Investigation of compressive performance of 3D printed carbon fiber reinforced plastics
Özet
The compressive performance of Carbon Fiber Reinforced Plastics (CFRP) is an extensive research area of crashworthy structures due to high Specific Energy Absorption (SEA) rates. However, the traditional composite manufacturing techniques are limiting the implementation of CFRP in crash components of automobile industry. These limitations can be minimized with 3D printing technology, which can be replaced with the traditional composite manufacturing techniques by providing flexibility especially in terms of geometric complexities. In this study, the compressive performance of 3D printed CFRP samples with square and circular cross-sections are examined with different thickness and fiber volume fraction values. SEA rates obtained from axial compressive tests are compared and compressive performance of 3D printed samples is optimized in terms of crashworthiness.