Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAkbas, Ayhan
dc.contributor.authorBuyrukoğlu, Selim
dc.date.accessioned2023-09-18T09:02:25Z
dc.date.available2023-09-18T09:02:25Z
dc.date.issued2022en_US
dc.identifier.issn2147-284X
dc.identifier.urihttp://doi.org/10.17694/bajece.973129
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1787
dc.description.abstractA new hybrid machine learning method for the prediction of type 2 diabetes is introduced and explained in detail. Also outcomes are compared with the similar researches. Early prediction of diabetes is crucial to take necessary measures (i.e. changing eating habits, patient weight control etc.), to defer the emergence of diabetes and to reduce the death rate to some extent and ease medical care professionals’ decision making in preventing and managing diabetes mellitus.The purpose of this study is the creation of a new hybrid feature selection approach combination of Correlation Matrix with Heatmap and Sequential forward selection (SFS) to reveal the most effective features in the detection of diabetes. A diabetes data set with 520 instances and seven features were studied with the application of the proposed hybrid feature selection approach. The evaluation of the selected optimal features was measured by applying Support Vector Machines(SVM), Random Forest(RF), and Artificial Neural Networks(ANN) classifiers. Five evaluation metrics, namely, Accuracy, F-measure, Precision, Recall, and AUC showed the best performance with ANN (99.1%), F-measure (99.1%), Precision (99.3%), Recall (99.1%), and AUC (99.8%). Our proposed hybrid feature selection model provided a more promising performance with ANN compared to other machine learning algorithms.en_US
dc.language.isoengen_US
dc.publisherİstanbul Teknik Üniversitesien_US
dc.relation.isversionof10.17694/bajece.973129en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectArtificial Neural Networken_US
dc.subjectCorrelation Matrixen_US
dc.subjectSequential Forward Selectionen_US
dc.subjectDiabetes Mellitusen_US
dc.subjectHybrid Feature Selectionen_US
dc.titleMachine Learning based Early Prediction of Type 2 Diabetes: A New Hybrid Feature Selection Approach using Correlation Matrix with Heatmap and SFSen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-6425-104Xen_US
dc.contributor.institutionauthorAkbas, Ayhan
dc.identifier.volume10en_US
dc.identifier.issue2en_US
dc.identifier.startpage110en_US
dc.identifier.endpage117en_US
dc.relation.journalBalkan Journal of Electrical and Computer Engineeringen_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster