Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorDangayach, Raghav
dc.contributor.authorJeong, Nohyeong
dc.contributor.authorDemirel, Elif
dc.contributor.authorUzal, Nigmet
dc.contributor.authorFung, Victor
dc.contributor.authorChen, Yongsheng
dc.date.accessioned2025-05-06T13:20:54Z
dc.date.available2025-05-06T13:20:54Z
dc.date.issued2024en_US
dc.identifier.issn0013-936X
dc.identifier.issn1520-5851
dc.identifier.urihttps://doi.org/10.1021/acs.est.4c08298
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2516
dc.description.abstractPolymeric membranes have been widely used for liquid and gas separation in various industrial applications over the past few decades because of their exceptional versatility and high tunability. Traditional trial-and-error methods for material synthesis are inadequate to meet the growing demands for high-performance membranes. Machine learning (ML) has demonstrated huge potential to accelerate design and discovery of membrane materials. In this review, we cover strengths and weaknesses of the traditional methods, followed by a discussion on the emergence of ML for developing advanced polymeric membranes. We describe methodologies for data collection, data preparation, the commonly used ML models, and the explainable artificial intelligence (XAI) tools implemented in membrane research. Furthermore, we explain the experimental and computational validation steps to verify the results provided by these ML models. Subsequently, we showcase successful case studies of polymeric membranes and emphasize inverse design methodology within a ML-driven structured framework. Finally, we conclude by highlighting the recent progress, challenges, and future research directions to advance ML research for next generation polymeric membranes. With this review, we aim to provide a comprehensive guideline to researchers, scientists, and engineers assisting in the implementation of ML to membrane research and to accelerate the membrane design and material discovery process.en_US
dc.language.isoengen_US
dc.publisherACS Publicationsen_US
dc.relation.isversionof10.1021/acs.est.4c08298en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectMachine learningen_US
dc.subjectPolymeric membraneen_US
dc.subjectSeparationen_US
dc.subjectInverse designen_US
dc.subjectMaterial discoveryen_US
dc.titleMachine Learning-Aided Inverse Design and Discovery of Novel Polymeric Materials for Membrane Separationen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, İnşaat Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-0912-3459en_US
dc.contributor.institutionauthorUzal, Nigmet
dc.identifier.volume59en_US
dc.identifier.issue2en_US
dc.identifier.startpage993en_US
dc.identifier.endpage1012en_US
dc.relation.journalEnvironmental Science & Technologyen_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster