Gelişmiş Arama

Basit öğe kaydını göster

dc.contributor.authorAltinisik, Enes
dc.contributor.authorTasdemir, Kasim
dc.contributor.authorSencar, Husrev Taha
dc.date.accessioned2021-02-26T08:52:04Z
dc.date.available2021-02-26T08:52:04Z
dc.date.issued2020en_US
dc.identifier.issn1556-6013
dc.identifier.issn1556-6021
dc.identifier.urihttps://doi.org/10.1109/TIFS.2019.2945190
dc.identifier.urihttps://hdl.handle.net/20.500.12573/563
dc.descriptionThis work was supported by the Scientific and Technological Research Council of Turkey (TUBITAK) under Grant 116E273. The associate editor coordinating the review of this manuscript and approving it for publication was Prof. Luisa Verdoliva.en_US
dc.description.abstractThe photo-response non-uniformity (PRNU) is a distinctive image sensor characteristic, and an imaging device inadvertently introduces its sensor's PRNU into all media it captures. Therefore, the PRNU can be regarded as a camera fingerprint and used for source attribution. The imaging pipeline in a camera, however, involves various processing steps that are detrimental to PRNU estimation. In the context of photographic images, these challenges are successfully addressed and the method for estimating a sensor's PRNU pattern is well established. However, various additional challenges related to generation of videos remain largely untackled. With this perspective, this work introduces methods to mitigate disruptive effects of widely deployed H.264 and H.265 video compression standards on PRNU estimation. Our approach involves an intervention in the decoding process to eliminate a filtering procedure applied at the decoder to reduce blockiness. It also utilizes decoding parameters to develop a weighting scheme and adjust the contribution of video frames at the macroblock level to PRNU estimation process. Results obtained on videos captured by 28 cameras show that our approach increases the PRNU matching metric up to more than five times over the conventional estimation method tailored for photos. Tests on a public dataset also verify that the proposed method improves the attribution performance by increasing the accuracy and allowing the use of smaller length videos to perform attribution.en_US
dc.description.sponsorshipTurkiye Bilimsel ve Teknolojik Arastirma Kurumu (TUBITAK) 116E273en_US
dc.language.isoengen_US
dc.publisherIEEE-INST ELECTRICAL ELECTRONICS ENGINEERS INC, 445 HOES LANE, PISCATAWAY, NJ 08855-4141 USAen_US
dc.relation.isversionof10.1109/TIFS.2019.2945190en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectEstimationen_US
dc.subjectCamerasen_US
dc.subjectVideo compressionen_US
dc.subjectReliabilityen_US
dc.subjectPipelinesen_US
dc.subjectStandardsen_US
dc.subjectPhoto-response non-uniformity (PRNU)en_US
dc.subjectvideo source attributionen_US
dc.subjectH.264/H.265 encoding & decodingen_US
dc.titleMitigation of H.264 and H.265 Video Compression for Reliable PRNU Estimationen_US
dc.typearticleen_US
dc.contributor.departmentAGÜ, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.contributor.authorID0000-0003-4542-2728en_US
dc.identifier.volumeVolume: 15en_US
dc.identifier.startpage1557en_US
dc.identifier.endpage1571en_US
dc.relation.journalIEEE TRANSACTIONS ON INFORMATION FORENSICS AND SECURITYen_US
dc.relation.tubitak116E273
dc.relation.publicationcategoryMakale - Uluslararası - Editör Denetimli Dergien_US


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster