Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorHamdan, Mutasem Q.
dc.contributor.authorLee, Haeyoung
dc.contributor.authorTriantafyllopoulou, Dionysia
dc.contributor.authorBorralho, Ruben
dc.contributor.authorKose, Abdulkadir
dc.contributor.authorAmiri, Esmaeil
dc.contributor.authorMulvey, David
dc.contributor.authorYu, Wenjuan
dc.contributor.authorZitouni, Rafik
dc.contributor.authorPozza, Riccardo
dc.contributor.authorHunt, Bernie
dc.contributor.authorBagheri, Hamidreza
dc.contributor.authorFoh, Chuan Heng
dc.contributor.authorHeliot, Fabien
dc.contributor.authorChen, Gaojie
dc.contributor.authorXiao, Pei
dc.contributor.authorWang, Ning
dc.contributor.authorTafazolli, Rahim
dc.date.accessioned2024-01-25T08:21:12Z
dc.date.available2024-01-25T08:21:12Z
dc.date.issued2023en_US
dc.identifier.issn1424-8220
dc.identifier.otherWOS:001099561900001
dc.identifier.urihttps://doi.org/10.3390/s23218792
dc.identifier.urihttps://hdl.handle.net/20.500.12573/1901
dc.description.abstractThe evolution of network technologies has witnessed a paradigm shift toward open and intelligent networks, with the Open Radio Access Network (O-RAN) architecture emerging as a promising solution. O-RAN introduces disaggregation and virtualization, enabling network operators to deploy multi-vendor and interoperable solutions. However, managing and automating the complex O-RAN ecosystem presents numerous challenges. To address this, machine learning (ML) techniques have gained considerable attention in recent years, offering promising avenues for network automation in O-RAN. This paper presents a comprehensive survey of the current research efforts on network automation usingML in O-RAN.We begin by providing an overview of the O-RAN architecture and its key components, highlighting the need for automation. Subsequently, we delve into O-RAN support forML techniques. The survey then explores challenges in network automation usingML within the O-RAN environment, followed by the existing research studies discussing application of ML algorithms and frameworks for network automation in O-RAN. The survey further discusses the research opportunities by identifying important aspects whereML techniques can benefit.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/s23218792en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectopen radio access networksen_US
dc.subjectmachine learningen_US
dc.subjectartificial intelligenceen_US
dc.titleRecent Advances in Machine Learning for Network Automation in the O-RANen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-6877-1392en_US
dc.contributor.institutionauthorKose, Abdulkadir
dc.identifier.volume23en_US
dc.identifier.issue21en_US
dc.identifier.startpage1en_US
dc.identifier.endpage35en_US
dc.relation.journalSENSORSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster