Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorSungur, Kerim Serdar
dc.contributor.authorBakal, Gokhan
dc.date.accessioned2025-03-10T09:05:24Z
dc.date.available2025-03-10T09:05:24Z
dc.date.issued2025en_US
dc.identifier.issn0141-9382
dc.identifier.issn1872-7387
dc.identifier.urihttps://doi.org/10.1016/j.displa.2024.102958
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2442
dc.description.abstractSentiment analysis is a widely studied problem for understanding human emotions and potential outcomes. As it can be performed over textual data, working on visual data elements is also critically substantial to examining the current emotional status. In this effort, the aim is to investigate any potential enhancements in sentiment analysis predictions through visual instances by integrating textual data as additional knowledge reflecting the contextual information of the images. Thus, two separate models have been developed as image-processing and text-processing models in which both models were trained on distinct datasets comprising the same five human emotions. Following, the outputs of the individual models' last dense layers are combined to construct the hybrid multimodel empowered by visual and textual components. The fundamental focus is to evaluate the performance of the hybrid model in which the textual knowledge is concatenated with visual data. Essentially, the hybrid model achieved nearly a 3% F1-score improvement compared to the plain image classification model utilizing convolutional neural network architecture. In essence, this research underscores the potency of fusing textual context with visual information to refine sentiment analysis predictions. The findings not only emphasize the potential of a multi-modal approach but also spotlight a promising avenue for future advancements in emotion analysis and understanding.en_US
dc.language.isoengen_US
dc.publisherELSEVIERen_US
dc.relation.isversionof10.1016/j.displa.2024.102958en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectSentiment analysisen_US
dc.subjectHybrid modelen_US
dc.subjectImage & text processingen_US
dc.subjectDeep learningen_US
dc.titleBeyond visual cues: Emotion recognition in images with text-aware fusion☆en_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-2897-3894en_US
dc.contributor.institutionauthorSungur, Kerim Serdar
dc.contributor.institutionauthorBakal, Gokhan
dc.identifier.volume87en_US
dc.identifier.startpage1en_US
dc.identifier.endpage8en_US
dc.relation.journalDISPLAYSen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster