contributor.author | Onen, Ahmet | |
dc.contributor.author | Russell, Kevin | |
dc.contributor.author | Broadwater, Robert P. | |
dc.contributor.author | Steffel, Steve | |
dc.contributor.author | Dinkel, Alex | |
dc.date.accessioned | 2023-08-17T07:56:19Z | |
dc.date.available | 2023-08-17T07:56:19Z | |
dc.date.issued | 2015 | en_US |
dc.identifier.issn | 0960-1481 | |
dc.identifier.other | WOS:000348955400035 | |
dc.identifier.uri | http://dx.doi.org/10.1016/j.renene.2014.11.046 | |
dc.identifier.uri | https://hdl.handle.net/20.500.12573/1734 | |
dc.description.abstract | Existing distribution systems and their associated controls have been around for decades. Most distribution circuits have capacity to accommodate some level of PV generation, but the question is how much
can they handle without creating problems. This paper proposes a Configurable, Hierarchical, Modelbased, Scheduling Control (CHMSC) of automated utility control devices and photovoltaic (PV) generators. In the study here the automated control devices are assumed to be owned by the utility and the PV
generators and PV generator controls by another party. The CHMSC, which exists in a hierarchical control
architecture that is failure tolerant, strives to maintain the voltage level that existed before introducing
the PV into the circuit while minimizing the circuit loss and reducing the motion of the automated
control devices. This is accomplished using prioritized objectives. The CHMSC sends control signals to the
local controllers of the automated control devices and PV controllers. To evaluate the performance of the
CHMSC, increasing PV levels of adoption are analyzed in a model of an actual circuit that has significant
existing PV penetration and automated voltage control devices. The CHMSC control performance is
compared with that of existing, local control. Simulation results presented demonstrate that the CHMSC
algorithm results in better voltage control, lower losses, and reduced automated control device motion,
especially as the penetration level of PV increases. | en_US |
dc.description.sponsorship | Pepco Holdings, Inc.
Electrical Distribution Design, Inc. | en_US |
dc.language.iso | eng | en_US |
dc.publisher | PERGAMON-ELSEVIER SCIENCE LTD | en_US |
dc.relation.isversionof | 10.1016/j.renene.2014.11.046 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Reactive power control | en_US |
dc.subject | Hierarchical control | en_US |
dc.subject | Local control | en_US |
dc.subject | Power distribution control | en_US |
dc.subject | PV integration | en_US |
dc.subject | Aggregation PV | en_US |
dc.title | Configurable, Hierarchical, Model-based, Scheduling Control with photovoltaic generators in power distribution circuits | en_US |
dc.type | article | en_US |
dc.contributor.department | AGÜ, Mühendislik Fakültesi, Elektrik - Elektronik Mühendisliği Bölümü | en_US |
dc.contributor.authorID | 0000-0001-7086-5112 | en_US |
dc.contributor.institutionauthor | Onen, Ahmet | |
dc.identifier.volume | 76 | en_US |
dc.identifier.startpage | 318 | en_US |
dc.identifier.endpage | 329 | en_US |
dc.relation.journal | RENEWABLE ENERGY | en_US |
dc.relation.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | en_US |