Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDedeturk, Beyhan Adanur
dc.contributor.authorDedeturk, Bilge Kagan
dc.contributor.authorBakir-Gungor, Burcu
dc.date.accessioned2025-04-16T07:48:08Z
dc.date.available2025-04-16T07:48:08Z
dc.date.issued2024en_US
dc.identifier.issn2376-5992
dc.identifier.urihttps://doi.org/10.7717/peerj-cs.2197
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2505
dc.description.abstractCardiovascular diseases (CVD) are a leading cause of mortality globally, necessitating the development of efficient diagnostic tools. Machine learning (ML) and metaheuristic algorithms have become prevalent in addressing these challenges, providing promising solutions in medical diagnostics. However, traditional ML approaches often need to be improved in feature selection and optimization, leading to suboptimal performance in complex diagnostic tasks. To overcome these limitations, this study introduces a new hybrid method called CSA-DE-LR, which combines the clonal selection algorithm (CSA) and differential evolution (DE) with logistic regression. This integration is designed to optimize logistic regression weights efficiently for the accurate classification of CVD. The methodology employs three optimization strategies based on the F1 score, the Matthews correlation coefficient (MCC), and the mean absolute error (MAE). Extensive evaluations on benchmark datasets, namely Cleveland and Statlog, reveal that CSA-DELR outperforms state-of-the-art ML methods. In addition, generalization is evaluated using the Breast Cancer Wisconsin Original (WBCO) and Breast Cancer Wisconsin Diagnostic (WBCD) datasets. Significantly, the proposed model demonstrates superior efficacy compared to previous research studies in this domain. This study's findings highlight the potential of hybrid machine learning approaches for improving diagnostic accuracy, offering a significant advancement in the fields of medical data analysis and CVD diagnosis.en_US
dc.language.isoengen_US
dc.publisherPEERJ INCen_US
dc.relation.isversionof10.7717/peerj-cs.2197en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectCardiovascular diseasesen_US
dc.subjectMachine learningen_US
dc.subjectClonal selection algorithmen_US
dc.subjectDifferential evolutionen_US
dc.subjectLogistic regressionen_US
dc.subjectMedical diagnosticsen_US
dc.titleCSA-DE-LR: enhancing cardiovascular disease diagnosis with a novel hybrid machine learning approachen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-4983-2417en_US
dc.contributor.authorID0000-0002-8026-5003en_US
dc.contributor.authorID0000-0002-2272-6270en_US
dc.contributor.institutionauthorBeyhan Adanur, Dedeturk
dc.contributor.institutionauthorBakir-Gungor, Burcu
dc.identifier.volume10en_US
dc.identifier.startpage1en_US
dc.identifier.endpage35en_US
dc.relation.journalPeerJ Computer Scienceen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster