Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorQumsiyeh, Emma
dc.contributor.authorBakir-Gungor, Burcu
dc.contributor.authorYousef, Malik
dc.date.accessioned2025-05-09T06:46:54Z
dc.date.available2025-05-09T06:46:54Z
dc.date.issued2024en_US
dc.identifier.isbn979-8-3503-8897-8979-8-3503-8896-1
dc.identifier.issn2165-0608
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10601041
dc.identifier.urihttps://hdl.handle.net/20.500.12573/2532
dc.description.abstractThis study uses modern sequencing technology and large biological databases to investigate the molecular intricacies of complicated diseases like cancer. Using gene expression databases and biomarkers, the research aims to improve breast cancer molecular subtype identification for better patient outcomes. Using BRCA LumAB_ Her2Basal dataset, this study compares an integrative machine learning-based strategy (GediNET) to traditional feature selection approaches across machine learning classifiers. GediNET excels at uncovering crucial disease-disease connections and potential biomarkers using the Grouping-Scoring-Modeling (GSM) approach, which favors gene groupings above individual genes. Our comparative analysis highlights GediNET's exceptional performance, notably in terms of accuracy and Area Under the Curve metrics, underscoring its effectiveness in uncovering the genetic intricacies of breast cancer. GediNET's promise to improve disease classification and biomarker identification by improving biological mechanism understanding goes beyond exceeding traditional approaches. The work shows that GediNET's integrative method can promote bioinformatics research by identifying the most informative genes associated with certain diseases, enabling focused and customized medicine.en_US
dc.language.isoengen_US
dc.publisherIEEE Xploreen_US
dc.relation.isversionof10.1109/SIU61531.2024.10601041en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectBioinformaticsen_US
dc.subjectIntegrative approachen_US
dc.subjectFeature selection methodsen_US
dc.subjectGrouping-scoring-modeling (g-s-m)en_US
dc.subjectDisease-disease associationsen_US
dc.subjectBiomarker discoveryen_US
dc.subjectMachine learningen_US
dc.titleClassification of Breast Cancer Molecular Subtypes with Grouping-Scoring-Modeling Approach that Incorporates Disease-Disease Association Informationen_US
dc.typeotheren_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0002-2272-6270en_US
dc.contributor.institutionauthorBakir-Gungor, Burcu
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.relation.journal2024 32nd Signal Processing and Communications Applications Conference (SIU)2024en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster